xref: /openbmc/linux/drivers/dma/idxd/irq.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <uapi/linux/idxd.h>
10 #include "../dmaengine.h"
11 #include "idxd.h"
12 #include "registers.h"
13 
14 static void idxd_device_reinit(struct work_struct *work)
15 {
16 	struct idxd_device *idxd = container_of(work, struct idxd_device, work);
17 	struct device *dev = &idxd->pdev->dev;
18 	int rc, i;
19 
20 	idxd_device_reset(idxd);
21 	rc = idxd_device_config(idxd);
22 	if (rc < 0)
23 		goto out;
24 
25 	rc = idxd_device_enable(idxd);
26 	if (rc < 0)
27 		goto out;
28 
29 	for (i = 0; i < idxd->max_wqs; i++) {
30 		struct idxd_wq *wq = &idxd->wqs[i];
31 
32 		if (wq->state == IDXD_WQ_ENABLED) {
33 			rc = idxd_wq_enable(wq);
34 			if (rc < 0) {
35 				dev_warn(dev, "Unable to re-enable wq %s\n",
36 					 dev_name(&wq->conf_dev));
37 			}
38 		}
39 	}
40 
41 	return;
42 
43  out:
44 	idxd_device_wqs_clear_state(idxd);
45 }
46 
47 irqreturn_t idxd_irq_handler(int vec, void *data)
48 {
49 	struct idxd_irq_entry *irq_entry = data;
50 	struct idxd_device *idxd = irq_entry->idxd;
51 
52 	idxd_mask_msix_vector(idxd, irq_entry->id);
53 	return IRQ_WAKE_THREAD;
54 }
55 
56 irqreturn_t idxd_misc_thread(int vec, void *data)
57 {
58 	struct idxd_irq_entry *irq_entry = data;
59 	struct idxd_device *idxd = irq_entry->idxd;
60 	struct device *dev = &idxd->pdev->dev;
61 	union gensts_reg gensts;
62 	u32 cause, val = 0;
63 	int i;
64 	bool err = false;
65 
66 	cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
67 
68 	if (cause & IDXD_INTC_ERR) {
69 		spin_lock_bh(&idxd->dev_lock);
70 		for (i = 0; i < 4; i++)
71 			idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
72 					IDXD_SWERR_OFFSET + i * sizeof(u64));
73 		iowrite64(IDXD_SWERR_ACK, idxd->reg_base + IDXD_SWERR_OFFSET);
74 
75 		if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
76 			int id = idxd->sw_err.wq_idx;
77 			struct idxd_wq *wq = &idxd->wqs[id];
78 
79 			if (wq->type == IDXD_WQT_USER)
80 				wake_up_interruptible(&wq->idxd_cdev.err_queue);
81 		} else {
82 			int i;
83 
84 			for (i = 0; i < idxd->max_wqs; i++) {
85 				struct idxd_wq *wq = &idxd->wqs[i];
86 
87 				if (wq->type == IDXD_WQT_USER)
88 					wake_up_interruptible(&wq->idxd_cdev.err_queue);
89 			}
90 		}
91 
92 		spin_unlock_bh(&idxd->dev_lock);
93 		val |= IDXD_INTC_ERR;
94 
95 		for (i = 0; i < 4; i++)
96 			dev_warn(dev, "err[%d]: %#16.16llx\n",
97 				 i, idxd->sw_err.bits[i]);
98 		err = true;
99 	}
100 
101 	if (cause & IDXD_INTC_CMD) {
102 		val |= IDXD_INTC_CMD;
103 		complete(idxd->cmd_done);
104 	}
105 
106 	if (cause & IDXD_INTC_OCCUPY) {
107 		/* Driver does not utilize occupancy interrupt */
108 		val |= IDXD_INTC_OCCUPY;
109 	}
110 
111 	if (cause & IDXD_INTC_PERFMON_OVFL) {
112 		/*
113 		 * Driver does not utilize perfmon counter overflow interrupt
114 		 * yet.
115 		 */
116 		val |= IDXD_INTC_PERFMON_OVFL;
117 	}
118 
119 	val ^= cause;
120 	if (val)
121 		dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
122 			      val);
123 
124 	iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
125 	if (!err)
126 		goto out;
127 
128 	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
129 	if (gensts.state == IDXD_DEVICE_STATE_HALT) {
130 		idxd->state = IDXD_DEV_HALTED;
131 		if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
132 			/*
133 			 * If we need a software reset, we will throw the work
134 			 * on a system workqueue in order to allow interrupts
135 			 * for the device command completions.
136 			 */
137 			INIT_WORK(&idxd->work, idxd_device_reinit);
138 			queue_work(idxd->wq, &idxd->work);
139 		} else {
140 			spin_lock_bh(&idxd->dev_lock);
141 			idxd_device_wqs_clear_state(idxd);
142 			dev_err(&idxd->pdev->dev,
143 				"idxd halted, need %s.\n",
144 				gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
145 				"FLR" : "system reset");
146 			spin_unlock_bh(&idxd->dev_lock);
147 		}
148 	}
149 
150  out:
151 	idxd_unmask_msix_vector(idxd, irq_entry->id);
152 	return IRQ_HANDLED;
153 }
154 
155 static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
156 				     int *processed)
157 {
158 	struct idxd_desc *desc, *t;
159 	struct llist_node *head;
160 	int queued = 0;
161 
162 	*processed = 0;
163 	head = llist_del_all(&irq_entry->pending_llist);
164 	if (!head)
165 		return 0;
166 
167 	llist_for_each_entry_safe(desc, t, head, llnode) {
168 		if (desc->completion->status) {
169 			idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL);
170 			idxd_free_desc(desc->wq, desc);
171 			(*processed)++;
172 		} else {
173 			list_add_tail(&desc->list, &irq_entry->work_list);
174 			queued++;
175 		}
176 	}
177 
178 	return queued;
179 }
180 
181 static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
182 				 int *processed)
183 {
184 	struct list_head *node, *next;
185 	int queued = 0;
186 
187 	*processed = 0;
188 	if (list_empty(&irq_entry->work_list))
189 		return 0;
190 
191 	list_for_each_safe(node, next, &irq_entry->work_list) {
192 		struct idxd_desc *desc =
193 			container_of(node, struct idxd_desc, list);
194 
195 		if (desc->completion->status) {
196 			list_del(&desc->list);
197 			/* process and callback */
198 			idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL);
199 			idxd_free_desc(desc->wq, desc);
200 			(*processed)++;
201 		} else {
202 			queued++;
203 		}
204 	}
205 
206 	return queued;
207 }
208 
209 static int idxd_desc_process(struct idxd_irq_entry *irq_entry)
210 {
211 	int rc, processed, total = 0;
212 
213 	/*
214 	 * There are two lists we are processing. The pending_llist is where
215 	 * submmiter adds all the submitted descriptor after sending it to
216 	 * the workqueue. It's a lockless singly linked list. The work_list
217 	 * is the common linux double linked list. We are in a scenario of
218 	 * multiple producers and a single consumer. The producers are all
219 	 * the kernel submitters of descriptors, and the consumer is the
220 	 * kernel irq handler thread for the msix vector when using threaded
221 	 * irq. To work with the restrictions of llist to remain lockless,
222 	 * we are doing the following steps:
223 	 * 1. Iterate through the work_list and process any completed
224 	 *    descriptor. Delete the completed entries during iteration.
225 	 * 2. llist_del_all() from the pending list.
226 	 * 3. Iterate through the llist that was deleted from the pending list
227 	 *    and process the completed entries.
228 	 * 4. If the entry is still waiting on hardware, list_add_tail() to
229 	 *    the work_list.
230 	 * 5. Repeat until no more descriptors.
231 	 */
232 	do {
233 		rc = irq_process_work_list(irq_entry, &processed);
234 		total += processed;
235 		if (rc != 0)
236 			continue;
237 
238 		rc = irq_process_pending_llist(irq_entry, &processed);
239 		total += processed;
240 	} while (rc != 0);
241 
242 	return total;
243 }
244 
245 irqreturn_t idxd_wq_thread(int irq, void *data)
246 {
247 	struct idxd_irq_entry *irq_entry = data;
248 	int processed;
249 
250 	processed = idxd_desc_process(irq_entry);
251 	idxd_unmask_msix_vector(irq_entry->idxd, irq_entry->id);
252 
253 	if (processed == 0)
254 		return IRQ_NONE;
255 
256 	return IRQ_HANDLED;
257 }
258