xref: /openbmc/linux/drivers/dma/idxd/irq.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <uapi/linux/idxd.h>
10 #include "../dmaengine.h"
11 #include "idxd.h"
12 #include "registers.h"
13 
14 enum irq_work_type {
15 	IRQ_WORK_NORMAL = 0,
16 	IRQ_WORK_PROCESS_FAULT,
17 };
18 
19 struct idxd_fault {
20 	struct work_struct work;
21 	u64 addr;
22 	struct idxd_device *idxd;
23 };
24 
25 static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
26 				 enum irq_work_type wtype,
27 				 int *processed, u64 data);
28 static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
29 				     enum irq_work_type wtype,
30 				     int *processed, u64 data);
31 
32 static void idxd_device_reinit(struct work_struct *work)
33 {
34 	struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35 	struct device *dev = &idxd->pdev->dev;
36 	int rc, i;
37 
38 	idxd_device_reset(idxd);
39 	rc = idxd_device_config(idxd);
40 	if (rc < 0)
41 		goto out;
42 
43 	rc = idxd_device_enable(idxd);
44 	if (rc < 0)
45 		goto out;
46 
47 	for (i = 0; i < idxd->max_wqs; i++) {
48 		struct idxd_wq *wq = &idxd->wqs[i];
49 
50 		if (wq->state == IDXD_WQ_ENABLED) {
51 			rc = idxd_wq_enable(wq);
52 			if (rc < 0) {
53 				dev_warn(dev, "Unable to re-enable wq %s\n",
54 					 dev_name(&wq->conf_dev));
55 			}
56 		}
57 	}
58 
59 	return;
60 
61  out:
62 	idxd_device_wqs_clear_state(idxd);
63 }
64 
65 static void idxd_device_fault_work(struct work_struct *work)
66 {
67 	struct idxd_fault *fault = container_of(work, struct idxd_fault, work);
68 	struct idxd_irq_entry *ie;
69 	int i;
70 	int processed;
71 	int irqcnt = fault->idxd->num_wq_irqs + 1;
72 
73 	for (i = 1; i < irqcnt; i++) {
74 		ie = &fault->idxd->irq_entries[i];
75 		irq_process_work_list(ie, IRQ_WORK_PROCESS_FAULT,
76 				      &processed, fault->addr);
77 		if (processed)
78 			break;
79 
80 		irq_process_pending_llist(ie, IRQ_WORK_PROCESS_FAULT,
81 					  &processed, fault->addr);
82 		if (processed)
83 			break;
84 	}
85 
86 	kfree(fault);
87 }
88 
89 static int idxd_device_schedule_fault_process(struct idxd_device *idxd,
90 					      u64 fault_addr)
91 {
92 	struct idxd_fault *fault;
93 
94 	fault = kmalloc(sizeof(*fault), GFP_ATOMIC);
95 	if (!fault)
96 		return -ENOMEM;
97 
98 	fault->addr = fault_addr;
99 	fault->idxd = idxd;
100 	INIT_WORK(&fault->work, idxd_device_fault_work);
101 	queue_work(idxd->wq, &fault->work);
102 	return 0;
103 }
104 
105 irqreturn_t idxd_irq_handler(int vec, void *data)
106 {
107 	struct idxd_irq_entry *irq_entry = data;
108 	struct idxd_device *idxd = irq_entry->idxd;
109 
110 	idxd_mask_msix_vector(idxd, irq_entry->id);
111 	return IRQ_WAKE_THREAD;
112 }
113 
114 static int process_misc_interrupts(struct idxd_device *idxd, u32 cause)
115 {
116 	struct device *dev = &idxd->pdev->dev;
117 	union gensts_reg gensts;
118 	u32 val = 0;
119 	int i;
120 	bool err = false;
121 
122 	if (cause & IDXD_INTC_ERR) {
123 		spin_lock_bh(&idxd->dev_lock);
124 		for (i = 0; i < 4; i++)
125 			idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
126 					IDXD_SWERR_OFFSET + i * sizeof(u64));
127 		iowrite64(IDXD_SWERR_ACK, idxd->reg_base + IDXD_SWERR_OFFSET);
128 
129 		if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
130 			int id = idxd->sw_err.wq_idx;
131 			struct idxd_wq *wq = &idxd->wqs[id];
132 
133 			if (wq->type == IDXD_WQT_USER)
134 				wake_up_interruptible(&wq->idxd_cdev.err_queue);
135 		} else {
136 			int i;
137 
138 			for (i = 0; i < idxd->max_wqs; i++) {
139 				struct idxd_wq *wq = &idxd->wqs[i];
140 
141 				if (wq->type == IDXD_WQT_USER)
142 					wake_up_interruptible(&wq->idxd_cdev.err_queue);
143 			}
144 		}
145 
146 		spin_unlock_bh(&idxd->dev_lock);
147 		val |= IDXD_INTC_ERR;
148 
149 		for (i = 0; i < 4; i++)
150 			dev_warn(dev, "err[%d]: %#16.16llx\n",
151 				 i, idxd->sw_err.bits[i]);
152 		err = true;
153 	}
154 
155 	if (cause & IDXD_INTC_CMD) {
156 		val |= IDXD_INTC_CMD;
157 		complete(idxd->cmd_done);
158 	}
159 
160 	if (cause & IDXD_INTC_OCCUPY) {
161 		/* Driver does not utilize occupancy interrupt */
162 		val |= IDXD_INTC_OCCUPY;
163 	}
164 
165 	if (cause & IDXD_INTC_PERFMON_OVFL) {
166 		/*
167 		 * Driver does not utilize perfmon counter overflow interrupt
168 		 * yet.
169 		 */
170 		val |= IDXD_INTC_PERFMON_OVFL;
171 	}
172 
173 	val ^= cause;
174 	if (val)
175 		dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
176 			      val);
177 
178 	if (!err)
179 		return 0;
180 
181 	/*
182 	 * This case should rarely happen and typically is due to software
183 	 * programming error by the driver.
184 	 */
185 	if (idxd->sw_err.valid &&
186 	    idxd->sw_err.desc_valid &&
187 	    idxd->sw_err.fault_addr)
188 		idxd_device_schedule_fault_process(idxd, idxd->sw_err.fault_addr);
189 
190 	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
191 	if (gensts.state == IDXD_DEVICE_STATE_HALT) {
192 		idxd->state = IDXD_DEV_HALTED;
193 		if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
194 			/*
195 			 * If we need a software reset, we will throw the work
196 			 * on a system workqueue in order to allow interrupts
197 			 * for the device command completions.
198 			 */
199 			INIT_WORK(&idxd->work, idxd_device_reinit);
200 			queue_work(idxd->wq, &idxd->work);
201 		} else {
202 			spin_lock_bh(&idxd->dev_lock);
203 			idxd_device_wqs_clear_state(idxd);
204 			dev_err(&idxd->pdev->dev,
205 				"idxd halted, need %s.\n",
206 				gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
207 				"FLR" : "system reset");
208 			spin_unlock_bh(&idxd->dev_lock);
209 			return -ENXIO;
210 		}
211 	}
212 
213 	return 0;
214 }
215 
216 irqreturn_t idxd_misc_thread(int vec, void *data)
217 {
218 	struct idxd_irq_entry *irq_entry = data;
219 	struct idxd_device *idxd = irq_entry->idxd;
220 	int rc;
221 	u32 cause;
222 
223 	cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
224 	if (cause)
225 		iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
226 
227 	while (cause) {
228 		rc = process_misc_interrupts(idxd, cause);
229 		if (rc < 0)
230 			break;
231 		cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
232 		if (cause)
233 			iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
234 	}
235 
236 	idxd_unmask_msix_vector(idxd, irq_entry->id);
237 	return IRQ_HANDLED;
238 }
239 
240 static inline bool match_fault(struct idxd_desc *desc, u64 fault_addr)
241 {
242 	/*
243 	 * Completion address can be bad as well. Check fault address match for descriptor
244 	 * and completion address.
245 	 */
246 	if ((u64)desc->hw == fault_addr || (u64)desc->completion == fault_addr) {
247 		struct idxd_device *idxd = desc->wq->idxd;
248 		struct device *dev = &idxd->pdev->dev;
249 
250 		dev_warn(dev, "desc with fault address: %#llx\n", fault_addr);
251 		return true;
252 	}
253 
254 	return false;
255 }
256 
257 static inline void complete_desc(struct idxd_desc *desc, enum idxd_complete_type reason)
258 {
259 	idxd_dma_complete_txd(desc, reason);
260 	idxd_free_desc(desc->wq, desc);
261 }
262 
263 static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
264 				     enum irq_work_type wtype,
265 				     int *processed, u64 data)
266 {
267 	struct idxd_desc *desc, *t;
268 	struct llist_node *head;
269 	int queued = 0;
270 	unsigned long flags;
271 	enum idxd_complete_type reason;
272 
273 	*processed = 0;
274 	head = llist_del_all(&irq_entry->pending_llist);
275 	if (!head)
276 		goto out;
277 
278 	if (wtype == IRQ_WORK_NORMAL)
279 		reason = IDXD_COMPLETE_NORMAL;
280 	else
281 		reason = IDXD_COMPLETE_DEV_FAIL;
282 
283 	llist_for_each_entry_safe(desc, t, head, llnode) {
284 		if (desc->completion->status) {
285 			if ((desc->completion->status & DSA_COMP_STATUS_MASK) != DSA_COMP_SUCCESS)
286 				match_fault(desc, data);
287 			complete_desc(desc, reason);
288 			(*processed)++;
289 		} else {
290 			spin_lock_irqsave(&irq_entry->list_lock, flags);
291 			list_add_tail(&desc->list,
292 				      &irq_entry->work_list);
293 			spin_unlock_irqrestore(&irq_entry->list_lock, flags);
294 			queued++;
295 		}
296 	}
297 
298  out:
299 	return queued;
300 }
301 
302 static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
303 				 enum irq_work_type wtype,
304 				 int *processed, u64 data)
305 {
306 	int queued = 0;
307 	unsigned long flags;
308 	LIST_HEAD(flist);
309 	struct idxd_desc *desc, *n;
310 	enum idxd_complete_type reason;
311 
312 	*processed = 0;
313 	if (wtype == IRQ_WORK_NORMAL)
314 		reason = IDXD_COMPLETE_NORMAL;
315 	else
316 		reason = IDXD_COMPLETE_DEV_FAIL;
317 
318 	/*
319 	 * This lock protects list corruption from access of list outside of the irq handler
320 	 * thread.
321 	 */
322 	spin_lock_irqsave(&irq_entry->list_lock, flags);
323 	if (list_empty(&irq_entry->work_list)) {
324 		spin_unlock_irqrestore(&irq_entry->list_lock, flags);
325 		return 0;
326 	}
327 
328 	list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
329 		if (desc->completion->status) {
330 			list_del(&desc->list);
331 			(*processed)++;
332 			list_add_tail(&desc->list, &flist);
333 		} else {
334 			queued++;
335 		}
336 	}
337 
338 	spin_unlock_irqrestore(&irq_entry->list_lock, flags);
339 
340 	list_for_each_entry(desc, &flist, list) {
341 		if ((desc->completion->status & DSA_COMP_STATUS_MASK) != DSA_COMP_SUCCESS)
342 			match_fault(desc, data);
343 		complete_desc(desc, reason);
344 	}
345 
346 	return queued;
347 }
348 
349 static int idxd_desc_process(struct idxd_irq_entry *irq_entry)
350 {
351 	int rc, processed, total = 0;
352 
353 	/*
354 	 * There are two lists we are processing. The pending_llist is where
355 	 * submmiter adds all the submitted descriptor after sending it to
356 	 * the workqueue. It's a lockless singly linked list. The work_list
357 	 * is the common linux double linked list. We are in a scenario of
358 	 * multiple producers and a single consumer. The producers are all
359 	 * the kernel submitters of descriptors, and the consumer is the
360 	 * kernel irq handler thread for the msix vector when using threaded
361 	 * irq. To work with the restrictions of llist to remain lockless,
362 	 * we are doing the following steps:
363 	 * 1. Iterate through the work_list and process any completed
364 	 *    descriptor. Delete the completed entries during iteration.
365 	 * 2. llist_del_all() from the pending list.
366 	 * 3. Iterate through the llist that was deleted from the pending list
367 	 *    and process the completed entries.
368 	 * 4. If the entry is still waiting on hardware, list_add_tail() to
369 	 *    the work_list.
370 	 * 5. Repeat until no more descriptors.
371 	 */
372 	do {
373 		rc = irq_process_work_list(irq_entry, IRQ_WORK_NORMAL,
374 					   &processed, 0);
375 		total += processed;
376 		if (rc != 0)
377 			continue;
378 
379 		rc = irq_process_pending_llist(irq_entry, IRQ_WORK_NORMAL,
380 					       &processed, 0);
381 		total += processed;
382 	} while (rc != 0);
383 
384 	return total;
385 }
386 
387 irqreturn_t idxd_wq_thread(int irq, void *data)
388 {
389 	struct idxd_irq_entry *irq_entry = data;
390 	int processed;
391 
392 	processed = idxd_desc_process(irq_entry);
393 	idxd_unmask_msix_vector(irq_entry->idxd, irq_entry->id);
394 
395 	if (processed == 0)
396 		return IRQ_NONE;
397 
398 	return IRQ_HANDLED;
399 }
400