1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the Intel integrated DMA 64-bit 4 * 5 * Copyright (C) 2015 Intel Corporation 6 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/delay.h> 11 #include <linux/dmaengine.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 19 #include <linux/dma/idma64.h> 20 21 #include "idma64.h" 22 23 /* For now we support only two channels */ 24 #define IDMA64_NR_CHAN 2 25 26 /* ---------------------------------------------------------------------- */ 27 28 static struct device *chan2dev(struct dma_chan *chan) 29 { 30 return &chan->dev->device; 31 } 32 33 /* ---------------------------------------------------------------------- */ 34 35 static void idma64_off(struct idma64 *idma64) 36 { 37 unsigned short count = 100; 38 39 dma_writel(idma64, CFG, 0); 40 41 channel_clear_bit(idma64, MASK(XFER), idma64->all_chan_mask); 42 channel_clear_bit(idma64, MASK(BLOCK), idma64->all_chan_mask); 43 channel_clear_bit(idma64, MASK(SRC_TRAN), idma64->all_chan_mask); 44 channel_clear_bit(idma64, MASK(DST_TRAN), idma64->all_chan_mask); 45 channel_clear_bit(idma64, MASK(ERROR), idma64->all_chan_mask); 46 47 do { 48 cpu_relax(); 49 } while (dma_readl(idma64, CFG) & IDMA64_CFG_DMA_EN && --count); 50 } 51 52 static void idma64_on(struct idma64 *idma64) 53 { 54 dma_writel(idma64, CFG, IDMA64_CFG_DMA_EN); 55 } 56 57 /* ---------------------------------------------------------------------- */ 58 59 static void idma64_chan_init(struct idma64 *idma64, struct idma64_chan *idma64c) 60 { 61 u32 cfghi = IDMA64C_CFGH_SRC_PER(1) | IDMA64C_CFGH_DST_PER(0); 62 u32 cfglo = 0; 63 64 /* Set default burst alignment */ 65 cfglo |= IDMA64C_CFGL_DST_BURST_ALIGN | IDMA64C_CFGL_SRC_BURST_ALIGN; 66 67 channel_writel(idma64c, CFG_LO, cfglo); 68 channel_writel(idma64c, CFG_HI, cfghi); 69 70 /* Enable interrupts */ 71 channel_set_bit(idma64, MASK(XFER), idma64c->mask); 72 channel_set_bit(idma64, MASK(ERROR), idma64c->mask); 73 74 /* 75 * Enforce the controller to be turned on. 76 * 77 * The iDMA is turned off in ->probe() and looses context during system 78 * suspend / resume cycle. That's why we have to enable it each time we 79 * use it. 80 */ 81 idma64_on(idma64); 82 } 83 84 static void idma64_chan_stop(struct idma64 *idma64, struct idma64_chan *idma64c) 85 { 86 channel_clear_bit(idma64, CH_EN, idma64c->mask); 87 } 88 89 static void idma64_chan_start(struct idma64 *idma64, struct idma64_chan *idma64c) 90 { 91 struct idma64_desc *desc = idma64c->desc; 92 struct idma64_hw_desc *hw = &desc->hw[0]; 93 94 channel_writeq(idma64c, SAR, 0); 95 channel_writeq(idma64c, DAR, 0); 96 97 channel_writel(idma64c, CTL_HI, IDMA64C_CTLH_BLOCK_TS(~0UL)); 98 channel_writel(idma64c, CTL_LO, IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN); 99 100 channel_writeq(idma64c, LLP, hw->llp); 101 102 channel_set_bit(idma64, CH_EN, idma64c->mask); 103 } 104 105 static void idma64_stop_transfer(struct idma64_chan *idma64c) 106 { 107 struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device); 108 109 idma64_chan_stop(idma64, idma64c); 110 } 111 112 static void idma64_start_transfer(struct idma64_chan *idma64c) 113 { 114 struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device); 115 struct virt_dma_desc *vdesc; 116 117 /* Get the next descriptor */ 118 vdesc = vchan_next_desc(&idma64c->vchan); 119 if (!vdesc) { 120 idma64c->desc = NULL; 121 return; 122 } 123 124 list_del(&vdesc->node); 125 idma64c->desc = to_idma64_desc(vdesc); 126 127 /* Configure the channel */ 128 idma64_chan_init(idma64, idma64c); 129 130 /* Start the channel with a new descriptor */ 131 idma64_chan_start(idma64, idma64c); 132 } 133 134 /* ---------------------------------------------------------------------- */ 135 136 static void idma64_chan_irq(struct idma64 *idma64, unsigned short c, 137 u32 status_err, u32 status_xfer) 138 { 139 struct idma64_chan *idma64c = &idma64->chan[c]; 140 struct idma64_desc *desc; 141 142 spin_lock(&idma64c->vchan.lock); 143 desc = idma64c->desc; 144 if (desc) { 145 if (status_err & (1 << c)) { 146 dma_writel(idma64, CLEAR(ERROR), idma64c->mask); 147 desc->status = DMA_ERROR; 148 } else if (status_xfer & (1 << c)) { 149 dma_writel(idma64, CLEAR(XFER), idma64c->mask); 150 desc->status = DMA_COMPLETE; 151 vchan_cookie_complete(&desc->vdesc); 152 idma64_start_transfer(idma64c); 153 } 154 155 /* idma64_start_transfer() updates idma64c->desc */ 156 if (idma64c->desc == NULL || desc->status == DMA_ERROR) 157 idma64_stop_transfer(idma64c); 158 } 159 spin_unlock(&idma64c->vchan.lock); 160 } 161 162 static irqreturn_t idma64_irq(int irq, void *dev) 163 { 164 struct idma64 *idma64 = dev; 165 u32 status = dma_readl(idma64, STATUS_INT); 166 u32 status_xfer; 167 u32 status_err; 168 unsigned short i; 169 170 dev_vdbg(idma64->dma.dev, "%s: status=%#x\n", __func__, status); 171 172 /* Check if we have any interrupt from the DMA controller */ 173 if (!status) 174 return IRQ_NONE; 175 176 status_xfer = dma_readl(idma64, RAW(XFER)); 177 status_err = dma_readl(idma64, RAW(ERROR)); 178 179 for (i = 0; i < idma64->dma.chancnt; i++) 180 idma64_chan_irq(idma64, i, status_err, status_xfer); 181 182 return IRQ_HANDLED; 183 } 184 185 /* ---------------------------------------------------------------------- */ 186 187 static struct idma64_desc *idma64_alloc_desc(unsigned int ndesc) 188 { 189 struct idma64_desc *desc; 190 191 desc = kzalloc(sizeof(*desc), GFP_NOWAIT); 192 if (!desc) 193 return NULL; 194 195 desc->hw = kcalloc(ndesc, sizeof(*desc->hw), GFP_NOWAIT); 196 if (!desc->hw) { 197 kfree(desc); 198 return NULL; 199 } 200 201 return desc; 202 } 203 204 static void idma64_desc_free(struct idma64_chan *idma64c, 205 struct idma64_desc *desc) 206 { 207 struct idma64_hw_desc *hw; 208 209 if (desc->ndesc) { 210 unsigned int i = desc->ndesc; 211 212 do { 213 hw = &desc->hw[--i]; 214 dma_pool_free(idma64c->pool, hw->lli, hw->llp); 215 } while (i); 216 } 217 218 kfree(desc->hw); 219 kfree(desc); 220 } 221 222 static void idma64_vdesc_free(struct virt_dma_desc *vdesc) 223 { 224 struct idma64_chan *idma64c = to_idma64_chan(vdesc->tx.chan); 225 226 idma64_desc_free(idma64c, to_idma64_desc(vdesc)); 227 } 228 229 static void idma64_hw_desc_fill(struct idma64_hw_desc *hw, 230 struct dma_slave_config *config, 231 enum dma_transfer_direction direction, u64 llp) 232 { 233 struct idma64_lli *lli = hw->lli; 234 u64 sar, dar; 235 u32 ctlhi = IDMA64C_CTLH_BLOCK_TS(hw->len); 236 u32 ctllo = IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN; 237 u32 src_width, dst_width; 238 239 if (direction == DMA_MEM_TO_DEV) { 240 sar = hw->phys; 241 dar = config->dst_addr; 242 ctllo |= IDMA64C_CTLL_DST_FIX | IDMA64C_CTLL_SRC_INC | 243 IDMA64C_CTLL_FC_M2P; 244 src_width = __ffs(sar | hw->len | 4); 245 dst_width = __ffs(config->dst_addr_width); 246 } else { /* DMA_DEV_TO_MEM */ 247 sar = config->src_addr; 248 dar = hw->phys; 249 ctllo |= IDMA64C_CTLL_DST_INC | IDMA64C_CTLL_SRC_FIX | 250 IDMA64C_CTLL_FC_P2M; 251 src_width = __ffs(config->src_addr_width); 252 dst_width = __ffs(dar | hw->len | 4); 253 } 254 255 lli->sar = sar; 256 lli->dar = dar; 257 258 lli->ctlhi = ctlhi; 259 lli->ctllo = ctllo | 260 IDMA64C_CTLL_SRC_MSIZE(config->src_maxburst) | 261 IDMA64C_CTLL_DST_MSIZE(config->dst_maxburst) | 262 IDMA64C_CTLL_DST_WIDTH(dst_width) | 263 IDMA64C_CTLL_SRC_WIDTH(src_width); 264 265 lli->llp = llp; 266 } 267 268 static void idma64_desc_fill(struct idma64_chan *idma64c, 269 struct idma64_desc *desc) 270 { 271 struct dma_slave_config *config = &idma64c->config; 272 unsigned int i = desc->ndesc; 273 struct idma64_hw_desc *hw = &desc->hw[i - 1]; 274 struct idma64_lli *lli = hw->lli; 275 u64 llp = 0; 276 277 /* Fill the hardware descriptors and link them to a list */ 278 do { 279 hw = &desc->hw[--i]; 280 idma64_hw_desc_fill(hw, config, desc->direction, llp); 281 llp = hw->llp; 282 desc->length += hw->len; 283 } while (i); 284 285 /* Trigger an interrupt after the last block is transfered */ 286 lli->ctllo |= IDMA64C_CTLL_INT_EN; 287 288 /* Disable LLP transfer in the last block */ 289 lli->ctllo &= ~(IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN); 290 } 291 292 static struct dma_async_tx_descriptor *idma64_prep_slave_sg( 293 struct dma_chan *chan, struct scatterlist *sgl, 294 unsigned int sg_len, enum dma_transfer_direction direction, 295 unsigned long flags, void *context) 296 { 297 struct idma64_chan *idma64c = to_idma64_chan(chan); 298 struct idma64_desc *desc; 299 struct scatterlist *sg; 300 unsigned int i; 301 302 desc = idma64_alloc_desc(sg_len); 303 if (!desc) 304 return NULL; 305 306 for_each_sg(sgl, sg, sg_len, i) { 307 struct idma64_hw_desc *hw = &desc->hw[i]; 308 309 /* Allocate DMA capable memory for hardware descriptor */ 310 hw->lli = dma_pool_alloc(idma64c->pool, GFP_NOWAIT, &hw->llp); 311 if (!hw->lli) { 312 desc->ndesc = i; 313 idma64_desc_free(idma64c, desc); 314 return NULL; 315 } 316 317 hw->phys = sg_dma_address(sg); 318 hw->len = sg_dma_len(sg); 319 } 320 321 desc->ndesc = sg_len; 322 desc->direction = direction; 323 desc->status = DMA_IN_PROGRESS; 324 325 idma64_desc_fill(idma64c, desc); 326 return vchan_tx_prep(&idma64c->vchan, &desc->vdesc, flags); 327 } 328 329 static void idma64_issue_pending(struct dma_chan *chan) 330 { 331 struct idma64_chan *idma64c = to_idma64_chan(chan); 332 unsigned long flags; 333 334 spin_lock_irqsave(&idma64c->vchan.lock, flags); 335 if (vchan_issue_pending(&idma64c->vchan) && !idma64c->desc) 336 idma64_start_transfer(idma64c); 337 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 338 } 339 340 static size_t idma64_active_desc_size(struct idma64_chan *idma64c) 341 { 342 struct idma64_desc *desc = idma64c->desc; 343 struct idma64_hw_desc *hw; 344 size_t bytes = desc->length; 345 u64 llp = channel_readq(idma64c, LLP); 346 u32 ctlhi = channel_readl(idma64c, CTL_HI); 347 unsigned int i = 0; 348 349 do { 350 hw = &desc->hw[i]; 351 if (hw->llp == llp) 352 break; 353 bytes -= hw->len; 354 } while (++i < desc->ndesc); 355 356 if (!i) 357 return bytes; 358 359 /* The current chunk is not fully transfered yet */ 360 bytes += desc->hw[--i].len; 361 362 return bytes - IDMA64C_CTLH_BLOCK_TS(ctlhi); 363 } 364 365 static enum dma_status idma64_tx_status(struct dma_chan *chan, 366 dma_cookie_t cookie, struct dma_tx_state *state) 367 { 368 struct idma64_chan *idma64c = to_idma64_chan(chan); 369 struct virt_dma_desc *vdesc; 370 enum dma_status status; 371 size_t bytes; 372 unsigned long flags; 373 374 status = dma_cookie_status(chan, cookie, state); 375 if (status == DMA_COMPLETE) 376 return status; 377 378 spin_lock_irqsave(&idma64c->vchan.lock, flags); 379 vdesc = vchan_find_desc(&idma64c->vchan, cookie); 380 if (idma64c->desc && cookie == idma64c->desc->vdesc.tx.cookie) { 381 bytes = idma64_active_desc_size(idma64c); 382 dma_set_residue(state, bytes); 383 status = idma64c->desc->status; 384 } else if (vdesc) { 385 bytes = to_idma64_desc(vdesc)->length; 386 dma_set_residue(state, bytes); 387 } 388 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 389 390 return status; 391 } 392 393 static void convert_burst(u32 *maxburst) 394 { 395 if (*maxburst) 396 *maxburst = __fls(*maxburst); 397 else 398 *maxburst = 0; 399 } 400 401 static int idma64_slave_config(struct dma_chan *chan, 402 struct dma_slave_config *config) 403 { 404 struct idma64_chan *idma64c = to_idma64_chan(chan); 405 406 memcpy(&idma64c->config, config, sizeof(idma64c->config)); 407 408 convert_burst(&idma64c->config.src_maxburst); 409 convert_burst(&idma64c->config.dst_maxburst); 410 411 return 0; 412 } 413 414 static void idma64_chan_deactivate(struct idma64_chan *idma64c, bool drain) 415 { 416 unsigned short count = 100; 417 u32 cfglo; 418 419 cfglo = channel_readl(idma64c, CFG_LO); 420 if (drain) 421 cfglo |= IDMA64C_CFGL_CH_DRAIN; 422 else 423 cfglo &= ~IDMA64C_CFGL_CH_DRAIN; 424 425 channel_writel(idma64c, CFG_LO, cfglo | IDMA64C_CFGL_CH_SUSP); 426 do { 427 udelay(1); 428 cfglo = channel_readl(idma64c, CFG_LO); 429 } while (!(cfglo & IDMA64C_CFGL_FIFO_EMPTY) && --count); 430 } 431 432 static void idma64_chan_activate(struct idma64_chan *idma64c) 433 { 434 u32 cfglo; 435 436 cfglo = channel_readl(idma64c, CFG_LO); 437 channel_writel(idma64c, CFG_LO, cfglo & ~IDMA64C_CFGL_CH_SUSP); 438 } 439 440 static int idma64_pause(struct dma_chan *chan) 441 { 442 struct idma64_chan *idma64c = to_idma64_chan(chan); 443 unsigned long flags; 444 445 spin_lock_irqsave(&idma64c->vchan.lock, flags); 446 if (idma64c->desc && idma64c->desc->status == DMA_IN_PROGRESS) { 447 idma64_chan_deactivate(idma64c, false); 448 idma64c->desc->status = DMA_PAUSED; 449 } 450 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 451 452 return 0; 453 } 454 455 static int idma64_resume(struct dma_chan *chan) 456 { 457 struct idma64_chan *idma64c = to_idma64_chan(chan); 458 unsigned long flags; 459 460 spin_lock_irqsave(&idma64c->vchan.lock, flags); 461 if (idma64c->desc && idma64c->desc->status == DMA_PAUSED) { 462 idma64c->desc->status = DMA_IN_PROGRESS; 463 idma64_chan_activate(idma64c); 464 } 465 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 466 467 return 0; 468 } 469 470 static int idma64_terminate_all(struct dma_chan *chan) 471 { 472 struct idma64_chan *idma64c = to_idma64_chan(chan); 473 unsigned long flags; 474 LIST_HEAD(head); 475 476 spin_lock_irqsave(&idma64c->vchan.lock, flags); 477 idma64_chan_deactivate(idma64c, true); 478 idma64_stop_transfer(idma64c); 479 if (idma64c->desc) { 480 idma64_vdesc_free(&idma64c->desc->vdesc); 481 idma64c->desc = NULL; 482 } 483 vchan_get_all_descriptors(&idma64c->vchan, &head); 484 spin_unlock_irqrestore(&idma64c->vchan.lock, flags); 485 486 vchan_dma_desc_free_list(&idma64c->vchan, &head); 487 return 0; 488 } 489 490 static void idma64_synchronize(struct dma_chan *chan) 491 { 492 struct idma64_chan *idma64c = to_idma64_chan(chan); 493 494 vchan_synchronize(&idma64c->vchan); 495 } 496 497 static int idma64_alloc_chan_resources(struct dma_chan *chan) 498 { 499 struct idma64_chan *idma64c = to_idma64_chan(chan); 500 501 /* Create a pool of consistent memory blocks for hardware descriptors */ 502 idma64c->pool = dma_pool_create(dev_name(chan2dev(chan)), 503 chan->device->dev, 504 sizeof(struct idma64_lli), 8, 0); 505 if (!idma64c->pool) { 506 dev_err(chan2dev(chan), "No memory for descriptors\n"); 507 return -ENOMEM; 508 } 509 510 return 0; 511 } 512 513 static void idma64_free_chan_resources(struct dma_chan *chan) 514 { 515 struct idma64_chan *idma64c = to_idma64_chan(chan); 516 517 vchan_free_chan_resources(to_virt_chan(chan)); 518 dma_pool_destroy(idma64c->pool); 519 idma64c->pool = NULL; 520 } 521 522 /* ---------------------------------------------------------------------- */ 523 524 #define IDMA64_BUSWIDTHS \ 525 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 526 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 527 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) 528 529 static int idma64_probe(struct idma64_chip *chip) 530 { 531 struct idma64 *idma64; 532 unsigned short nr_chan = IDMA64_NR_CHAN; 533 unsigned short i; 534 int ret; 535 536 idma64 = devm_kzalloc(chip->dev, sizeof(*idma64), GFP_KERNEL); 537 if (!idma64) 538 return -ENOMEM; 539 540 idma64->regs = chip->regs; 541 chip->idma64 = idma64; 542 543 idma64->chan = devm_kcalloc(chip->dev, nr_chan, sizeof(*idma64->chan), 544 GFP_KERNEL); 545 if (!idma64->chan) 546 return -ENOMEM; 547 548 idma64->all_chan_mask = (1 << nr_chan) - 1; 549 550 /* Turn off iDMA controller */ 551 idma64_off(idma64); 552 553 ret = devm_request_irq(chip->dev, chip->irq, idma64_irq, IRQF_SHARED, 554 dev_name(chip->dev), idma64); 555 if (ret) 556 return ret; 557 558 INIT_LIST_HEAD(&idma64->dma.channels); 559 for (i = 0; i < nr_chan; i++) { 560 struct idma64_chan *idma64c = &idma64->chan[i]; 561 562 idma64c->vchan.desc_free = idma64_vdesc_free; 563 vchan_init(&idma64c->vchan, &idma64->dma); 564 565 idma64c->regs = idma64->regs + i * IDMA64_CH_LENGTH; 566 idma64c->mask = BIT(i); 567 } 568 569 dma_cap_set(DMA_SLAVE, idma64->dma.cap_mask); 570 dma_cap_set(DMA_PRIVATE, idma64->dma.cap_mask); 571 572 idma64->dma.device_alloc_chan_resources = idma64_alloc_chan_resources; 573 idma64->dma.device_free_chan_resources = idma64_free_chan_resources; 574 575 idma64->dma.device_prep_slave_sg = idma64_prep_slave_sg; 576 577 idma64->dma.device_issue_pending = idma64_issue_pending; 578 idma64->dma.device_tx_status = idma64_tx_status; 579 580 idma64->dma.device_config = idma64_slave_config; 581 idma64->dma.device_pause = idma64_pause; 582 idma64->dma.device_resume = idma64_resume; 583 idma64->dma.device_terminate_all = idma64_terminate_all; 584 idma64->dma.device_synchronize = idma64_synchronize; 585 586 idma64->dma.src_addr_widths = IDMA64_BUSWIDTHS; 587 idma64->dma.dst_addr_widths = IDMA64_BUSWIDTHS; 588 idma64->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 589 idma64->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 590 591 idma64->dma.dev = chip->sysdev; 592 593 dma_set_max_seg_size(idma64->dma.dev, IDMA64C_CTLH_BLOCK_TS_MASK); 594 595 ret = dma_async_device_register(&idma64->dma); 596 if (ret) 597 return ret; 598 599 dev_info(chip->dev, "Found Intel integrated DMA 64-bit\n"); 600 return 0; 601 } 602 603 static int idma64_remove(struct idma64_chip *chip) 604 { 605 struct idma64 *idma64 = chip->idma64; 606 unsigned short i; 607 608 dma_async_device_unregister(&idma64->dma); 609 610 /* 611 * Explicitly call devm_request_irq() to avoid the side effects with 612 * the scheduled tasklets. 613 */ 614 devm_free_irq(chip->dev, chip->irq, idma64); 615 616 for (i = 0; i < idma64->dma.chancnt; i++) { 617 struct idma64_chan *idma64c = &idma64->chan[i]; 618 619 tasklet_kill(&idma64c->vchan.task); 620 } 621 622 return 0; 623 } 624 625 /* ---------------------------------------------------------------------- */ 626 627 static int idma64_platform_probe(struct platform_device *pdev) 628 { 629 struct idma64_chip *chip; 630 struct device *dev = &pdev->dev; 631 struct device *sysdev = dev->parent; 632 struct resource *mem; 633 int ret; 634 635 chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); 636 if (!chip) 637 return -ENOMEM; 638 639 chip->irq = platform_get_irq(pdev, 0); 640 if (chip->irq < 0) 641 return chip->irq; 642 643 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 644 chip->regs = devm_ioremap_resource(dev, mem); 645 if (IS_ERR(chip->regs)) 646 return PTR_ERR(chip->regs); 647 648 ret = dma_coerce_mask_and_coherent(sysdev, DMA_BIT_MASK(64)); 649 if (ret) 650 return ret; 651 652 chip->dev = dev; 653 chip->sysdev = sysdev; 654 655 ret = idma64_probe(chip); 656 if (ret) 657 return ret; 658 659 platform_set_drvdata(pdev, chip); 660 return 0; 661 } 662 663 static int idma64_platform_remove(struct platform_device *pdev) 664 { 665 struct idma64_chip *chip = platform_get_drvdata(pdev); 666 667 return idma64_remove(chip); 668 } 669 670 #ifdef CONFIG_PM_SLEEP 671 672 static int idma64_pm_suspend(struct device *dev) 673 { 674 struct idma64_chip *chip = dev_get_drvdata(dev); 675 676 idma64_off(chip->idma64); 677 return 0; 678 } 679 680 static int idma64_pm_resume(struct device *dev) 681 { 682 struct idma64_chip *chip = dev_get_drvdata(dev); 683 684 idma64_on(chip->idma64); 685 return 0; 686 } 687 688 #endif /* CONFIG_PM_SLEEP */ 689 690 static const struct dev_pm_ops idma64_dev_pm_ops = { 691 SET_SYSTEM_SLEEP_PM_OPS(idma64_pm_suspend, idma64_pm_resume) 692 }; 693 694 static struct platform_driver idma64_platform_driver = { 695 .probe = idma64_platform_probe, 696 .remove = idma64_platform_remove, 697 .driver = { 698 .name = LPSS_IDMA64_DRIVER_NAME, 699 .pm = &idma64_dev_pm_ops, 700 }, 701 }; 702 703 module_platform_driver(idma64_platform_driver); 704 705 MODULE_LICENSE("GPL v2"); 706 MODULE_DESCRIPTION("iDMA64 core driver"); 707 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>"); 708 MODULE_ALIAS("platform:" LPSS_IDMA64_DRIVER_NAME); 709