xref: /openbmc/linux/drivers/dma/idxd/irq.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <uapi/linux/idxd.h>
10 #include "../dmaengine.h"
11 #include "idxd.h"
12 #include "registers.h"
13 
14 enum irq_work_type {
15 	IRQ_WORK_NORMAL = 0,
16 	IRQ_WORK_PROCESS_FAULT,
17 };
18 
19 struct idxd_fault {
20 	struct work_struct work;
21 	u64 addr;
22 	struct idxd_device *idxd;
23 };
24 
25 static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
26 				 enum irq_work_type wtype,
27 				 int *processed, u64 data);
28 static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
29 				     enum irq_work_type wtype,
30 				     int *processed, u64 data);
31 
32 static void idxd_device_reinit(struct work_struct *work)
33 {
34 	struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35 	struct device *dev = &idxd->pdev->dev;
36 	int rc, i;
37 
38 	idxd_device_reset(idxd);
39 	rc = idxd_device_config(idxd);
40 	if (rc < 0)
41 		goto out;
42 
43 	rc = idxd_device_enable(idxd);
44 	if (rc < 0)
45 		goto out;
46 
47 	for (i = 0; i < idxd->max_wqs; i++) {
48 		struct idxd_wq *wq = &idxd->wqs[i];
49 
50 		if (wq->state == IDXD_WQ_ENABLED) {
51 			rc = idxd_wq_enable(wq);
52 			if (rc < 0) {
53 				dev_warn(dev, "Unable to re-enable wq %s\n",
54 					 dev_name(&wq->conf_dev));
55 			}
56 		}
57 	}
58 
59 	return;
60 
61  out:
62 	idxd_device_wqs_clear_state(idxd);
63 }
64 
65 static void idxd_device_fault_work(struct work_struct *work)
66 {
67 	struct idxd_fault *fault = container_of(work, struct idxd_fault, work);
68 	struct idxd_irq_entry *ie;
69 	int i;
70 	int processed;
71 	int irqcnt = fault->idxd->num_wq_irqs + 1;
72 
73 	for (i = 1; i < irqcnt; i++) {
74 		ie = &fault->idxd->irq_entries[i];
75 		irq_process_work_list(ie, IRQ_WORK_PROCESS_FAULT,
76 				      &processed, fault->addr);
77 		if (processed)
78 			break;
79 
80 		irq_process_pending_llist(ie, IRQ_WORK_PROCESS_FAULT,
81 					  &processed, fault->addr);
82 		if (processed)
83 			break;
84 	}
85 
86 	kfree(fault);
87 }
88 
89 static int idxd_device_schedule_fault_process(struct idxd_device *idxd,
90 					      u64 fault_addr)
91 {
92 	struct idxd_fault *fault;
93 
94 	fault = kmalloc(sizeof(*fault), GFP_ATOMIC);
95 	if (!fault)
96 		return -ENOMEM;
97 
98 	fault->addr = fault_addr;
99 	fault->idxd = idxd;
100 	INIT_WORK(&fault->work, idxd_device_fault_work);
101 	queue_work(idxd->wq, &fault->work);
102 	return 0;
103 }
104 
105 irqreturn_t idxd_irq_handler(int vec, void *data)
106 {
107 	struct idxd_irq_entry *irq_entry = data;
108 	struct idxd_device *idxd = irq_entry->idxd;
109 
110 	idxd_mask_msix_vector(idxd, irq_entry->id);
111 	return IRQ_WAKE_THREAD;
112 }
113 
114 irqreturn_t idxd_misc_thread(int vec, void *data)
115 {
116 	struct idxd_irq_entry *irq_entry = data;
117 	struct idxd_device *idxd = irq_entry->idxd;
118 	struct device *dev = &idxd->pdev->dev;
119 	union gensts_reg gensts;
120 	u32 cause, val = 0;
121 	int i;
122 	bool err = false;
123 
124 	cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
125 	iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
126 
127 	if (cause & IDXD_INTC_ERR) {
128 		spin_lock_bh(&idxd->dev_lock);
129 		for (i = 0; i < 4; i++)
130 			idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
131 					IDXD_SWERR_OFFSET + i * sizeof(u64));
132 		iowrite64(IDXD_SWERR_ACK, idxd->reg_base + IDXD_SWERR_OFFSET);
133 
134 		if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
135 			int id = idxd->sw_err.wq_idx;
136 			struct idxd_wq *wq = &idxd->wqs[id];
137 
138 			if (wq->type == IDXD_WQT_USER)
139 				wake_up_interruptible(&wq->idxd_cdev.err_queue);
140 		} else {
141 			int i;
142 
143 			for (i = 0; i < idxd->max_wqs; i++) {
144 				struct idxd_wq *wq = &idxd->wqs[i];
145 
146 				if (wq->type == IDXD_WQT_USER)
147 					wake_up_interruptible(&wq->idxd_cdev.err_queue);
148 			}
149 		}
150 
151 		spin_unlock_bh(&idxd->dev_lock);
152 		val |= IDXD_INTC_ERR;
153 
154 		for (i = 0; i < 4; i++)
155 			dev_warn(dev, "err[%d]: %#16.16llx\n",
156 				 i, idxd->sw_err.bits[i]);
157 		err = true;
158 	}
159 
160 	if (cause & IDXD_INTC_CMD) {
161 		val |= IDXD_INTC_CMD;
162 		complete(idxd->cmd_done);
163 	}
164 
165 	if (cause & IDXD_INTC_OCCUPY) {
166 		/* Driver does not utilize occupancy interrupt */
167 		val |= IDXD_INTC_OCCUPY;
168 	}
169 
170 	if (cause & IDXD_INTC_PERFMON_OVFL) {
171 		/*
172 		 * Driver does not utilize perfmon counter overflow interrupt
173 		 * yet.
174 		 */
175 		val |= IDXD_INTC_PERFMON_OVFL;
176 	}
177 
178 	val ^= cause;
179 	if (val)
180 		dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
181 			      val);
182 
183 	if (!err)
184 		goto out;
185 
186 	/*
187 	 * This case should rarely happen and typically is due to software
188 	 * programming error by the driver.
189 	 */
190 	if (idxd->sw_err.valid &&
191 	    idxd->sw_err.desc_valid &&
192 	    idxd->sw_err.fault_addr)
193 		idxd_device_schedule_fault_process(idxd, idxd->sw_err.fault_addr);
194 
195 	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
196 	if (gensts.state == IDXD_DEVICE_STATE_HALT) {
197 		idxd->state = IDXD_DEV_HALTED;
198 		if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
199 			/*
200 			 * If we need a software reset, we will throw the work
201 			 * on a system workqueue in order to allow interrupts
202 			 * for the device command completions.
203 			 */
204 			INIT_WORK(&idxd->work, idxd_device_reinit);
205 			queue_work(idxd->wq, &idxd->work);
206 		} else {
207 			spin_lock_bh(&idxd->dev_lock);
208 			idxd_device_wqs_clear_state(idxd);
209 			dev_err(&idxd->pdev->dev,
210 				"idxd halted, need %s.\n",
211 				gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
212 				"FLR" : "system reset");
213 			spin_unlock_bh(&idxd->dev_lock);
214 		}
215 	}
216 
217  out:
218 	idxd_unmask_msix_vector(idxd, irq_entry->id);
219 	return IRQ_HANDLED;
220 }
221 
222 static bool process_fault(struct idxd_desc *desc, u64 fault_addr)
223 {
224 	/*
225 	 * Completion address can be bad as well. Check fault address match for descriptor
226 	 * and completion address.
227 	 */
228 	if ((u64)desc->hw == fault_addr ||
229 	    (u64)desc->completion == fault_addr) {
230 		idxd_dma_complete_txd(desc, IDXD_COMPLETE_DEV_FAIL);
231 		return true;
232 	}
233 
234 	return false;
235 }
236 
237 static bool complete_desc(struct idxd_desc *desc)
238 {
239 	if (desc->completion->status) {
240 		idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL);
241 		return true;
242 	}
243 
244 	return false;
245 }
246 
247 static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
248 				     enum irq_work_type wtype,
249 				     int *processed, u64 data)
250 {
251 	struct idxd_desc *desc, *t;
252 	struct llist_node *head;
253 	int queued = 0;
254 	bool completed = false;
255 	unsigned long flags;
256 
257 	*processed = 0;
258 	head = llist_del_all(&irq_entry->pending_llist);
259 	if (!head)
260 		goto out;
261 
262 	llist_for_each_entry_safe(desc, t, head, llnode) {
263 		if (wtype == IRQ_WORK_NORMAL)
264 			completed = complete_desc(desc);
265 		else if (wtype == IRQ_WORK_PROCESS_FAULT)
266 			completed = process_fault(desc, data);
267 
268 		if (completed) {
269 			idxd_free_desc(desc->wq, desc);
270 			(*processed)++;
271 			if (wtype == IRQ_WORK_PROCESS_FAULT)
272 				break;
273 		} else {
274 			spin_lock_irqsave(&irq_entry->list_lock, flags);
275 			list_add_tail(&desc->list,
276 				      &irq_entry->work_list);
277 			spin_unlock_irqrestore(&irq_entry->list_lock, flags);
278 			queued++;
279 		}
280 	}
281 
282  out:
283 	return queued;
284 }
285 
286 static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
287 				 enum irq_work_type wtype,
288 				 int *processed, u64 data)
289 {
290 	struct list_head *node, *next;
291 	int queued = 0;
292 	bool completed = false;
293 	unsigned long flags;
294 
295 	*processed = 0;
296 	spin_lock_irqsave(&irq_entry->list_lock, flags);
297 	if (list_empty(&irq_entry->work_list))
298 		goto out;
299 
300 	list_for_each_safe(node, next, &irq_entry->work_list) {
301 		struct idxd_desc *desc =
302 			container_of(node, struct idxd_desc, list);
303 
304 		spin_unlock_irqrestore(&irq_entry->list_lock, flags);
305 		if (wtype == IRQ_WORK_NORMAL)
306 			completed = complete_desc(desc);
307 		else if (wtype == IRQ_WORK_PROCESS_FAULT)
308 			completed = process_fault(desc, data);
309 
310 		if (completed) {
311 			spin_lock_irqsave(&irq_entry->list_lock, flags);
312 			list_del(&desc->list);
313 			spin_unlock_irqrestore(&irq_entry->list_lock, flags);
314 			idxd_free_desc(desc->wq, desc);
315 			(*processed)++;
316 			if (wtype == IRQ_WORK_PROCESS_FAULT)
317 				return queued;
318 		} else {
319 			queued++;
320 		}
321 		spin_lock_irqsave(&irq_entry->list_lock, flags);
322 	}
323 
324  out:
325 	spin_unlock_irqrestore(&irq_entry->list_lock, flags);
326 	return queued;
327 }
328 
329 static int idxd_desc_process(struct idxd_irq_entry *irq_entry)
330 {
331 	int rc, processed, total = 0;
332 
333 	/*
334 	 * There are two lists we are processing. The pending_llist is where
335 	 * submmiter adds all the submitted descriptor after sending it to
336 	 * the workqueue. It's a lockless singly linked list. The work_list
337 	 * is the common linux double linked list. We are in a scenario of
338 	 * multiple producers and a single consumer. The producers are all
339 	 * the kernel submitters of descriptors, and the consumer is the
340 	 * kernel irq handler thread for the msix vector when using threaded
341 	 * irq. To work with the restrictions of llist to remain lockless,
342 	 * we are doing the following steps:
343 	 * 1. Iterate through the work_list and process any completed
344 	 *    descriptor. Delete the completed entries during iteration.
345 	 * 2. llist_del_all() from the pending list.
346 	 * 3. Iterate through the llist that was deleted from the pending list
347 	 *    and process the completed entries.
348 	 * 4. If the entry is still waiting on hardware, list_add_tail() to
349 	 *    the work_list.
350 	 * 5. Repeat until no more descriptors.
351 	 */
352 	do {
353 		rc = irq_process_work_list(irq_entry, IRQ_WORK_NORMAL,
354 					   &processed, 0);
355 		total += processed;
356 		if (rc != 0)
357 			continue;
358 
359 		rc = irq_process_pending_llist(irq_entry, IRQ_WORK_NORMAL,
360 					       &processed, 0);
361 		total += processed;
362 	} while (rc != 0);
363 
364 	return total;
365 }
366 
367 irqreturn_t idxd_wq_thread(int irq, void *data)
368 {
369 	struct idxd_irq_entry *irq_entry = data;
370 	int processed;
371 
372 	processed = idxd_desc_process(irq_entry);
373 	idxd_unmask_msix_vector(irq_entry->idxd, irq_entry->id);
374 
375 	if (processed == 0)
376 		return IRQ_NONE;
377 
378 	return IRQ_HANDLED;
379 }
380