xref: /openbmc/linux/drivers/dma/idxd/irq.c (revision e8614313)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <uapi/linux/idxd.h>
10 #include "../dmaengine.h"
11 #include "idxd.h"
12 #include "registers.h"
13 
14 enum irq_work_type {
15 	IRQ_WORK_NORMAL = 0,
16 	IRQ_WORK_PROCESS_FAULT,
17 };
18 
19 struct idxd_fault {
20 	struct work_struct work;
21 	u64 addr;
22 	struct idxd_device *idxd;
23 };
24 
25 static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
26 				 enum irq_work_type wtype,
27 				 int *processed, u64 data);
28 static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
29 				     enum irq_work_type wtype,
30 				     int *processed, u64 data);
31 
32 static void idxd_device_reinit(struct work_struct *work)
33 {
34 	struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35 	struct device *dev = &idxd->pdev->dev;
36 	int rc, i;
37 
38 	idxd_device_reset(idxd);
39 	rc = idxd_device_config(idxd);
40 	if (rc < 0)
41 		goto out;
42 
43 	rc = idxd_device_enable(idxd);
44 	if (rc < 0)
45 		goto out;
46 
47 	for (i = 0; i < idxd->max_wqs; i++) {
48 		struct idxd_wq *wq = &idxd->wqs[i];
49 
50 		if (wq->state == IDXD_WQ_ENABLED) {
51 			rc = idxd_wq_enable(wq);
52 			if (rc < 0) {
53 				dev_warn(dev, "Unable to re-enable wq %s\n",
54 					 dev_name(&wq->conf_dev));
55 			}
56 		}
57 	}
58 
59 	return;
60 
61  out:
62 	idxd_device_wqs_clear_state(idxd);
63 }
64 
65 static void idxd_device_fault_work(struct work_struct *work)
66 {
67 	struct idxd_fault *fault = container_of(work, struct idxd_fault, work);
68 	struct idxd_irq_entry *ie;
69 	int i;
70 	int processed;
71 	int irqcnt = fault->idxd->num_wq_irqs + 1;
72 
73 	for (i = 1; i < irqcnt; i++) {
74 		ie = &fault->idxd->irq_entries[i];
75 		irq_process_work_list(ie, IRQ_WORK_PROCESS_FAULT,
76 				      &processed, fault->addr);
77 		if (processed)
78 			break;
79 
80 		irq_process_pending_llist(ie, IRQ_WORK_PROCESS_FAULT,
81 					  &processed, fault->addr);
82 		if (processed)
83 			break;
84 	}
85 
86 	kfree(fault);
87 }
88 
89 static int idxd_device_schedule_fault_process(struct idxd_device *idxd,
90 					      u64 fault_addr)
91 {
92 	struct idxd_fault *fault;
93 
94 	fault = kmalloc(sizeof(*fault), GFP_ATOMIC);
95 	if (!fault)
96 		return -ENOMEM;
97 
98 	fault->addr = fault_addr;
99 	fault->idxd = idxd;
100 	INIT_WORK(&fault->work, idxd_device_fault_work);
101 	queue_work(idxd->wq, &fault->work);
102 	return 0;
103 }
104 
105 irqreturn_t idxd_irq_handler(int vec, void *data)
106 {
107 	struct idxd_irq_entry *irq_entry = data;
108 	struct idxd_device *idxd = irq_entry->idxd;
109 
110 	idxd_mask_msix_vector(idxd, irq_entry->id);
111 	return IRQ_WAKE_THREAD;
112 }
113 
114 static int process_misc_interrupts(struct idxd_device *idxd, u32 cause)
115 {
116 	struct device *dev = &idxd->pdev->dev;
117 	union gensts_reg gensts;
118 	u32 val = 0;
119 	int i;
120 	bool err = false;
121 
122 	if (cause & IDXD_INTC_ERR) {
123 		spin_lock_bh(&idxd->dev_lock);
124 		for (i = 0; i < 4; i++)
125 			idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
126 					IDXD_SWERR_OFFSET + i * sizeof(u64));
127 
128 		iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
129 			  idxd->reg_base + IDXD_SWERR_OFFSET);
130 
131 		if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
132 			int id = idxd->sw_err.wq_idx;
133 			struct idxd_wq *wq = &idxd->wqs[id];
134 
135 			if (wq->type == IDXD_WQT_USER)
136 				wake_up_interruptible(&wq->idxd_cdev.err_queue);
137 		} else {
138 			int i;
139 
140 			for (i = 0; i < idxd->max_wqs; i++) {
141 				struct idxd_wq *wq = &idxd->wqs[i];
142 
143 				if (wq->type == IDXD_WQT_USER)
144 					wake_up_interruptible(&wq->idxd_cdev.err_queue);
145 			}
146 		}
147 
148 		spin_unlock_bh(&idxd->dev_lock);
149 		val |= IDXD_INTC_ERR;
150 
151 		for (i = 0; i < 4; i++)
152 			dev_warn(dev, "err[%d]: %#16.16llx\n",
153 				 i, idxd->sw_err.bits[i]);
154 		err = true;
155 	}
156 
157 	if (cause & IDXD_INTC_CMD) {
158 		val |= IDXD_INTC_CMD;
159 		complete(idxd->cmd_done);
160 	}
161 
162 	if (cause & IDXD_INTC_OCCUPY) {
163 		/* Driver does not utilize occupancy interrupt */
164 		val |= IDXD_INTC_OCCUPY;
165 	}
166 
167 	if (cause & IDXD_INTC_PERFMON_OVFL) {
168 		/*
169 		 * Driver does not utilize perfmon counter overflow interrupt
170 		 * yet.
171 		 */
172 		val |= IDXD_INTC_PERFMON_OVFL;
173 	}
174 
175 	val ^= cause;
176 	if (val)
177 		dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
178 			      val);
179 
180 	if (!err)
181 		return 0;
182 
183 	/*
184 	 * This case should rarely happen and typically is due to software
185 	 * programming error by the driver.
186 	 */
187 	if (idxd->sw_err.valid &&
188 	    idxd->sw_err.desc_valid &&
189 	    idxd->sw_err.fault_addr)
190 		idxd_device_schedule_fault_process(idxd, idxd->sw_err.fault_addr);
191 
192 	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
193 	if (gensts.state == IDXD_DEVICE_STATE_HALT) {
194 		idxd->state = IDXD_DEV_HALTED;
195 		if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
196 			/*
197 			 * If we need a software reset, we will throw the work
198 			 * on a system workqueue in order to allow interrupts
199 			 * for the device command completions.
200 			 */
201 			INIT_WORK(&idxd->work, idxd_device_reinit);
202 			queue_work(idxd->wq, &idxd->work);
203 		} else {
204 			spin_lock_bh(&idxd->dev_lock);
205 			idxd_device_wqs_clear_state(idxd);
206 			dev_err(&idxd->pdev->dev,
207 				"idxd halted, need %s.\n",
208 				gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
209 				"FLR" : "system reset");
210 			spin_unlock_bh(&idxd->dev_lock);
211 			return -ENXIO;
212 		}
213 	}
214 
215 	return 0;
216 }
217 
218 irqreturn_t idxd_misc_thread(int vec, void *data)
219 {
220 	struct idxd_irq_entry *irq_entry = data;
221 	struct idxd_device *idxd = irq_entry->idxd;
222 	int rc;
223 	u32 cause;
224 
225 	cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
226 	if (cause)
227 		iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
228 
229 	while (cause) {
230 		rc = process_misc_interrupts(idxd, cause);
231 		if (rc < 0)
232 			break;
233 		cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
234 		if (cause)
235 			iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
236 	}
237 
238 	idxd_unmask_msix_vector(idxd, irq_entry->id);
239 	return IRQ_HANDLED;
240 }
241 
242 static inline bool match_fault(struct idxd_desc *desc, u64 fault_addr)
243 {
244 	/*
245 	 * Completion address can be bad as well. Check fault address match for descriptor
246 	 * and completion address.
247 	 */
248 	if ((u64)desc->hw == fault_addr || (u64)desc->completion == fault_addr) {
249 		struct idxd_device *idxd = desc->wq->idxd;
250 		struct device *dev = &idxd->pdev->dev;
251 
252 		dev_warn(dev, "desc with fault address: %#llx\n", fault_addr);
253 		return true;
254 	}
255 
256 	return false;
257 }
258 
259 static inline void complete_desc(struct idxd_desc *desc, enum idxd_complete_type reason)
260 {
261 	idxd_dma_complete_txd(desc, reason);
262 	idxd_free_desc(desc->wq, desc);
263 }
264 
265 static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
266 				     enum irq_work_type wtype,
267 				     int *processed, u64 data)
268 {
269 	struct idxd_desc *desc, *t;
270 	struct llist_node *head;
271 	int queued = 0;
272 	unsigned long flags;
273 	enum idxd_complete_type reason;
274 
275 	*processed = 0;
276 	head = llist_del_all(&irq_entry->pending_llist);
277 	if (!head)
278 		goto out;
279 
280 	if (wtype == IRQ_WORK_NORMAL)
281 		reason = IDXD_COMPLETE_NORMAL;
282 	else
283 		reason = IDXD_COMPLETE_DEV_FAIL;
284 
285 	llist_for_each_entry_safe(desc, t, head, llnode) {
286 		if (desc->completion->status) {
287 			if ((desc->completion->status & DSA_COMP_STATUS_MASK) != DSA_COMP_SUCCESS)
288 				match_fault(desc, data);
289 			complete_desc(desc, reason);
290 			(*processed)++;
291 		} else {
292 			spin_lock_irqsave(&irq_entry->list_lock, flags);
293 			list_add_tail(&desc->list,
294 				      &irq_entry->work_list);
295 			spin_unlock_irqrestore(&irq_entry->list_lock, flags);
296 			queued++;
297 		}
298 	}
299 
300  out:
301 	return queued;
302 }
303 
304 static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
305 				 enum irq_work_type wtype,
306 				 int *processed, u64 data)
307 {
308 	int queued = 0;
309 	unsigned long flags;
310 	LIST_HEAD(flist);
311 	struct idxd_desc *desc, *n;
312 	enum idxd_complete_type reason;
313 
314 	*processed = 0;
315 	if (wtype == IRQ_WORK_NORMAL)
316 		reason = IDXD_COMPLETE_NORMAL;
317 	else
318 		reason = IDXD_COMPLETE_DEV_FAIL;
319 
320 	/*
321 	 * This lock protects list corruption from access of list outside of the irq handler
322 	 * thread.
323 	 */
324 	spin_lock_irqsave(&irq_entry->list_lock, flags);
325 	if (list_empty(&irq_entry->work_list)) {
326 		spin_unlock_irqrestore(&irq_entry->list_lock, flags);
327 		return 0;
328 	}
329 
330 	list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
331 		if (desc->completion->status) {
332 			list_del(&desc->list);
333 			(*processed)++;
334 			list_add_tail(&desc->list, &flist);
335 		} else {
336 			queued++;
337 		}
338 	}
339 
340 	spin_unlock_irqrestore(&irq_entry->list_lock, flags);
341 
342 	list_for_each_entry(desc, &flist, list) {
343 		if ((desc->completion->status & DSA_COMP_STATUS_MASK) != DSA_COMP_SUCCESS)
344 			match_fault(desc, data);
345 		complete_desc(desc, reason);
346 	}
347 
348 	return queued;
349 }
350 
351 static int idxd_desc_process(struct idxd_irq_entry *irq_entry)
352 {
353 	int rc, processed, total = 0;
354 
355 	/*
356 	 * There are two lists we are processing. The pending_llist is where
357 	 * submmiter adds all the submitted descriptor after sending it to
358 	 * the workqueue. It's a lockless singly linked list. The work_list
359 	 * is the common linux double linked list. We are in a scenario of
360 	 * multiple producers and a single consumer. The producers are all
361 	 * the kernel submitters of descriptors, and the consumer is the
362 	 * kernel irq handler thread for the msix vector when using threaded
363 	 * irq. To work with the restrictions of llist to remain lockless,
364 	 * we are doing the following steps:
365 	 * 1. Iterate through the work_list and process any completed
366 	 *    descriptor. Delete the completed entries during iteration.
367 	 * 2. llist_del_all() from the pending list.
368 	 * 3. Iterate through the llist that was deleted from the pending list
369 	 *    and process the completed entries.
370 	 * 4. If the entry is still waiting on hardware, list_add_tail() to
371 	 *    the work_list.
372 	 * 5. Repeat until no more descriptors.
373 	 */
374 	do {
375 		rc = irq_process_work_list(irq_entry, IRQ_WORK_NORMAL,
376 					   &processed, 0);
377 		total += processed;
378 		if (rc != 0)
379 			continue;
380 
381 		rc = irq_process_pending_llist(irq_entry, IRQ_WORK_NORMAL,
382 					       &processed, 0);
383 		total += processed;
384 	} while (rc != 0);
385 
386 	return total;
387 }
388 
389 irqreturn_t idxd_wq_thread(int irq, void *data)
390 {
391 	struct idxd_irq_entry *irq_entry = data;
392 	int processed;
393 
394 	processed = idxd_desc_process(irq_entry);
395 	idxd_unmask_msix_vector(irq_entry->idxd, irq_entry->id);
396 
397 	if (processed == 0)
398 		return IRQ_NONE;
399 
400 	return IRQ_HANDLED;
401 }
402