1 /* 2 * Core driver for the High Speed UART DMA 3 * 4 * Copyright (C) 2015 Intel Corporation 5 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com> 6 * 7 * Partially based on the bits found in drivers/tty/serial/mfd.c. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 /* 15 * DMA channel allocation: 16 * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA 17 * Write (UART RX). 18 * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to 19 * port 3, and so on. 20 */ 21 22 #include <linux/delay.h> 23 #include <linux/dmaengine.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 29 #include "hsu.h" 30 31 #define HSU_DMA_BUSWIDTHS \ 32 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 33 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 34 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 35 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 36 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 37 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \ 38 BIT(DMA_SLAVE_BUSWIDTH_16_BYTES) 39 40 static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc) 41 { 42 hsu_chan_writel(hsuc, HSU_CH_CR, 0); 43 } 44 45 static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc) 46 { 47 u32 cr = HSU_CH_CR_CHA; 48 49 if (hsuc->direction == DMA_MEM_TO_DEV) 50 cr &= ~HSU_CH_CR_CHD; 51 else if (hsuc->direction == DMA_DEV_TO_MEM) 52 cr |= HSU_CH_CR_CHD; 53 54 hsu_chan_writel(hsuc, HSU_CH_CR, cr); 55 } 56 57 static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc) 58 { 59 struct dma_slave_config *config = &hsuc->config; 60 struct hsu_dma_desc *desc = hsuc->desc; 61 u32 bsr = 0, mtsr = 0; /* to shut the compiler up */ 62 u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI; 63 unsigned int i, count; 64 65 if (hsuc->direction == DMA_MEM_TO_DEV) { 66 bsr = config->dst_maxburst; 67 mtsr = config->src_addr_width; 68 } else if (hsuc->direction == DMA_DEV_TO_MEM) { 69 bsr = config->src_maxburst; 70 mtsr = config->dst_addr_width; 71 } 72 73 hsu_chan_disable(hsuc); 74 75 hsu_chan_writel(hsuc, HSU_CH_DCR, 0); 76 hsu_chan_writel(hsuc, HSU_CH_BSR, bsr); 77 hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr); 78 79 /* Set descriptors */ 80 count = desc->nents - desc->active; 81 for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) { 82 hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr); 83 hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len); 84 85 /* Prepare value for DCR */ 86 dcr |= HSU_CH_DCR_DESCA(i); 87 dcr |= HSU_CH_DCR_CHTOI(i); /* timeout bit, see HSU Errata 1 */ 88 89 desc->active++; 90 } 91 /* Only for the last descriptor in the chain */ 92 dcr |= HSU_CH_DCR_CHSOD(count - 1); 93 dcr |= HSU_CH_DCR_CHDI(count - 1); 94 95 hsu_chan_writel(hsuc, HSU_CH_DCR, dcr); 96 97 hsu_chan_enable(hsuc); 98 } 99 100 static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc) 101 { 102 hsu_chan_disable(hsuc); 103 hsu_chan_writel(hsuc, HSU_CH_DCR, 0); 104 } 105 106 static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc) 107 { 108 hsu_dma_chan_start(hsuc); 109 } 110 111 static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc) 112 { 113 struct virt_dma_desc *vdesc; 114 115 /* Get the next descriptor */ 116 vdesc = vchan_next_desc(&hsuc->vchan); 117 if (!vdesc) { 118 hsuc->desc = NULL; 119 return; 120 } 121 122 list_del(&vdesc->node); 123 hsuc->desc = to_hsu_dma_desc(vdesc); 124 125 /* Start the channel with a new descriptor */ 126 hsu_dma_start_channel(hsuc); 127 } 128 129 /* 130 * hsu_dma_get_status() - get DMA channel status 131 * @chip: HSUART DMA chip 132 * @nr: DMA channel number 133 * @status: pointer for DMA Channel Status Register value 134 * 135 * Description: 136 * The function reads and clears the DMA Channel Status Register, checks 137 * if it was a timeout interrupt and returns a corresponding value. 138 * 139 * Caller should provide a valid pointer for the DMA Channel Status 140 * Register value that will be returned in @status. 141 * 142 * Return: 143 * 1 for DMA timeout status, 0 for other DMA status, or error code for 144 * invalid parameters or no interrupt pending. 145 */ 146 int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr, 147 u32 *status) 148 { 149 struct hsu_dma_chan *hsuc; 150 unsigned long flags; 151 u32 sr; 152 153 /* Sanity check */ 154 if (nr >= chip->hsu->nr_channels) 155 return -EINVAL; 156 157 hsuc = &chip->hsu->chan[nr]; 158 159 /* 160 * No matter what situation, need read clear the IRQ status 161 * There is a bug, see Errata 5, HSD 2900918 162 */ 163 spin_lock_irqsave(&hsuc->vchan.lock, flags); 164 sr = hsu_chan_readl(hsuc, HSU_CH_SR); 165 spin_unlock_irqrestore(&hsuc->vchan.lock, flags); 166 167 /* Check if any interrupt is pending */ 168 sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY); 169 if (!sr) 170 return -EIO; 171 172 /* Timeout IRQ, need wait some time, see Errata 2 */ 173 if (sr & HSU_CH_SR_DESCTO_ANY) 174 udelay(2); 175 176 /* 177 * At this point, at least one of Descriptor Time Out, Channel Error 178 * or Descriptor Done bits must be set. Clear the Descriptor Time Out 179 * bits and if sr is still non-zero, it must be channel error or 180 * descriptor done which are higher priority than timeout and handled 181 * in hsu_dma_do_irq(). Else, it must be a timeout. 182 */ 183 sr &= ~HSU_CH_SR_DESCTO_ANY; 184 185 *status = sr; 186 187 return sr ? 0 : 1; 188 } 189 EXPORT_SYMBOL_GPL(hsu_dma_get_status); 190 191 /* 192 * hsu_dma_do_irq() - DMA interrupt handler 193 * @chip: HSUART DMA chip 194 * @nr: DMA channel number 195 * @status: Channel Status Register value 196 * 197 * Description: 198 * This function handles Channel Error and Descriptor Done interrupts. 199 * This function should be called after determining that the DMA interrupt 200 * is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0. 201 * 202 * Return: 203 * 0 for invalid channel number, 1 otherwise. 204 */ 205 int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status) 206 { 207 struct hsu_dma_chan *hsuc; 208 struct hsu_dma_desc *desc; 209 unsigned long flags; 210 211 /* Sanity check */ 212 if (nr >= chip->hsu->nr_channels) 213 return 0; 214 215 hsuc = &chip->hsu->chan[nr]; 216 217 spin_lock_irqsave(&hsuc->vchan.lock, flags); 218 desc = hsuc->desc; 219 if (desc) { 220 if (status & HSU_CH_SR_CHE) { 221 desc->status = DMA_ERROR; 222 } else if (desc->active < desc->nents) { 223 hsu_dma_start_channel(hsuc); 224 } else { 225 vchan_cookie_complete(&desc->vdesc); 226 desc->status = DMA_COMPLETE; 227 hsu_dma_start_transfer(hsuc); 228 } 229 } 230 spin_unlock_irqrestore(&hsuc->vchan.lock, flags); 231 232 return 1; 233 } 234 EXPORT_SYMBOL_GPL(hsu_dma_do_irq); 235 236 static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents) 237 { 238 struct hsu_dma_desc *desc; 239 240 desc = kzalloc(sizeof(*desc), GFP_NOWAIT); 241 if (!desc) 242 return NULL; 243 244 desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT); 245 if (!desc->sg) { 246 kfree(desc); 247 return NULL; 248 } 249 250 return desc; 251 } 252 253 static void hsu_dma_desc_free(struct virt_dma_desc *vdesc) 254 { 255 struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc); 256 257 kfree(desc->sg); 258 kfree(desc); 259 } 260 261 static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg( 262 struct dma_chan *chan, struct scatterlist *sgl, 263 unsigned int sg_len, enum dma_transfer_direction direction, 264 unsigned long flags, void *context) 265 { 266 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); 267 struct hsu_dma_desc *desc; 268 struct scatterlist *sg; 269 unsigned int i; 270 271 desc = hsu_dma_alloc_desc(sg_len); 272 if (!desc) 273 return NULL; 274 275 for_each_sg(sgl, sg, sg_len, i) { 276 desc->sg[i].addr = sg_dma_address(sg); 277 desc->sg[i].len = sg_dma_len(sg); 278 279 desc->length += sg_dma_len(sg); 280 } 281 282 desc->nents = sg_len; 283 desc->direction = direction; 284 /* desc->active = 0 by kzalloc */ 285 desc->status = DMA_IN_PROGRESS; 286 287 return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags); 288 } 289 290 static void hsu_dma_issue_pending(struct dma_chan *chan) 291 { 292 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); 293 unsigned long flags; 294 295 spin_lock_irqsave(&hsuc->vchan.lock, flags); 296 if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc) 297 hsu_dma_start_transfer(hsuc); 298 spin_unlock_irqrestore(&hsuc->vchan.lock, flags); 299 } 300 301 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc) 302 { 303 struct hsu_dma_desc *desc = hsuc->desc; 304 size_t bytes = 0; 305 int i; 306 307 for (i = desc->active; i < desc->nents; i++) 308 bytes += desc->sg[i].len; 309 310 i = HSU_DMA_CHAN_NR_DESC - 1; 311 do { 312 bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i)); 313 } while (--i >= 0); 314 315 return bytes; 316 } 317 318 static enum dma_status hsu_dma_tx_status(struct dma_chan *chan, 319 dma_cookie_t cookie, struct dma_tx_state *state) 320 { 321 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); 322 struct virt_dma_desc *vdesc; 323 enum dma_status status; 324 size_t bytes; 325 unsigned long flags; 326 327 status = dma_cookie_status(chan, cookie, state); 328 if (status == DMA_COMPLETE) 329 return status; 330 331 spin_lock_irqsave(&hsuc->vchan.lock, flags); 332 vdesc = vchan_find_desc(&hsuc->vchan, cookie); 333 if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) { 334 bytes = hsu_dma_active_desc_size(hsuc); 335 dma_set_residue(state, bytes); 336 status = hsuc->desc->status; 337 } else if (vdesc) { 338 bytes = to_hsu_dma_desc(vdesc)->length; 339 dma_set_residue(state, bytes); 340 } 341 spin_unlock_irqrestore(&hsuc->vchan.lock, flags); 342 343 return status; 344 } 345 346 static int hsu_dma_slave_config(struct dma_chan *chan, 347 struct dma_slave_config *config) 348 { 349 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); 350 351 memcpy(&hsuc->config, config, sizeof(hsuc->config)); 352 353 return 0; 354 } 355 356 static int hsu_dma_pause(struct dma_chan *chan) 357 { 358 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); 359 unsigned long flags; 360 361 spin_lock_irqsave(&hsuc->vchan.lock, flags); 362 if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) { 363 hsu_chan_disable(hsuc); 364 hsuc->desc->status = DMA_PAUSED; 365 } 366 spin_unlock_irqrestore(&hsuc->vchan.lock, flags); 367 368 return 0; 369 } 370 371 static int hsu_dma_resume(struct dma_chan *chan) 372 { 373 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); 374 unsigned long flags; 375 376 spin_lock_irqsave(&hsuc->vchan.lock, flags); 377 if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) { 378 hsuc->desc->status = DMA_IN_PROGRESS; 379 hsu_chan_enable(hsuc); 380 } 381 spin_unlock_irqrestore(&hsuc->vchan.lock, flags); 382 383 return 0; 384 } 385 386 static int hsu_dma_terminate_all(struct dma_chan *chan) 387 { 388 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); 389 unsigned long flags; 390 LIST_HEAD(head); 391 392 spin_lock_irqsave(&hsuc->vchan.lock, flags); 393 394 hsu_dma_stop_channel(hsuc); 395 if (hsuc->desc) { 396 hsu_dma_desc_free(&hsuc->desc->vdesc); 397 hsuc->desc = NULL; 398 } 399 400 vchan_get_all_descriptors(&hsuc->vchan, &head); 401 spin_unlock_irqrestore(&hsuc->vchan.lock, flags); 402 vchan_dma_desc_free_list(&hsuc->vchan, &head); 403 404 return 0; 405 } 406 407 static void hsu_dma_free_chan_resources(struct dma_chan *chan) 408 { 409 vchan_free_chan_resources(to_virt_chan(chan)); 410 } 411 412 static void hsu_dma_synchronize(struct dma_chan *chan) 413 { 414 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); 415 416 vchan_synchronize(&hsuc->vchan); 417 } 418 419 int hsu_dma_probe(struct hsu_dma_chip *chip) 420 { 421 struct hsu_dma *hsu; 422 void __iomem *addr = chip->regs + chip->offset; 423 unsigned short i; 424 int ret; 425 426 hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL); 427 if (!hsu) 428 return -ENOMEM; 429 430 chip->hsu = hsu; 431 432 /* Calculate nr_channels from the IO space length */ 433 hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH; 434 435 hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels, 436 sizeof(*hsu->chan), GFP_KERNEL); 437 if (!hsu->chan) 438 return -ENOMEM; 439 440 INIT_LIST_HEAD(&hsu->dma.channels); 441 for (i = 0; i < hsu->nr_channels; i++) { 442 struct hsu_dma_chan *hsuc = &hsu->chan[i]; 443 444 hsuc->vchan.desc_free = hsu_dma_desc_free; 445 vchan_init(&hsuc->vchan, &hsu->dma); 446 447 hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; 448 hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH; 449 } 450 451 dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask); 452 dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask); 453 454 hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources; 455 456 hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg; 457 458 hsu->dma.device_issue_pending = hsu_dma_issue_pending; 459 hsu->dma.device_tx_status = hsu_dma_tx_status; 460 461 hsu->dma.device_config = hsu_dma_slave_config; 462 hsu->dma.device_pause = hsu_dma_pause; 463 hsu->dma.device_resume = hsu_dma_resume; 464 hsu->dma.device_terminate_all = hsu_dma_terminate_all; 465 hsu->dma.device_synchronize = hsu_dma_synchronize; 466 467 hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS; 468 hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS; 469 hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 470 hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 471 472 hsu->dma.dev = chip->dev; 473 474 dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK); 475 476 ret = dma_async_device_register(&hsu->dma); 477 if (ret) 478 return ret; 479 480 dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels); 481 return 0; 482 } 483 EXPORT_SYMBOL_GPL(hsu_dma_probe); 484 485 int hsu_dma_remove(struct hsu_dma_chip *chip) 486 { 487 struct hsu_dma *hsu = chip->hsu; 488 unsigned short i; 489 490 dma_async_device_unregister(&hsu->dma); 491 492 for (i = 0; i < hsu->nr_channels; i++) { 493 struct hsu_dma_chan *hsuc = &hsu->chan[i]; 494 495 tasklet_kill(&hsuc->vchan.task); 496 } 497 498 return 0; 499 } 500 EXPORT_SYMBOL_GPL(hsu_dma_remove); 501 502 MODULE_LICENSE("GPL v2"); 503 MODULE_DESCRIPTION("High Speed UART DMA core driver"); 504 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>"); 505