1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the Intel integrated DMA 64-bit 4 * 5 * Copyright (C) 2015 Intel Corporation 6 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/delay.h> 11 #include <linux/dmaengine.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 19 #include <linux/dma/idma64.h> 20 21 #include "idma64.h" 22 23 /* For now we support only two channels */ 24 #define IDMA64_NR_CHAN 2 25 26 /* ---------------------------------------------------------------------- */ 27 28 static struct device *chan2dev(struct dma_chan *chan) 29 { 30 return &chan->dev->device; 31 } 32 33 /* ---------------------------------------------------------------------- */ 34 35 static void idma64_off(struct idma64 *idma64) 36 { 37 unsigned short count = 100; 38 39 dma_writel(idma64, CFG, 0); 40 41 channel_clear_bit(idma64, MASK(XFER), idma64->all_chan_mask); 42 channel_clear_bit(idma64, MASK(BLOCK), idma64->all_chan_mask); 43 channel_clear_bit(idma64, MASK(SRC_TRAN), idma64->all_chan_mask); 44 channel_clear_bit(idma64, MASK(DST_TRAN), idma64->all_chan_mask); 45 channel_clear_bit(idma64, MASK(ERROR), idma64->all_chan_mask); 46 47 do { 48 cpu_relax(); 49 } while (dma_readl(idma64, CFG) & IDMA64_CFG_DMA_EN && --count); 50 } 51 52 static void idma64_on(struct idma64 *idma64) 53 { 54 dma_writel(idma64, CFG, IDMA64_CFG_DMA_EN); 55 } 56 57 /* ---------------------------------------------------------------------- */ 58 59 static void idma64_chan_init(struct idma64 *idma64, struct idma64_chan *idma64c) 60 { 61 u32 cfghi = IDMA64C_CFGH_SRC_PER(1) | IDMA64C_CFGH_DST_PER(0); 62 u32 cfglo = 0; 63 64 /* Set default burst alignment */ 65 cfglo |= IDMA64C_CFGL_DST_BURST_ALIGN | IDMA64C_CFGL_SRC_BURST_ALIGN; 66 67 channel_writel(idma64c, CFG_LO, cfglo); 68 channel_writel(idma64c, CFG_HI, cfghi); 69 70 /* Enable interrupts */ 71 channel_set_bit(idma64, MASK(XFER), idma64c->mask); 72 channel_set_bit(idma64, MASK(ERROR), idma64c->mask); 73 74 /* 75 * Enforce the controller to be turned on. 76 * 77 * The iDMA is turned off in ->probe() and looses context during system 78 * suspend / resume cycle. That's why we have to enable it each time we 79 * use it. 80 */ 81 idma64_on(idma64); 82 } 83 84 static void idma64_chan_stop(struct idma64 *idma64, struct idma64_chan *idma64c) 85 { 86 channel_clear_bit(idma64, CH_EN, idma64c->mask); 87 } 88 89 static void idma64_chan_start(struct idma64 *idma64, struct idma64_chan *idma64c) 90 { 91 struct idma64_desc *desc = idma64c->desc; 92 struct idma64_hw_desc *hw = &desc->hw[0]; 93 94 channel_writeq(idma64c, SAR, 0); 95 channel_writeq(idma64c, DAR, 0); 96 97 channel_writel(idma64c, CTL_HI, IDMA64C_CTLH_BLOCK_TS(~0UL)); 98 channel_writel(idma64c, CTL_LO, IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN); 99 100 channel_writeq(idma64c, LLP, hw->llp); 101 102 channel_set_bit(idma64, CH_EN, idma64c->mask); 103 } 104 105 static void idma64_stop_transfer(struct idma64_chan *idma64c) 106 { 107 struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device); 108 109 idma64_chan_stop(idma64, idma64c); 110 } 111 112 static void idma64_start_transfer(struct idma64_chan *idma64c) 113 { 114 struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device); 115 struct virt_dma_desc *vdesc; 116 117 /* Get the next descriptor */ 118 vdesc = vchan_next_desc(&idma64c->vchan); 119 if (!vdesc) { 120 idma64c->desc = NULL; 121 return; 122 } 123 124 list_del(&vdesc->node); 125 idma64c->desc = to_idma64_desc(vdesc); 126 127 /* Configure the channel */ 128 idma64_chan_init(idma64, idma64c); 129 130 /* Start the channel with a new descriptor */ 131 idma64_chan_start(idma64, idma64c); 132 } 133 134 /* ---------------------------------------------------------------------- */ 135 136 static void idma64_chan_irq(struct idma64 *idma64, unsigned short c, 137 u32 status_err, u32 status_xfer) 138 { 139 struct idma64_chan *idma64c = &idma64->chan[c]; 140 struct dma_chan_percpu *stat; 141 struct idma64_desc *desc; 142 143 stat = this_cpu_ptr(idma64c->vchan.chan.local); 144 145 spin_lock(&idma64c->vchan.lock); 146 desc = idma64c->desc; 147 if (desc) { 148 if (status_err & (1 << c)) { 149 dma_writel(idma64, CLEAR(ERROR), idma64c->mask); 150 desc->status = DMA_ERROR; 151 } else if (status_xfer & (1 << c)) { 152 dma_writel(idma64, CLEAR(XFER), idma64c->mask); 153 desc->status = DMA_COMPLETE; 154 vchan_cookie_complete(&desc->vdesc); 155 stat->bytes_transferred += desc->length; 156 idma64_start_transfer(idma64c); 157 } 158 159 /* idma64_start_transfer() updates idma64c->desc */ 160 if (idma64c->desc == NULL || desc->status == DMA_ERROR) 161 idma64_stop_transfer(idma64c); 162 } 163 spin_unlock(&idma64c->vchan.lock); 164 } 165 166 static irqreturn_t idma64_irq(int irq, void *dev) 167 { 168 struct idma64 *idma64 = dev; 169 u32 status = dma_readl(idma64, STATUS_INT); 170 u32 status_xfer; 171 u32 status_err; 172 unsigned short i; 173 174 dev_vdbg(idma64->dma.dev, "%s: status=%#x\n", __func__, status); 175 176 /* Check if we have any interrupt from the DMA controller */ 177 if (!status) 178 return IRQ_NONE; 179 180 status_xfer = dma_readl(idma64, RAW(XFER)); 181 status_err = dma_readl(idma64, RAW(ERROR)); 182 183 for (i = 0; i < idma64->dma.chancnt; i++) 184 idma64_chan_irq(idma64, i, status_err, status_xfer); 185 186 return IRQ_HANDLED; 187 } 188 189 /* ---------------------------------------------------------------------- */ 190 191 static struct idma64_desc *idma64_alloc_desc(unsigned int ndesc) 192 { 193 struct idma64_desc *desc; 194 195 desc = kzalloc(sizeof(*desc), GFP_NOWAIT); 196 if (!desc) 197 return NULL; 198 199 desc->hw = kcalloc(ndesc, sizeof(*desc->hw), GFP_NOWAIT); 200 if (!desc->hw) { 201 kfree(desc); 202 return NULL; 203 } 204 205 return desc; 206 } 207 208 static void idma64_desc_free(struct idma64_chan *idma64c, 209 struct idma64_desc *desc) 210 { 211 struct idma64_hw_desc *hw; 212 213 if (desc->ndesc) { 214 unsigned int i = desc->ndesc; 215 216 do { 217 hw = &desc->hw[--i]; 218 dma_pool_free(idma64c->pool, hw->lli, hw->llp); 219 } while (i); 220 } 221 222 kfree(desc->hw); 223 kfree(desc); 224 } 225 226 static void idma64_vdesc_free(struct virt_dma_desc *vdesc) 227 { 228 struct idma64_chan *idma64c = to_idma64_chan(vdesc->tx.chan); 229 230 idma64_desc_free(idma64c, to_idma64_desc(vdesc)); 231 } 232 233 static void idma64_hw_desc_fill(struct idma64_hw_desc *hw, 234 struct dma_slave_config *config, 235 enum dma_transfer_direction direction, u64 llp) 236 { 237 struct idma64_lli *lli = hw->lli; 238 u64 sar, dar; 239 u32 ctlhi = IDMA64C_CTLH_BLOCK_TS(hw->len); 240 u32 ctllo = IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN; 241 u32 src_width, dst_width; 242 243 if (direction == DMA_MEM_TO_DEV) { 244 sar = hw->phys; 245 dar = config->dst_addr; 246 ctllo |= IDMA64C_CTLL_DST_FIX | IDMA64C_CTLL_SRC_INC | 247 IDMA64C_CTLL_FC_M2P; 248 src_width = __ffs(sar | hw->len | 4); 249 dst_width = __ffs(config->dst_addr_width); 250 } else { /* DMA_DEV_TO_MEM */ 251 sar = config->src_addr; 252 dar = hw->phys; 253 ctllo |= IDMA64C_CTLL_DST_INC | IDMA64C_CTLL_SRC_FIX | 254 IDMA64C_CTLL_FC_P2M; 255 src_width = __ffs(config->src_addr_width); 256 dst_width = __ffs(dar | hw->len | 4); 257 } 258 259 lli->sar = sar; 260 lli->dar = dar; 261 262 lli->ctlhi = ctlhi; 263 lli->ctllo = ctllo | 264 IDMA64C_CTLL_SRC_MSIZE(config->src_maxburst) | 265 IDMA64C_CTLL_DST_MSIZE(config->dst_maxburst) | 266 IDMA64C_CTLL_DST_WIDTH(dst_width) | 267 IDMA64C_CTLL_SRC_WIDTH(src_width); 268 269 lli->llp = llp; 270 } 271 272 static void idma64_desc_fill(struct idma64_chan *idma64c, 273 struct idma64_desc *desc) 274 { 275 struct dma_slave_config *config = &idma64c->config; 276 unsigned int i = desc->ndesc; 277 struct idma64_hw_desc *hw = &desc->hw[i - 1]; 278 struct idma64_lli *lli = hw->lli; 279 u64 llp = 0; 280 281 /* Fill the hardware descriptors and link them to a list */ 282 do { 283 hw = &desc->hw[--i]; 284 idma64_hw_desc_fill(hw, config, desc->direction, llp); 285 llp = hw->llp; 286 desc->length += hw->len; 287 } while (i); 288 289 /* Trigger an interrupt after the last block is transfered */ 290 lli->ctllo |= IDMA64C_CTLL_INT_EN; 291 292 /* Disable LLP transfer in the last block */ 293 lli->ctllo &= ~(IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN); 294 } 295 296 static struct dma_async_tx_descriptor *idma64_prep_slave_sg( 297 struct dma_chan *chan, struct scatterlist *sgl, 298 unsigned int sg_len, enum dma_transfer_direction direction, 299 unsigned long flags, void *context) 300 { 301 struct idma64_chan *idma64c = to_idma64_chan(chan); 302 struct idma64_desc *desc; 303 struct scatterlist *sg; 304 unsigned int i; 305 306 desc = idma64_alloc_desc(sg_len); 307 if (!desc) 308 return NULL; 309 310 for_each_sg(sgl, sg, sg_len, i) { 311 struct idma64_hw_desc *hw = &desc->hw[i]; 312 313 /* Allocate DMA capable memory for hardware descriptor */ 314 hw->lli = dma_pool_alloc(idma64c->pool, GFP_NOWAIT, &hw->llp); 315 if (!hw->lli) { 316 desc->ndesc = i; 317 idma64_desc_free(idma64c, desc); 318 return NULL; 319 } 320 321 hw->phys = sg_dma_address(sg); 322 hw->len = sg_dma_len(sg); 323 } 324 325 desc->ndesc = sg_len; 326 desc->direction = direction; 327 desc->status = DMA_IN_PROGRESS; 328 329 idma64_desc_fill(idma64c, desc); 330 return vchan_tx_prep(&idma64c->vchan, &desc->vdesc, flags); 331 } 332 333 static void idma64_issue_pending(struct dma_chan *chan) 334 { 335 struct idma64_chan *idma64c = to_idma64_chan(chan); 336 unsigned long flags; 337 338 spin_lock_irqsave(&idma64c->vchan.lock, flags); 339 if (vchan_issue_pending(&idma64c->vchan) && !idma64c->desc) 340 idma64_start_transfer(idma64c); 341 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 342 } 343 344 static size_t idma64_active_desc_size(struct idma64_chan *idma64c) 345 { 346 struct idma64_desc *desc = idma64c->desc; 347 struct idma64_hw_desc *hw; 348 size_t bytes = desc->length; 349 u64 llp = channel_readq(idma64c, LLP); 350 u32 ctlhi = channel_readl(idma64c, CTL_HI); 351 unsigned int i = 0; 352 353 do { 354 hw = &desc->hw[i]; 355 if (hw->llp == llp) 356 break; 357 bytes -= hw->len; 358 } while (++i < desc->ndesc); 359 360 if (!i) 361 return bytes; 362 363 /* The current chunk is not fully transfered yet */ 364 bytes += desc->hw[--i].len; 365 366 return bytes - IDMA64C_CTLH_BLOCK_TS(ctlhi); 367 } 368 369 static enum dma_status idma64_tx_status(struct dma_chan *chan, 370 dma_cookie_t cookie, struct dma_tx_state *state) 371 { 372 struct idma64_chan *idma64c = to_idma64_chan(chan); 373 struct virt_dma_desc *vdesc; 374 enum dma_status status; 375 size_t bytes; 376 unsigned long flags; 377 378 status = dma_cookie_status(chan, cookie, state); 379 if (status == DMA_COMPLETE) 380 return status; 381 382 spin_lock_irqsave(&idma64c->vchan.lock, flags); 383 vdesc = vchan_find_desc(&idma64c->vchan, cookie); 384 if (idma64c->desc && cookie == idma64c->desc->vdesc.tx.cookie) { 385 bytes = idma64_active_desc_size(idma64c); 386 dma_set_residue(state, bytes); 387 status = idma64c->desc->status; 388 } else if (vdesc) { 389 bytes = to_idma64_desc(vdesc)->length; 390 dma_set_residue(state, bytes); 391 } 392 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 393 394 return status; 395 } 396 397 static void convert_burst(u32 *maxburst) 398 { 399 if (*maxburst) 400 *maxburst = __fls(*maxburst); 401 else 402 *maxburst = 0; 403 } 404 405 static int idma64_slave_config(struct dma_chan *chan, 406 struct dma_slave_config *config) 407 { 408 struct idma64_chan *idma64c = to_idma64_chan(chan); 409 410 memcpy(&idma64c->config, config, sizeof(idma64c->config)); 411 412 convert_burst(&idma64c->config.src_maxburst); 413 convert_burst(&idma64c->config.dst_maxburst); 414 415 return 0; 416 } 417 418 static void idma64_chan_deactivate(struct idma64_chan *idma64c, bool drain) 419 { 420 unsigned short count = 100; 421 u32 cfglo; 422 423 cfglo = channel_readl(idma64c, CFG_LO); 424 if (drain) 425 cfglo |= IDMA64C_CFGL_CH_DRAIN; 426 else 427 cfglo &= ~IDMA64C_CFGL_CH_DRAIN; 428 429 channel_writel(idma64c, CFG_LO, cfglo | IDMA64C_CFGL_CH_SUSP); 430 do { 431 udelay(1); 432 cfglo = channel_readl(idma64c, CFG_LO); 433 } while (!(cfglo & IDMA64C_CFGL_FIFO_EMPTY) && --count); 434 } 435 436 static void idma64_chan_activate(struct idma64_chan *idma64c) 437 { 438 u32 cfglo; 439 440 cfglo = channel_readl(idma64c, CFG_LO); 441 channel_writel(idma64c, CFG_LO, cfglo & ~IDMA64C_CFGL_CH_SUSP); 442 } 443 444 static int idma64_pause(struct dma_chan *chan) 445 { 446 struct idma64_chan *idma64c = to_idma64_chan(chan); 447 unsigned long flags; 448 449 spin_lock_irqsave(&idma64c->vchan.lock, flags); 450 if (idma64c->desc && idma64c->desc->status == DMA_IN_PROGRESS) { 451 idma64_chan_deactivate(idma64c, false); 452 idma64c->desc->status = DMA_PAUSED; 453 } 454 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 455 456 return 0; 457 } 458 459 static int idma64_resume(struct dma_chan *chan) 460 { 461 struct idma64_chan *idma64c = to_idma64_chan(chan); 462 unsigned long flags; 463 464 spin_lock_irqsave(&idma64c->vchan.lock, flags); 465 if (idma64c->desc && idma64c->desc->status == DMA_PAUSED) { 466 idma64c->desc->status = DMA_IN_PROGRESS; 467 idma64_chan_activate(idma64c); 468 } 469 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 470 471 return 0; 472 } 473 474 static int idma64_terminate_all(struct dma_chan *chan) 475 { 476 struct idma64_chan *idma64c = to_idma64_chan(chan); 477 unsigned long flags; 478 LIST_HEAD(head); 479 480 spin_lock_irqsave(&idma64c->vchan.lock, flags); 481 idma64_chan_deactivate(idma64c, true); 482 idma64_stop_transfer(idma64c); 483 if (idma64c->desc) { 484 idma64_vdesc_free(&idma64c->desc->vdesc); 485 idma64c->desc = NULL; 486 } 487 vchan_get_all_descriptors(&idma64c->vchan, &head); 488 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 489 490 vchan_dma_desc_free_list(&idma64c->vchan, &head); 491 return 0; 492 } 493 494 static void idma64_synchronize(struct dma_chan *chan) 495 { 496 struct idma64_chan *idma64c = to_idma64_chan(chan); 497 498 vchan_synchronize(&idma64c->vchan); 499 } 500 501 static int idma64_alloc_chan_resources(struct dma_chan *chan) 502 { 503 struct idma64_chan *idma64c = to_idma64_chan(chan); 504 505 /* Create a pool of consistent memory blocks for hardware descriptors */ 506 idma64c->pool = dma_pool_create(dev_name(chan2dev(chan)), 507 chan->device->dev, 508 sizeof(struct idma64_lli), 8, 0); 509 if (!idma64c->pool) { 510 dev_err(chan2dev(chan), "No memory for descriptors\n"); 511 return -ENOMEM; 512 } 513 514 return 0; 515 } 516 517 static void idma64_free_chan_resources(struct dma_chan *chan) 518 { 519 struct idma64_chan *idma64c = to_idma64_chan(chan); 520 521 vchan_free_chan_resources(to_virt_chan(chan)); 522 dma_pool_destroy(idma64c->pool); 523 idma64c->pool = NULL; 524 } 525 526 /* ---------------------------------------------------------------------- */ 527 528 #define IDMA64_BUSWIDTHS \ 529 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 530 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 531 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) 532 533 static int idma64_probe(struct idma64_chip *chip) 534 { 535 struct idma64 *idma64; 536 unsigned short nr_chan = IDMA64_NR_CHAN; 537 unsigned short i; 538 int ret; 539 540 idma64 = devm_kzalloc(chip->dev, sizeof(*idma64), GFP_KERNEL); 541 if (!idma64) 542 return -ENOMEM; 543 544 idma64->regs = chip->regs; 545 chip->idma64 = idma64; 546 547 idma64->chan = devm_kcalloc(chip->dev, nr_chan, sizeof(*idma64->chan), 548 GFP_KERNEL); 549 if (!idma64->chan) 550 return -ENOMEM; 551 552 idma64->all_chan_mask = (1 << nr_chan) - 1; 553 554 /* Turn off iDMA controller */ 555 idma64_off(idma64); 556 557 ret = devm_request_irq(chip->dev, chip->irq, idma64_irq, IRQF_SHARED, 558 dev_name(chip->dev), idma64); 559 if (ret) 560 return ret; 561 562 INIT_LIST_HEAD(&idma64->dma.channels); 563 for (i = 0; i < nr_chan; i++) { 564 struct idma64_chan *idma64c = &idma64->chan[i]; 565 566 idma64c->vchan.desc_free = idma64_vdesc_free; 567 vchan_init(&idma64c->vchan, &idma64->dma); 568 569 idma64c->regs = idma64->regs + i * IDMA64_CH_LENGTH; 570 idma64c->mask = BIT(i); 571 } 572 573 dma_cap_set(DMA_SLAVE, idma64->dma.cap_mask); 574 dma_cap_set(DMA_PRIVATE, idma64->dma.cap_mask); 575 576 idma64->dma.device_alloc_chan_resources = idma64_alloc_chan_resources; 577 idma64->dma.device_free_chan_resources = idma64_free_chan_resources; 578 579 idma64->dma.device_prep_slave_sg = idma64_prep_slave_sg; 580 581 idma64->dma.device_issue_pending = idma64_issue_pending; 582 idma64->dma.device_tx_status = idma64_tx_status; 583 584 idma64->dma.device_config = idma64_slave_config; 585 idma64->dma.device_pause = idma64_pause; 586 idma64->dma.device_resume = idma64_resume; 587 idma64->dma.device_terminate_all = idma64_terminate_all; 588 idma64->dma.device_synchronize = idma64_synchronize; 589 590 idma64->dma.src_addr_widths = IDMA64_BUSWIDTHS; 591 idma64->dma.dst_addr_widths = IDMA64_BUSWIDTHS; 592 idma64->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 593 idma64->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 594 595 idma64->dma.dev = chip->sysdev; 596 597 dma_set_max_seg_size(idma64->dma.dev, IDMA64C_CTLH_BLOCK_TS_MASK); 598 599 ret = dma_async_device_register(&idma64->dma); 600 if (ret) 601 return ret; 602 603 dev_info(chip->dev, "Found Intel integrated DMA 64-bit\n"); 604 return 0; 605 } 606 607 static void idma64_remove(struct idma64_chip *chip) 608 { 609 struct idma64 *idma64 = chip->idma64; 610 unsigned short i; 611 612 dma_async_device_unregister(&idma64->dma); 613 614 /* 615 * Explicitly call devm_request_irq() to avoid the side effects with 616 * the scheduled tasklets. 617 */ 618 devm_free_irq(chip->dev, chip->irq, idma64); 619 620 for (i = 0; i < idma64->dma.chancnt; i++) { 621 struct idma64_chan *idma64c = &idma64->chan[i]; 622 623 tasklet_kill(&idma64c->vchan.task); 624 } 625 } 626 627 /* ---------------------------------------------------------------------- */ 628 629 static int idma64_platform_probe(struct platform_device *pdev) 630 { 631 struct idma64_chip *chip; 632 struct device *dev = &pdev->dev; 633 struct device *sysdev = dev->parent; 634 int ret; 635 636 chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); 637 if (!chip) 638 return -ENOMEM; 639 640 chip->irq = platform_get_irq(pdev, 0); 641 if (chip->irq < 0) 642 return chip->irq; 643 644 chip->regs = devm_platform_ioremap_resource(pdev, 0); 645 if (IS_ERR(chip->regs)) 646 return PTR_ERR(chip->regs); 647 648 ret = dma_coerce_mask_and_coherent(sysdev, DMA_BIT_MASK(64)); 649 if (ret) 650 return ret; 651 652 chip->dev = dev; 653 chip->sysdev = sysdev; 654 655 ret = idma64_probe(chip); 656 if (ret) 657 return ret; 658 659 platform_set_drvdata(pdev, chip); 660 return 0; 661 } 662 663 static int idma64_platform_remove(struct platform_device *pdev) 664 { 665 struct idma64_chip *chip = platform_get_drvdata(pdev); 666 667 idma64_remove(chip); 668 669 return 0; 670 } 671 672 static int __maybe_unused idma64_pm_suspend(struct device *dev) 673 { 674 struct idma64_chip *chip = dev_get_drvdata(dev); 675 676 idma64_off(chip->idma64); 677 return 0; 678 } 679 680 static int __maybe_unused idma64_pm_resume(struct device *dev) 681 { 682 struct idma64_chip *chip = dev_get_drvdata(dev); 683 684 idma64_on(chip->idma64); 685 return 0; 686 } 687 688 static const struct dev_pm_ops idma64_dev_pm_ops = { 689 SET_SYSTEM_SLEEP_PM_OPS(idma64_pm_suspend, idma64_pm_resume) 690 }; 691 692 static struct platform_driver idma64_platform_driver = { 693 .probe = idma64_platform_probe, 694 .remove = idma64_platform_remove, 695 .driver = { 696 .name = LPSS_IDMA64_DRIVER_NAME, 697 .pm = &idma64_dev_pm_ops, 698 }, 699 }; 700 701 module_platform_driver(idma64_platform_driver); 702 703 MODULE_LICENSE("GPL v2"); 704 MODULE_DESCRIPTION("iDMA64 core driver"); 705 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>"); 706 MODULE_ALIAS("platform:" LPSS_IDMA64_DRIVER_NAME); 707