xref: /openbmc/linux/drivers/dma/idxd/irq.c (revision b8b350af)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <uapi/linux/idxd.h>
10 #include "../dmaengine.h"
11 #include "idxd.h"
12 #include "registers.h"
13 
14 enum irq_work_type {
15 	IRQ_WORK_NORMAL = 0,
16 	IRQ_WORK_PROCESS_FAULT,
17 };
18 
19 struct idxd_fault {
20 	struct work_struct work;
21 	u64 addr;
22 	struct idxd_device *idxd;
23 };
24 
25 static void idxd_device_reinit(struct work_struct *work)
26 {
27 	struct idxd_device *idxd = container_of(work, struct idxd_device, work);
28 	struct device *dev = &idxd->pdev->dev;
29 	int rc, i;
30 
31 	idxd_device_reset(idxd);
32 	rc = idxd_device_config(idxd);
33 	if (rc < 0)
34 		goto out;
35 
36 	rc = idxd_device_enable(idxd);
37 	if (rc < 0)
38 		goto out;
39 
40 	for (i = 0; i < idxd->max_wqs; i++) {
41 		struct idxd_wq *wq = idxd->wqs[i];
42 
43 		if (wq->state == IDXD_WQ_ENABLED) {
44 			rc = idxd_wq_enable(wq);
45 			if (rc < 0) {
46 				dev_warn(dev, "Unable to re-enable wq %s\n",
47 					 dev_name(wq_confdev(wq)));
48 			}
49 		}
50 	}
51 
52 	return;
53 
54  out:
55 	idxd_device_clear_state(idxd);
56 }
57 
58 static int process_misc_interrupts(struct idxd_device *idxd, u32 cause)
59 {
60 	struct device *dev = &idxd->pdev->dev;
61 	union gensts_reg gensts;
62 	u32 val = 0;
63 	int i;
64 	bool err = false;
65 
66 	if (cause & IDXD_INTC_ERR) {
67 		spin_lock(&idxd->dev_lock);
68 		for (i = 0; i < 4; i++)
69 			idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
70 					IDXD_SWERR_OFFSET + i * sizeof(u64));
71 
72 		iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
73 			  idxd->reg_base + IDXD_SWERR_OFFSET);
74 
75 		if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
76 			int id = idxd->sw_err.wq_idx;
77 			struct idxd_wq *wq = idxd->wqs[id];
78 
79 			if (wq->type == IDXD_WQT_USER)
80 				wake_up_interruptible(&wq->err_queue);
81 		} else {
82 			int i;
83 
84 			for (i = 0; i < idxd->max_wqs; i++) {
85 				struct idxd_wq *wq = idxd->wqs[i];
86 
87 				if (wq->type == IDXD_WQT_USER)
88 					wake_up_interruptible(&wq->err_queue);
89 			}
90 		}
91 
92 		spin_unlock(&idxd->dev_lock);
93 		val |= IDXD_INTC_ERR;
94 
95 		for (i = 0; i < 4; i++)
96 			dev_warn(dev, "err[%d]: %#16.16llx\n",
97 				 i, idxd->sw_err.bits[i]);
98 		err = true;
99 	}
100 
101 	if (cause & IDXD_INTC_CMD) {
102 		val |= IDXD_INTC_CMD;
103 		complete(idxd->cmd_done);
104 	}
105 
106 	if (cause & IDXD_INTC_OCCUPY) {
107 		/* Driver does not utilize occupancy interrupt */
108 		val |= IDXD_INTC_OCCUPY;
109 	}
110 
111 	if (cause & IDXD_INTC_PERFMON_OVFL) {
112 		val |= IDXD_INTC_PERFMON_OVFL;
113 		perfmon_counter_overflow(idxd);
114 	}
115 
116 	val ^= cause;
117 	if (val)
118 		dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
119 			      val);
120 
121 	if (!err)
122 		return 0;
123 
124 	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
125 	if (gensts.state == IDXD_DEVICE_STATE_HALT) {
126 		idxd->state = IDXD_DEV_HALTED;
127 		if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
128 			/*
129 			 * If we need a software reset, we will throw the work
130 			 * on a system workqueue in order to allow interrupts
131 			 * for the device command completions.
132 			 */
133 			INIT_WORK(&idxd->work, idxd_device_reinit);
134 			queue_work(idxd->wq, &idxd->work);
135 		} else {
136 			spin_lock(&idxd->dev_lock);
137 			idxd_wqs_quiesce(idxd);
138 			idxd_wqs_unmap_portal(idxd);
139 			idxd_device_clear_state(idxd);
140 			dev_err(&idxd->pdev->dev,
141 				"idxd halted, need %s.\n",
142 				gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
143 				"FLR" : "system reset");
144 			spin_unlock(&idxd->dev_lock);
145 			return -ENXIO;
146 		}
147 	}
148 
149 	return 0;
150 }
151 
152 irqreturn_t idxd_misc_thread(int vec, void *data)
153 {
154 	struct idxd_irq_entry *irq_entry = data;
155 	struct idxd_device *idxd = irq_entry->idxd;
156 	int rc;
157 	u32 cause;
158 
159 	cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
160 	if (cause)
161 		iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
162 
163 	while (cause) {
164 		rc = process_misc_interrupts(idxd, cause);
165 		if (rc < 0)
166 			break;
167 		cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
168 		if (cause)
169 			iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
170 	}
171 
172 	return IRQ_HANDLED;
173 }
174 
175 static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
176 {
177 	struct idxd_desc *desc, *t;
178 	struct llist_node *head;
179 
180 	head = llist_del_all(&irq_entry->pending_llist);
181 	if (!head)
182 		return;
183 
184 	llist_for_each_entry_safe(desc, t, head, llnode) {
185 		u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
186 
187 		if (status) {
188 			/*
189 			 * Check against the original status as ABORT is software defined
190 			 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
191 			 */
192 			if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
193 				complete_desc(desc, IDXD_COMPLETE_ABORT);
194 				continue;
195 			}
196 
197 			complete_desc(desc, IDXD_COMPLETE_NORMAL);
198 		} else {
199 			spin_lock(&irq_entry->list_lock);
200 			list_add_tail(&desc->list,
201 				      &irq_entry->work_list);
202 			spin_unlock(&irq_entry->list_lock);
203 		}
204 	}
205 }
206 
207 static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
208 {
209 	LIST_HEAD(flist);
210 	struct idxd_desc *desc, *n;
211 
212 	/*
213 	 * This lock protects list corruption from access of list outside of the irq handler
214 	 * thread.
215 	 */
216 	spin_lock(&irq_entry->list_lock);
217 	if (list_empty(&irq_entry->work_list)) {
218 		spin_unlock(&irq_entry->list_lock);
219 		return;
220 	}
221 
222 	list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
223 		if (desc->completion->status) {
224 			list_del(&desc->list);
225 			list_add_tail(&desc->list, &flist);
226 		}
227 	}
228 
229 	spin_unlock(&irq_entry->list_lock);
230 
231 	list_for_each_entry(desc, &flist, list) {
232 		/*
233 		 * Check against the original status as ABORT is software defined
234 		 * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
235 		 */
236 		if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
237 			complete_desc(desc, IDXD_COMPLETE_ABORT);
238 			continue;
239 		}
240 
241 		complete_desc(desc, IDXD_COMPLETE_NORMAL);
242 	}
243 }
244 
245 irqreturn_t idxd_wq_thread(int irq, void *data)
246 {
247 	struct idxd_irq_entry *irq_entry = data;
248 
249 	/*
250 	 * There are two lists we are processing. The pending_llist is where
251 	 * submmiter adds all the submitted descriptor after sending it to
252 	 * the workqueue. It's a lockless singly linked list. The work_list
253 	 * is the common linux double linked list. We are in a scenario of
254 	 * multiple producers and a single consumer. The producers are all
255 	 * the kernel submitters of descriptors, and the consumer is the
256 	 * kernel irq handler thread for the msix vector when using threaded
257 	 * irq. To work with the restrictions of llist to remain lockless,
258 	 * we are doing the following steps:
259 	 * 1. Iterate through the work_list and process any completed
260 	 *    descriptor. Delete the completed entries during iteration.
261 	 * 2. llist_del_all() from the pending list.
262 	 * 3. Iterate through the llist that was deleted from the pending list
263 	 *    and process the completed entries.
264 	 * 4. If the entry is still waiting on hardware, list_add_tail() to
265 	 *    the work_list.
266 	 */
267 	irq_process_work_list(irq_entry);
268 	irq_process_pending_llist(irq_entry);
269 
270 	return IRQ_HANDLED;
271 }
272