1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA contorller is also added. 14 * 15 * This driver instructs the DMA controller to issue the PCI Read Multiple 16 * command for PCI read operations, instead of using the default PCI Read Line 17 * command. Please be aware that this setting may result in read pre-fetching 18 * on some platforms. 19 * 20 * This is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 */ 26 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/interrupt.h> 31 #include <linux/dmaengine.h> 32 #include <linux/delay.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/dmapool.h> 35 #include <linux/of_platform.h> 36 37 #include "fsldma.h" 38 39 static void dma_init(struct fsl_dma_chan *fsl_chan) 40 { 41 /* Reset the channel */ 42 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32); 43 44 switch (fsl_chan->feature & FSL_DMA_IP_MASK) { 45 case FSL_DMA_IP_85XX: 46 /* Set the channel to below modes: 47 * EIE - Error interrupt enable 48 * EOSIE - End of segments interrupt enable (basic mode) 49 * EOLNIE - End of links interrupt enable 50 */ 51 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE 52 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32); 53 break; 54 case FSL_DMA_IP_83XX: 55 /* Set the channel to below modes: 56 * EOTIE - End-of-transfer interrupt enable 57 * PRC_RM - PCI read multiple 58 */ 59 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE 60 | FSL_DMA_MR_PRC_RM, 32); 61 break; 62 } 63 64 } 65 66 static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val) 67 { 68 DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32); 69 } 70 71 static u32 get_sr(struct fsl_dma_chan *fsl_chan) 72 { 73 return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32); 74 } 75 76 static void set_desc_cnt(struct fsl_dma_chan *fsl_chan, 77 struct fsl_dma_ld_hw *hw, u32 count) 78 { 79 hw->count = CPU_TO_DMA(fsl_chan, count, 32); 80 } 81 82 static void set_desc_src(struct fsl_dma_chan *fsl_chan, 83 struct fsl_dma_ld_hw *hw, dma_addr_t src) 84 { 85 u64 snoop_bits; 86 87 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 88 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 89 hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64); 90 } 91 92 static void set_desc_dest(struct fsl_dma_chan *fsl_chan, 93 struct fsl_dma_ld_hw *hw, dma_addr_t dest) 94 { 95 u64 snoop_bits; 96 97 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 98 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 99 hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64); 100 } 101 102 static void set_desc_next(struct fsl_dma_chan *fsl_chan, 103 struct fsl_dma_ld_hw *hw, dma_addr_t next) 104 { 105 u64 snoop_bits; 106 107 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 108 ? FSL_DMA_SNEN : 0; 109 hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64); 110 } 111 112 static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) 113 { 114 DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64); 115 } 116 117 static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan) 118 { 119 return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN; 120 } 121 122 static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) 123 { 124 DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64); 125 } 126 127 static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan) 128 { 129 return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64); 130 } 131 132 static u32 get_bcr(struct fsl_dma_chan *fsl_chan) 133 { 134 return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32); 135 } 136 137 static int dma_is_idle(struct fsl_dma_chan *fsl_chan) 138 { 139 u32 sr = get_sr(fsl_chan); 140 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 141 } 142 143 static void dma_start(struct fsl_dma_chan *fsl_chan) 144 { 145 u32 mr_set = 0; 146 147 if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 148 DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32); 149 mr_set |= FSL_DMA_MR_EMP_EN; 150 } else if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 151 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 152 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 153 & ~FSL_DMA_MR_EMP_EN, 32); 154 } 155 156 if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT) 157 mr_set |= FSL_DMA_MR_EMS_EN; 158 else 159 mr_set |= FSL_DMA_MR_CS; 160 161 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 162 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 163 | mr_set, 32); 164 } 165 166 static void dma_halt(struct fsl_dma_chan *fsl_chan) 167 { 168 int i; 169 170 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 171 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA, 172 32); 173 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 174 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS 175 | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32); 176 177 for (i = 0; i < 100; i++) { 178 if (dma_is_idle(fsl_chan)) 179 break; 180 udelay(10); 181 } 182 if (i >= 100 && !dma_is_idle(fsl_chan)) 183 dev_err(fsl_chan->dev, "DMA halt timeout!\n"); 184 } 185 186 static void set_ld_eol(struct fsl_dma_chan *fsl_chan, 187 struct fsl_desc_sw *desc) 188 { 189 u64 snoop_bits; 190 191 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 192 ? FSL_DMA_SNEN : 0; 193 194 desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, 195 DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL 196 | snoop_bits, 64); 197 } 198 199 static void append_ld_queue(struct fsl_dma_chan *fsl_chan, 200 struct fsl_desc_sw *new_desc) 201 { 202 struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev); 203 204 if (list_empty(&fsl_chan->ld_queue)) 205 return; 206 207 /* Link to the new descriptor physical address and 208 * Enable End-of-segment interrupt for 209 * the last link descriptor. 210 * (the previous node's next link descriptor) 211 * 212 * For FSL_DMA_IP_83xx, the snoop enable bit need be set. 213 */ 214 queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, 215 new_desc->async_tx.phys | FSL_DMA_EOSIE | 216 (((fsl_chan->feature & FSL_DMA_IP_MASK) 217 == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64); 218 } 219 220 /** 221 * fsl_chan_set_src_loop_size - Set source address hold transfer size 222 * @fsl_chan : Freescale DMA channel 223 * @size : Address loop size, 0 for disable loop 224 * 225 * The set source address hold transfer size. The source 226 * address hold or loop transfer size is when the DMA transfer 227 * data from source address (SA), if the loop size is 4, the DMA will 228 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 229 * SA + 1 ... and so on. 230 */ 231 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size) 232 { 233 switch (size) { 234 case 0: 235 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 236 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & 237 (~FSL_DMA_MR_SAHE), 32); 238 break; 239 case 1: 240 case 2: 241 case 4: 242 case 8: 243 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 244 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | 245 FSL_DMA_MR_SAHE | (__ilog2(size) << 14), 246 32); 247 break; 248 } 249 } 250 251 /** 252 * fsl_chan_set_dest_loop_size - Set destination address hold transfer size 253 * @fsl_chan : Freescale DMA channel 254 * @size : Address loop size, 0 for disable loop 255 * 256 * The set destination address hold transfer size. The destination 257 * address hold or loop transfer size is when the DMA transfer 258 * data to destination address (TA), if the loop size is 4, the DMA will 259 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 260 * TA + 1 ... and so on. 261 */ 262 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size) 263 { 264 switch (size) { 265 case 0: 266 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 267 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & 268 (~FSL_DMA_MR_DAHE), 32); 269 break; 270 case 1: 271 case 2: 272 case 4: 273 case 8: 274 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 275 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | 276 FSL_DMA_MR_DAHE | (__ilog2(size) << 16), 277 32); 278 break; 279 } 280 } 281 282 /** 283 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 284 * @fsl_chan : Freescale DMA channel 285 * @size : Pause control size, 0 for disable external pause control. 286 * The maximum is 1024. 287 * 288 * The Freescale DMA channel can be controlled by the external 289 * signal DREQ#. The pause control size is how many bytes are allowed 290 * to transfer before pausing the channel, after which a new assertion 291 * of DREQ# resumes channel operation. 292 */ 293 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size) 294 { 295 if (size > 1024) 296 return; 297 298 if (size) { 299 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 300 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 301 | ((__ilog2(size) << 24) & 0x0f000000), 302 32); 303 fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 304 } else 305 fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 306 } 307 308 /** 309 * fsl_chan_toggle_ext_start - Toggle channel external start status 310 * @fsl_chan : Freescale DMA channel 311 * @enable : 0 is disabled, 1 is enabled. 312 * 313 * If enable the external start, the channel can be started by an 314 * external DMA start pin. So the dma_start() does not start the 315 * transfer immediately. The DMA channel will wait for the 316 * control pin asserted. 317 */ 318 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable) 319 { 320 if (enable) 321 fsl_chan->feature |= FSL_DMA_CHAN_START_EXT; 322 else 323 fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT; 324 } 325 326 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 327 { 328 struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan); 329 struct fsl_desc_sw *desc; 330 unsigned long flags; 331 dma_cookie_t cookie; 332 333 /* cookie increment and adding to ld_queue must be atomic */ 334 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 335 336 cookie = fsl_chan->common.cookie; 337 list_for_each_entry(desc, &tx->tx_list, node) { 338 cookie++; 339 if (cookie < 0) 340 cookie = 1; 341 342 desc->async_tx.cookie = cookie; 343 } 344 345 fsl_chan->common.cookie = cookie; 346 append_ld_queue(fsl_chan, tx_to_fsl_desc(tx)); 347 list_splice_init(&tx->tx_list, fsl_chan->ld_queue.prev); 348 349 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 350 351 return cookie; 352 } 353 354 /** 355 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 356 * @fsl_chan : Freescale DMA channel 357 * 358 * Return - The descriptor allocated. NULL for failed. 359 */ 360 static struct fsl_desc_sw *fsl_dma_alloc_descriptor( 361 struct fsl_dma_chan *fsl_chan) 362 { 363 dma_addr_t pdesc; 364 struct fsl_desc_sw *desc_sw; 365 366 desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc); 367 if (desc_sw) { 368 memset(desc_sw, 0, sizeof(struct fsl_desc_sw)); 369 dma_async_tx_descriptor_init(&desc_sw->async_tx, 370 &fsl_chan->common); 371 desc_sw->async_tx.tx_submit = fsl_dma_tx_submit; 372 desc_sw->async_tx.phys = pdesc; 373 } 374 375 return desc_sw; 376 } 377 378 379 /** 380 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 381 * @fsl_chan : Freescale DMA channel 382 * 383 * This function will create a dma pool for descriptor allocation. 384 * 385 * Return - The number of descriptors allocated. 386 */ 387 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan) 388 { 389 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 390 391 /* Has this channel already been allocated? */ 392 if (fsl_chan->desc_pool) 393 return 1; 394 395 /* We need the descriptor to be aligned to 32bytes 396 * for meeting FSL DMA specification requirement. 397 */ 398 fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool", 399 fsl_chan->dev, sizeof(struct fsl_desc_sw), 400 32, 0); 401 if (!fsl_chan->desc_pool) { 402 dev_err(fsl_chan->dev, "No memory for channel %d " 403 "descriptor dma pool.\n", fsl_chan->id); 404 return 0; 405 } 406 407 return 1; 408 } 409 410 /** 411 * fsl_dma_free_chan_resources - Free all resources of the channel. 412 * @fsl_chan : Freescale DMA channel 413 */ 414 static void fsl_dma_free_chan_resources(struct dma_chan *chan) 415 { 416 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 417 struct fsl_desc_sw *desc, *_desc; 418 unsigned long flags; 419 420 dev_dbg(fsl_chan->dev, "Free all channel resources.\n"); 421 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 422 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { 423 #ifdef FSL_DMA_LD_DEBUG 424 dev_dbg(fsl_chan->dev, 425 "LD %p will be released.\n", desc); 426 #endif 427 list_del(&desc->node); 428 /* free link descriptor */ 429 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); 430 } 431 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 432 dma_pool_destroy(fsl_chan->desc_pool); 433 434 fsl_chan->desc_pool = NULL; 435 } 436 437 static struct dma_async_tx_descriptor * 438 fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags) 439 { 440 struct fsl_dma_chan *fsl_chan; 441 struct fsl_desc_sw *new; 442 443 if (!chan) 444 return NULL; 445 446 fsl_chan = to_fsl_chan(chan); 447 448 new = fsl_dma_alloc_descriptor(fsl_chan); 449 if (!new) { 450 dev_err(fsl_chan->dev, "No free memory for link descriptor\n"); 451 return NULL; 452 } 453 454 new->async_tx.cookie = -EBUSY; 455 new->async_tx.flags = flags; 456 457 /* Insert the link descriptor to the LD ring */ 458 list_add_tail(&new->node, &new->async_tx.tx_list); 459 460 /* Set End-of-link to the last link descriptor of new list*/ 461 set_ld_eol(fsl_chan, new); 462 463 return &new->async_tx; 464 } 465 466 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( 467 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, 468 size_t len, unsigned long flags) 469 { 470 struct fsl_dma_chan *fsl_chan; 471 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 472 struct list_head *list; 473 size_t copy; 474 475 if (!chan) 476 return NULL; 477 478 if (!len) 479 return NULL; 480 481 fsl_chan = to_fsl_chan(chan); 482 483 do { 484 485 /* Allocate the link descriptor from DMA pool */ 486 new = fsl_dma_alloc_descriptor(fsl_chan); 487 if (!new) { 488 dev_err(fsl_chan->dev, 489 "No free memory for link descriptor\n"); 490 goto fail; 491 } 492 #ifdef FSL_DMA_LD_DEBUG 493 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new); 494 #endif 495 496 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 497 498 set_desc_cnt(fsl_chan, &new->hw, copy); 499 set_desc_src(fsl_chan, &new->hw, dma_src); 500 set_desc_dest(fsl_chan, &new->hw, dma_dest); 501 502 if (!first) 503 first = new; 504 else 505 set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys); 506 507 new->async_tx.cookie = 0; 508 async_tx_ack(&new->async_tx); 509 510 prev = new; 511 len -= copy; 512 dma_src += copy; 513 dma_dest += copy; 514 515 /* Insert the link descriptor to the LD ring */ 516 list_add_tail(&new->node, &first->async_tx.tx_list); 517 } while (len); 518 519 new->async_tx.flags = flags; /* client is in control of this ack */ 520 new->async_tx.cookie = -EBUSY; 521 522 /* Set End-of-link to the last link descriptor of new list*/ 523 set_ld_eol(fsl_chan, new); 524 525 return &first->async_tx; 526 527 fail: 528 if (!first) 529 return NULL; 530 531 list = &first->async_tx.tx_list; 532 list_for_each_entry_safe_reverse(new, prev, list, node) { 533 list_del(&new->node); 534 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys); 535 } 536 537 return NULL; 538 } 539 540 /** 541 * fsl_dma_update_completed_cookie - Update the completed cookie. 542 * @fsl_chan : Freescale DMA channel 543 */ 544 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan) 545 { 546 struct fsl_desc_sw *cur_desc, *desc; 547 dma_addr_t ld_phy; 548 549 ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK; 550 551 if (ld_phy) { 552 cur_desc = NULL; 553 list_for_each_entry(desc, &fsl_chan->ld_queue, node) 554 if (desc->async_tx.phys == ld_phy) { 555 cur_desc = desc; 556 break; 557 } 558 559 if (cur_desc && cur_desc->async_tx.cookie) { 560 if (dma_is_idle(fsl_chan)) 561 fsl_chan->completed_cookie = 562 cur_desc->async_tx.cookie; 563 else 564 fsl_chan->completed_cookie = 565 cur_desc->async_tx.cookie - 1; 566 } 567 } 568 } 569 570 /** 571 * fsl_chan_ld_cleanup - Clean up link descriptors 572 * @fsl_chan : Freescale DMA channel 573 * 574 * This function clean up the ld_queue of DMA channel. 575 * If 'in_intr' is set, the function will move the link descriptor to 576 * the recycle list. Otherwise, free it directly. 577 */ 578 static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan) 579 { 580 struct fsl_desc_sw *desc, *_desc; 581 unsigned long flags; 582 583 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 584 585 dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n", 586 fsl_chan->completed_cookie); 587 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { 588 dma_async_tx_callback callback; 589 void *callback_param; 590 591 if (dma_async_is_complete(desc->async_tx.cookie, 592 fsl_chan->completed_cookie, fsl_chan->common.cookie) 593 == DMA_IN_PROGRESS) 594 break; 595 596 callback = desc->async_tx.callback; 597 callback_param = desc->async_tx.callback_param; 598 599 /* Remove from ld_queue list */ 600 list_del(&desc->node); 601 602 dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n", 603 desc); 604 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); 605 606 /* Run the link descriptor callback function */ 607 if (callback) { 608 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 609 dev_dbg(fsl_chan->dev, "link descriptor %p callback\n", 610 desc); 611 callback(callback_param); 612 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 613 } 614 } 615 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 616 } 617 618 /** 619 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue. 620 * @fsl_chan : Freescale DMA channel 621 */ 622 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan) 623 { 624 struct list_head *ld_node; 625 dma_addr_t next_dest_addr; 626 unsigned long flags; 627 628 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 629 630 if (!dma_is_idle(fsl_chan)) 631 goto out_unlock; 632 633 dma_halt(fsl_chan); 634 635 /* If there are some link descriptors 636 * not transfered in queue. We need to start it. 637 */ 638 639 /* Find the first un-transfer desciptor */ 640 for (ld_node = fsl_chan->ld_queue.next; 641 (ld_node != &fsl_chan->ld_queue) 642 && (dma_async_is_complete( 643 to_fsl_desc(ld_node)->async_tx.cookie, 644 fsl_chan->completed_cookie, 645 fsl_chan->common.cookie) == DMA_SUCCESS); 646 ld_node = ld_node->next); 647 648 if (ld_node != &fsl_chan->ld_queue) { 649 /* Get the ld start address from ld_queue */ 650 next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys; 651 dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n", 652 (unsigned long long)next_dest_addr); 653 set_cdar(fsl_chan, next_dest_addr); 654 dma_start(fsl_chan); 655 } else { 656 set_cdar(fsl_chan, 0); 657 set_ndar(fsl_chan, 0); 658 } 659 660 out_unlock: 661 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 662 } 663 664 /** 665 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 666 * @fsl_chan : Freescale DMA channel 667 */ 668 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan) 669 { 670 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 671 672 #ifdef FSL_DMA_LD_DEBUG 673 struct fsl_desc_sw *ld; 674 unsigned long flags; 675 676 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 677 if (list_empty(&fsl_chan->ld_queue)) { 678 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 679 return; 680 } 681 682 dev_dbg(fsl_chan->dev, "--memcpy issue--\n"); 683 list_for_each_entry(ld, &fsl_chan->ld_queue, node) { 684 int i; 685 dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n", 686 fsl_chan->id, ld->async_tx.phys); 687 for (i = 0; i < 8; i++) 688 dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n", 689 i, *(((u32 *)&ld->hw) + i)); 690 } 691 dev_dbg(fsl_chan->dev, "----------------\n"); 692 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 693 #endif 694 695 fsl_chan_xfer_ld_queue(fsl_chan); 696 } 697 698 /** 699 * fsl_dma_is_complete - Determine the DMA status 700 * @fsl_chan : Freescale DMA channel 701 */ 702 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan, 703 dma_cookie_t cookie, 704 dma_cookie_t *done, 705 dma_cookie_t *used) 706 { 707 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 708 dma_cookie_t last_used; 709 dma_cookie_t last_complete; 710 711 fsl_chan_ld_cleanup(fsl_chan); 712 713 last_used = chan->cookie; 714 last_complete = fsl_chan->completed_cookie; 715 716 if (done) 717 *done = last_complete; 718 719 if (used) 720 *used = last_used; 721 722 return dma_async_is_complete(cookie, last_complete, last_used); 723 } 724 725 static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data) 726 { 727 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; 728 u32 stat; 729 int update_cookie = 0; 730 int xfer_ld_q = 0; 731 732 stat = get_sr(fsl_chan); 733 dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n", 734 fsl_chan->id, stat); 735 set_sr(fsl_chan, stat); /* Clear the event register */ 736 737 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 738 if (!stat) 739 return IRQ_NONE; 740 741 if (stat & FSL_DMA_SR_TE) 742 dev_err(fsl_chan->dev, "Transfer Error!\n"); 743 744 /* Programming Error 745 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 746 * triger a PE interrupt. 747 */ 748 if (stat & FSL_DMA_SR_PE) { 749 dev_dbg(fsl_chan->dev, "event: Programming Error INT\n"); 750 if (get_bcr(fsl_chan) == 0) { 751 /* BCR register is 0, this is a DMA_INTERRUPT async_tx. 752 * Now, update the completed cookie, and continue the 753 * next uncompleted transfer. 754 */ 755 update_cookie = 1; 756 xfer_ld_q = 1; 757 } 758 stat &= ~FSL_DMA_SR_PE; 759 } 760 761 /* If the link descriptor segment transfer finishes, 762 * we will recycle the used descriptor. 763 */ 764 if (stat & FSL_DMA_SR_EOSI) { 765 dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n"); 766 dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n", 767 (unsigned long long)get_cdar(fsl_chan), 768 (unsigned long long)get_ndar(fsl_chan)); 769 stat &= ~FSL_DMA_SR_EOSI; 770 update_cookie = 1; 771 } 772 773 /* For MPC8349, EOCDI event need to update cookie 774 * and start the next transfer if it exist. 775 */ 776 if (stat & FSL_DMA_SR_EOCDI) { 777 dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n"); 778 stat &= ~FSL_DMA_SR_EOCDI; 779 update_cookie = 1; 780 xfer_ld_q = 1; 781 } 782 783 /* If it current transfer is the end-of-transfer, 784 * we should clear the Channel Start bit for 785 * prepare next transfer. 786 */ 787 if (stat & FSL_DMA_SR_EOLNI) { 788 dev_dbg(fsl_chan->dev, "event: End-of-link INT\n"); 789 stat &= ~FSL_DMA_SR_EOLNI; 790 xfer_ld_q = 1; 791 } 792 793 if (update_cookie) 794 fsl_dma_update_completed_cookie(fsl_chan); 795 if (xfer_ld_q) 796 fsl_chan_xfer_ld_queue(fsl_chan); 797 if (stat) 798 dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n", 799 stat); 800 801 dev_dbg(fsl_chan->dev, "event: Exit\n"); 802 tasklet_schedule(&fsl_chan->tasklet); 803 return IRQ_HANDLED; 804 } 805 806 static irqreturn_t fsl_dma_do_interrupt(int irq, void *data) 807 { 808 struct fsl_dma_device *fdev = (struct fsl_dma_device *)data; 809 u32 gsr; 810 int ch_nr; 811 812 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base) 813 : in_le32(fdev->reg_base); 814 ch_nr = (32 - ffs(gsr)) / 8; 815 816 return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq, 817 fdev->chan[ch_nr]) : IRQ_NONE; 818 } 819 820 static void dma_do_tasklet(unsigned long data) 821 { 822 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; 823 fsl_chan_ld_cleanup(fsl_chan); 824 } 825 826 static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev, 827 struct device_node *node, u32 feature, const char *compatible) 828 { 829 struct fsl_dma_chan *new_fsl_chan; 830 int err; 831 832 /* alloc channel */ 833 new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL); 834 if (!new_fsl_chan) { 835 dev_err(fdev->dev, "No free memory for allocating " 836 "dma channels!\n"); 837 return -ENOMEM; 838 } 839 840 /* get dma channel register base */ 841 err = of_address_to_resource(node, 0, &new_fsl_chan->reg); 842 if (err) { 843 dev_err(fdev->dev, "Can't get %s property 'reg'\n", 844 node->full_name); 845 goto err_no_reg; 846 } 847 848 new_fsl_chan->feature = feature; 849 850 if (!fdev->feature) 851 fdev->feature = new_fsl_chan->feature; 852 853 /* If the DMA device's feature is different than its channels', 854 * report the bug. 855 */ 856 WARN_ON(fdev->feature != new_fsl_chan->feature); 857 858 new_fsl_chan->dev = fdev->dev; 859 new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start, 860 new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1); 861 862 new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7; 863 if (new_fsl_chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { 864 dev_err(fdev->dev, "There is no %d channel!\n", 865 new_fsl_chan->id); 866 err = -EINVAL; 867 goto err_no_chan; 868 } 869 fdev->chan[new_fsl_chan->id] = new_fsl_chan; 870 tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet, 871 (unsigned long)new_fsl_chan); 872 873 /* Init the channel */ 874 dma_init(new_fsl_chan); 875 876 /* Clear cdar registers */ 877 set_cdar(new_fsl_chan, 0); 878 879 switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) { 880 case FSL_DMA_IP_85XX: 881 new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 882 case FSL_DMA_IP_83XX: 883 new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start; 884 new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size; 885 new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size; 886 } 887 888 spin_lock_init(&new_fsl_chan->desc_lock); 889 INIT_LIST_HEAD(&new_fsl_chan->ld_queue); 890 891 new_fsl_chan->common.device = &fdev->common; 892 893 /* Add the channel to DMA device channel list */ 894 list_add_tail(&new_fsl_chan->common.device_node, 895 &fdev->common.channels); 896 fdev->common.chancnt++; 897 898 new_fsl_chan->irq = irq_of_parse_and_map(node, 0); 899 if (new_fsl_chan->irq != NO_IRQ) { 900 err = request_irq(new_fsl_chan->irq, 901 &fsl_dma_chan_do_interrupt, IRQF_SHARED, 902 "fsldma-channel", new_fsl_chan); 903 if (err) { 904 dev_err(fdev->dev, "DMA channel %s request_irq error " 905 "with return %d\n", node->full_name, err); 906 goto err_no_irq; 907 } 908 } 909 910 dev_info(fdev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id, 911 compatible, 912 new_fsl_chan->irq != NO_IRQ ? new_fsl_chan->irq : fdev->irq); 913 914 return 0; 915 916 err_no_irq: 917 list_del(&new_fsl_chan->common.device_node); 918 err_no_chan: 919 iounmap(new_fsl_chan->reg_base); 920 err_no_reg: 921 kfree(new_fsl_chan); 922 return err; 923 } 924 925 static void fsl_dma_chan_remove(struct fsl_dma_chan *fchan) 926 { 927 if (fchan->irq != NO_IRQ) 928 free_irq(fchan->irq, fchan); 929 list_del(&fchan->common.device_node); 930 iounmap(fchan->reg_base); 931 kfree(fchan); 932 } 933 934 static int __devinit of_fsl_dma_probe(struct of_device *dev, 935 const struct of_device_id *match) 936 { 937 int err; 938 struct fsl_dma_device *fdev; 939 struct device_node *child; 940 941 fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL); 942 if (!fdev) { 943 dev_err(&dev->dev, "No enough memory for 'priv'\n"); 944 return -ENOMEM; 945 } 946 fdev->dev = &dev->dev; 947 INIT_LIST_HEAD(&fdev->common.channels); 948 949 /* get DMA controller register base */ 950 err = of_address_to_resource(dev->node, 0, &fdev->reg); 951 if (err) { 952 dev_err(&dev->dev, "Can't get %s property 'reg'\n", 953 dev->node->full_name); 954 goto err_no_reg; 955 } 956 957 dev_info(&dev->dev, "Probe the Freescale DMA driver for %s " 958 "controller at 0x%llx...\n", 959 match->compatible, (unsigned long long)fdev->reg.start); 960 fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end 961 - fdev->reg.start + 1); 962 963 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 964 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); 965 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 966 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 967 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; 968 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 969 fdev->common.device_is_tx_complete = fsl_dma_is_complete; 970 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 971 fdev->common.dev = &dev->dev; 972 973 fdev->irq = irq_of_parse_and_map(dev->node, 0); 974 if (fdev->irq != NO_IRQ) { 975 err = request_irq(fdev->irq, &fsl_dma_do_interrupt, IRQF_SHARED, 976 "fsldma-device", fdev); 977 if (err) { 978 dev_err(&dev->dev, "DMA device request_irq error " 979 "with return %d\n", err); 980 goto err; 981 } 982 } 983 984 dev_set_drvdata(&(dev->dev), fdev); 985 986 /* We cannot use of_platform_bus_probe() because there is no 987 * of_platform_bus_remove. Instead, we manually instantiate every DMA 988 * channel object. 989 */ 990 for_each_child_of_node(dev->node, child) { 991 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) 992 fsl_dma_chan_probe(fdev, child, 993 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, 994 "fsl,eloplus-dma-channel"); 995 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) 996 fsl_dma_chan_probe(fdev, child, 997 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, 998 "fsl,elo-dma-channel"); 999 } 1000 1001 dma_async_device_register(&fdev->common); 1002 return 0; 1003 1004 err: 1005 iounmap(fdev->reg_base); 1006 err_no_reg: 1007 kfree(fdev); 1008 return err; 1009 } 1010 1011 static int of_fsl_dma_remove(struct of_device *of_dev) 1012 { 1013 struct fsl_dma_device *fdev; 1014 unsigned int i; 1015 1016 fdev = dev_get_drvdata(&of_dev->dev); 1017 1018 dma_async_device_unregister(&fdev->common); 1019 1020 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) 1021 if (fdev->chan[i]) 1022 fsl_dma_chan_remove(fdev->chan[i]); 1023 1024 if (fdev->irq != NO_IRQ) 1025 free_irq(fdev->irq, fdev); 1026 1027 iounmap(fdev->reg_base); 1028 1029 kfree(fdev); 1030 dev_set_drvdata(&of_dev->dev, NULL); 1031 1032 return 0; 1033 } 1034 1035 static struct of_device_id of_fsl_dma_ids[] = { 1036 { .compatible = "fsl,eloplus-dma", }, 1037 { .compatible = "fsl,elo-dma", }, 1038 {} 1039 }; 1040 1041 static struct of_platform_driver of_fsl_dma_driver = { 1042 .name = "fsl-elo-dma", 1043 .match_table = of_fsl_dma_ids, 1044 .probe = of_fsl_dma_probe, 1045 .remove = of_fsl_dma_remove, 1046 }; 1047 1048 static __init int of_fsl_dma_init(void) 1049 { 1050 int ret; 1051 1052 pr_info("Freescale Elo / Elo Plus DMA driver\n"); 1053 1054 ret = of_register_platform_driver(&of_fsl_dma_driver); 1055 if (ret) 1056 pr_err("fsldma: failed to register platform driver\n"); 1057 1058 return ret; 1059 } 1060 1061 static void __exit of_fsl_dma_exit(void) 1062 { 1063 of_unregister_platform_driver(&of_fsl_dma_driver); 1064 } 1065 1066 subsys_initcall(of_fsl_dma_init); 1067 module_exit(of_fsl_dma_exit); 1068 1069 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver"); 1070 MODULE_LICENSE("GPL"); 1071