xref: /openbmc/linux/drivers/dma/fsldma.c (revision e23feb16)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
37 
38 #include "dmaengine.h"
39 #include "fsldma.h"
40 
41 #define chan_dbg(chan, fmt, arg...)					\
42 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
43 #define chan_err(chan, fmt, arg...)					\
44 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
45 
46 static const char msg_ld_oom[] = "No free memory for link descriptor";
47 
48 /*
49  * Register Helpers
50  */
51 
52 static void set_sr(struct fsldma_chan *chan, u32 val)
53 {
54 	DMA_OUT(chan, &chan->regs->sr, val, 32);
55 }
56 
57 static u32 get_sr(struct fsldma_chan *chan)
58 {
59 	return DMA_IN(chan, &chan->regs->sr, 32);
60 }
61 
62 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
63 {
64 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
65 }
66 
67 static dma_addr_t get_cdar(struct fsldma_chan *chan)
68 {
69 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
70 }
71 
72 static u32 get_bcr(struct fsldma_chan *chan)
73 {
74 	return DMA_IN(chan, &chan->regs->bcr, 32);
75 }
76 
77 /*
78  * Descriptor Helpers
79  */
80 
81 static void set_desc_cnt(struct fsldma_chan *chan,
82 				struct fsl_dma_ld_hw *hw, u32 count)
83 {
84 	hw->count = CPU_TO_DMA(chan, count, 32);
85 }
86 
87 static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
88 {
89 	return DMA_TO_CPU(chan, desc->hw.count, 32);
90 }
91 
92 static void set_desc_src(struct fsldma_chan *chan,
93 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
94 {
95 	u64 snoop_bits;
96 
97 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
98 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
99 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
100 }
101 
102 static dma_addr_t get_desc_src(struct fsldma_chan *chan,
103 			       struct fsl_desc_sw *desc)
104 {
105 	u64 snoop_bits;
106 
107 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
108 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
109 	return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
110 }
111 
112 static void set_desc_dst(struct fsldma_chan *chan,
113 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
114 {
115 	u64 snoop_bits;
116 
117 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
118 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
119 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
120 }
121 
122 static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
123 			       struct fsl_desc_sw *desc)
124 {
125 	u64 snoop_bits;
126 
127 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
128 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
129 	return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
130 }
131 
132 static void set_desc_next(struct fsldma_chan *chan,
133 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
134 {
135 	u64 snoop_bits;
136 
137 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
138 		? FSL_DMA_SNEN : 0;
139 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
140 }
141 
142 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
143 {
144 	u64 snoop_bits;
145 
146 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
147 		? FSL_DMA_SNEN : 0;
148 
149 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
150 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
151 			| snoop_bits, 64);
152 }
153 
154 /*
155  * DMA Engine Hardware Control Helpers
156  */
157 
158 static void dma_init(struct fsldma_chan *chan)
159 {
160 	/* Reset the channel */
161 	DMA_OUT(chan, &chan->regs->mr, 0, 32);
162 
163 	switch (chan->feature & FSL_DMA_IP_MASK) {
164 	case FSL_DMA_IP_85XX:
165 		/* Set the channel to below modes:
166 		 * EIE - Error interrupt enable
167 		 * EOLNIE - End of links interrupt enable
168 		 * BWC - Bandwidth sharing among channels
169 		 */
170 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
171 				| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
172 		break;
173 	case FSL_DMA_IP_83XX:
174 		/* Set the channel to below modes:
175 		 * EOTIE - End-of-transfer interrupt enable
176 		 * PRC_RM - PCI read multiple
177 		 */
178 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
179 				| FSL_DMA_MR_PRC_RM, 32);
180 		break;
181 	}
182 }
183 
184 static int dma_is_idle(struct fsldma_chan *chan)
185 {
186 	u32 sr = get_sr(chan);
187 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
188 }
189 
190 /*
191  * Start the DMA controller
192  *
193  * Preconditions:
194  * - the CDAR register must point to the start descriptor
195  * - the MRn[CS] bit must be cleared
196  */
197 static void dma_start(struct fsldma_chan *chan)
198 {
199 	u32 mode;
200 
201 	mode = DMA_IN(chan, &chan->regs->mr, 32);
202 
203 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
204 		DMA_OUT(chan, &chan->regs->bcr, 0, 32);
205 		mode |= FSL_DMA_MR_EMP_EN;
206 	} else {
207 		mode &= ~FSL_DMA_MR_EMP_EN;
208 	}
209 
210 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
211 		mode |= FSL_DMA_MR_EMS_EN;
212 	} else {
213 		mode &= ~FSL_DMA_MR_EMS_EN;
214 		mode |= FSL_DMA_MR_CS;
215 	}
216 
217 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
218 }
219 
220 static void dma_halt(struct fsldma_chan *chan)
221 {
222 	u32 mode;
223 	int i;
224 
225 	/* read the mode register */
226 	mode = DMA_IN(chan, &chan->regs->mr, 32);
227 
228 	/*
229 	 * The 85xx controller supports channel abort, which will stop
230 	 * the current transfer. On 83xx, this bit is the transfer error
231 	 * mask bit, which should not be changed.
232 	 */
233 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
234 		mode |= FSL_DMA_MR_CA;
235 		DMA_OUT(chan, &chan->regs->mr, mode, 32);
236 
237 		mode &= ~FSL_DMA_MR_CA;
238 	}
239 
240 	/* stop the DMA controller */
241 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
242 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
243 
244 	/* wait for the DMA controller to become idle */
245 	for (i = 0; i < 100; i++) {
246 		if (dma_is_idle(chan))
247 			return;
248 
249 		udelay(10);
250 	}
251 
252 	if (!dma_is_idle(chan))
253 		chan_err(chan, "DMA halt timeout!\n");
254 }
255 
256 /**
257  * fsl_chan_set_src_loop_size - Set source address hold transfer size
258  * @chan : Freescale DMA channel
259  * @size     : Address loop size, 0 for disable loop
260  *
261  * The set source address hold transfer size. The source
262  * address hold or loop transfer size is when the DMA transfer
263  * data from source address (SA), if the loop size is 4, the DMA will
264  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
265  * SA + 1 ... and so on.
266  */
267 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
268 {
269 	u32 mode;
270 
271 	mode = DMA_IN(chan, &chan->regs->mr, 32);
272 
273 	switch (size) {
274 	case 0:
275 		mode &= ~FSL_DMA_MR_SAHE;
276 		break;
277 	case 1:
278 	case 2:
279 	case 4:
280 	case 8:
281 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
282 		break;
283 	}
284 
285 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
286 }
287 
288 /**
289  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
290  * @chan : Freescale DMA channel
291  * @size     : Address loop size, 0 for disable loop
292  *
293  * The set destination address hold transfer size. The destination
294  * address hold or loop transfer size is when the DMA transfer
295  * data to destination address (TA), if the loop size is 4, the DMA will
296  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
297  * TA + 1 ... and so on.
298  */
299 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
300 {
301 	u32 mode;
302 
303 	mode = DMA_IN(chan, &chan->regs->mr, 32);
304 
305 	switch (size) {
306 	case 0:
307 		mode &= ~FSL_DMA_MR_DAHE;
308 		break;
309 	case 1:
310 	case 2:
311 	case 4:
312 	case 8:
313 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
314 		break;
315 	}
316 
317 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
318 }
319 
320 /**
321  * fsl_chan_set_request_count - Set DMA Request Count for external control
322  * @chan : Freescale DMA channel
323  * @size     : Number of bytes to transfer in a single request
324  *
325  * The Freescale DMA channel can be controlled by the external signal DREQ#.
326  * The DMA request count is how many bytes are allowed to transfer before
327  * pausing the channel, after which a new assertion of DREQ# resumes channel
328  * operation.
329  *
330  * A size of 0 disables external pause control. The maximum size is 1024.
331  */
332 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
333 {
334 	u32 mode;
335 
336 	BUG_ON(size > 1024);
337 
338 	mode = DMA_IN(chan, &chan->regs->mr, 32);
339 	mode |= (__ilog2(size) << 24) & 0x0f000000;
340 
341 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
342 }
343 
344 /**
345  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
346  * @chan : Freescale DMA channel
347  * @enable   : 0 is disabled, 1 is enabled.
348  *
349  * The Freescale DMA channel can be controlled by the external signal DREQ#.
350  * The DMA Request Count feature should be used in addition to this feature
351  * to set the number of bytes to transfer before pausing the channel.
352  */
353 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
354 {
355 	if (enable)
356 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
357 	else
358 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
359 }
360 
361 /**
362  * fsl_chan_toggle_ext_start - Toggle channel external start status
363  * @chan : Freescale DMA channel
364  * @enable   : 0 is disabled, 1 is enabled.
365  *
366  * If enable the external start, the channel can be started by an
367  * external DMA start pin. So the dma_start() does not start the
368  * transfer immediately. The DMA channel will wait for the
369  * control pin asserted.
370  */
371 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
372 {
373 	if (enable)
374 		chan->feature |= FSL_DMA_CHAN_START_EXT;
375 	else
376 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
377 }
378 
379 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
380 {
381 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
382 
383 	if (list_empty(&chan->ld_pending))
384 		goto out_splice;
385 
386 	/*
387 	 * Add the hardware descriptor to the chain of hardware descriptors
388 	 * that already exists in memory.
389 	 *
390 	 * This will un-set the EOL bit of the existing transaction, and the
391 	 * last link in this transaction will become the EOL descriptor.
392 	 */
393 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
394 
395 	/*
396 	 * Add the software descriptor and all children to the list
397 	 * of pending transactions
398 	 */
399 out_splice:
400 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
401 }
402 
403 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
404 {
405 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
406 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
407 	struct fsl_desc_sw *child;
408 	unsigned long flags;
409 	dma_cookie_t cookie;
410 
411 	spin_lock_irqsave(&chan->desc_lock, flags);
412 
413 	/*
414 	 * assign cookies to all of the software descriptors
415 	 * that make up this transaction
416 	 */
417 	list_for_each_entry(child, &desc->tx_list, node) {
418 		cookie = dma_cookie_assign(&child->async_tx);
419 	}
420 
421 	/* put this transaction onto the tail of the pending queue */
422 	append_ld_queue(chan, desc);
423 
424 	spin_unlock_irqrestore(&chan->desc_lock, flags);
425 
426 	return cookie;
427 }
428 
429 /**
430  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
431  * @chan : Freescale DMA channel
432  *
433  * Return - The descriptor allocated. NULL for failed.
434  */
435 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
436 {
437 	struct fsl_desc_sw *desc;
438 	dma_addr_t pdesc;
439 
440 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
441 	if (!desc) {
442 		chan_dbg(chan, "out of memory for link descriptor\n");
443 		return NULL;
444 	}
445 
446 	memset(desc, 0, sizeof(*desc));
447 	INIT_LIST_HEAD(&desc->tx_list);
448 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
449 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
450 	desc->async_tx.phys = pdesc;
451 
452 #ifdef FSL_DMA_LD_DEBUG
453 	chan_dbg(chan, "LD %p allocated\n", desc);
454 #endif
455 
456 	return desc;
457 }
458 
459 /**
460  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
461  * @chan : Freescale DMA channel
462  *
463  * This function will create a dma pool for descriptor allocation.
464  *
465  * Return - The number of descriptors allocated.
466  */
467 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
468 {
469 	struct fsldma_chan *chan = to_fsl_chan(dchan);
470 
471 	/* Has this channel already been allocated? */
472 	if (chan->desc_pool)
473 		return 1;
474 
475 	/*
476 	 * We need the descriptor to be aligned to 32bytes
477 	 * for meeting FSL DMA specification requirement.
478 	 */
479 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
480 					  sizeof(struct fsl_desc_sw),
481 					  __alignof__(struct fsl_desc_sw), 0);
482 	if (!chan->desc_pool) {
483 		chan_err(chan, "unable to allocate descriptor pool\n");
484 		return -ENOMEM;
485 	}
486 
487 	/* there is at least one descriptor free to be allocated */
488 	return 1;
489 }
490 
491 /**
492  * fsldma_free_desc_list - Free all descriptors in a queue
493  * @chan: Freescae DMA channel
494  * @list: the list to free
495  *
496  * LOCKING: must hold chan->desc_lock
497  */
498 static void fsldma_free_desc_list(struct fsldma_chan *chan,
499 				  struct list_head *list)
500 {
501 	struct fsl_desc_sw *desc, *_desc;
502 
503 	list_for_each_entry_safe(desc, _desc, list, node) {
504 		list_del(&desc->node);
505 #ifdef FSL_DMA_LD_DEBUG
506 		chan_dbg(chan, "LD %p free\n", desc);
507 #endif
508 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
509 	}
510 }
511 
512 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
513 					  struct list_head *list)
514 {
515 	struct fsl_desc_sw *desc, *_desc;
516 
517 	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
518 		list_del(&desc->node);
519 #ifdef FSL_DMA_LD_DEBUG
520 		chan_dbg(chan, "LD %p free\n", desc);
521 #endif
522 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
523 	}
524 }
525 
526 /**
527  * fsl_dma_free_chan_resources - Free all resources of the channel.
528  * @chan : Freescale DMA channel
529  */
530 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
531 {
532 	struct fsldma_chan *chan = to_fsl_chan(dchan);
533 	unsigned long flags;
534 
535 	chan_dbg(chan, "free all channel resources\n");
536 	spin_lock_irqsave(&chan->desc_lock, flags);
537 	fsldma_free_desc_list(chan, &chan->ld_pending);
538 	fsldma_free_desc_list(chan, &chan->ld_running);
539 	spin_unlock_irqrestore(&chan->desc_lock, flags);
540 
541 	dma_pool_destroy(chan->desc_pool);
542 	chan->desc_pool = NULL;
543 }
544 
545 static struct dma_async_tx_descriptor *
546 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
547 {
548 	struct fsldma_chan *chan;
549 	struct fsl_desc_sw *new;
550 
551 	if (!dchan)
552 		return NULL;
553 
554 	chan = to_fsl_chan(dchan);
555 
556 	new = fsl_dma_alloc_descriptor(chan);
557 	if (!new) {
558 		chan_err(chan, "%s\n", msg_ld_oom);
559 		return NULL;
560 	}
561 
562 	new->async_tx.cookie = -EBUSY;
563 	new->async_tx.flags = flags;
564 
565 	/* Insert the link descriptor to the LD ring */
566 	list_add_tail(&new->node, &new->tx_list);
567 
568 	/* Set End-of-link to the last link descriptor of new list */
569 	set_ld_eol(chan, new);
570 
571 	return &new->async_tx;
572 }
573 
574 static struct dma_async_tx_descriptor *
575 fsl_dma_prep_memcpy(struct dma_chan *dchan,
576 	dma_addr_t dma_dst, dma_addr_t dma_src,
577 	size_t len, unsigned long flags)
578 {
579 	struct fsldma_chan *chan;
580 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
581 	size_t copy;
582 
583 	if (!dchan)
584 		return NULL;
585 
586 	if (!len)
587 		return NULL;
588 
589 	chan = to_fsl_chan(dchan);
590 
591 	do {
592 
593 		/* Allocate the link descriptor from DMA pool */
594 		new = fsl_dma_alloc_descriptor(chan);
595 		if (!new) {
596 			chan_err(chan, "%s\n", msg_ld_oom);
597 			goto fail;
598 		}
599 
600 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
601 
602 		set_desc_cnt(chan, &new->hw, copy);
603 		set_desc_src(chan, &new->hw, dma_src);
604 		set_desc_dst(chan, &new->hw, dma_dst);
605 
606 		if (!first)
607 			first = new;
608 		else
609 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
610 
611 		new->async_tx.cookie = 0;
612 		async_tx_ack(&new->async_tx);
613 
614 		prev = new;
615 		len -= copy;
616 		dma_src += copy;
617 		dma_dst += copy;
618 
619 		/* Insert the link descriptor to the LD ring */
620 		list_add_tail(&new->node, &first->tx_list);
621 	} while (len);
622 
623 	new->async_tx.flags = flags; /* client is in control of this ack */
624 	new->async_tx.cookie = -EBUSY;
625 
626 	/* Set End-of-link to the last link descriptor of new list */
627 	set_ld_eol(chan, new);
628 
629 	return &first->async_tx;
630 
631 fail:
632 	if (!first)
633 		return NULL;
634 
635 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
636 	return NULL;
637 }
638 
639 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
640 	struct scatterlist *dst_sg, unsigned int dst_nents,
641 	struct scatterlist *src_sg, unsigned int src_nents,
642 	unsigned long flags)
643 {
644 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
645 	struct fsldma_chan *chan = to_fsl_chan(dchan);
646 	size_t dst_avail, src_avail;
647 	dma_addr_t dst, src;
648 	size_t len;
649 
650 	/* basic sanity checks */
651 	if (dst_nents == 0 || src_nents == 0)
652 		return NULL;
653 
654 	if (dst_sg == NULL || src_sg == NULL)
655 		return NULL;
656 
657 	/*
658 	 * TODO: should we check that both scatterlists have the same
659 	 * TODO: number of bytes in total? Is that really an error?
660 	 */
661 
662 	/* get prepared for the loop */
663 	dst_avail = sg_dma_len(dst_sg);
664 	src_avail = sg_dma_len(src_sg);
665 
666 	/* run until we are out of scatterlist entries */
667 	while (true) {
668 
669 		/* create the largest transaction possible */
670 		len = min_t(size_t, src_avail, dst_avail);
671 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
672 		if (len == 0)
673 			goto fetch;
674 
675 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
676 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
677 
678 		/* allocate and populate the descriptor */
679 		new = fsl_dma_alloc_descriptor(chan);
680 		if (!new) {
681 			chan_err(chan, "%s\n", msg_ld_oom);
682 			goto fail;
683 		}
684 
685 		set_desc_cnt(chan, &new->hw, len);
686 		set_desc_src(chan, &new->hw, src);
687 		set_desc_dst(chan, &new->hw, dst);
688 
689 		if (!first)
690 			first = new;
691 		else
692 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
693 
694 		new->async_tx.cookie = 0;
695 		async_tx_ack(&new->async_tx);
696 		prev = new;
697 
698 		/* Insert the link descriptor to the LD ring */
699 		list_add_tail(&new->node, &first->tx_list);
700 
701 		/* update metadata */
702 		dst_avail -= len;
703 		src_avail -= len;
704 
705 fetch:
706 		/* fetch the next dst scatterlist entry */
707 		if (dst_avail == 0) {
708 
709 			/* no more entries: we're done */
710 			if (dst_nents == 0)
711 				break;
712 
713 			/* fetch the next entry: if there are no more: done */
714 			dst_sg = sg_next(dst_sg);
715 			if (dst_sg == NULL)
716 				break;
717 
718 			dst_nents--;
719 			dst_avail = sg_dma_len(dst_sg);
720 		}
721 
722 		/* fetch the next src scatterlist entry */
723 		if (src_avail == 0) {
724 
725 			/* no more entries: we're done */
726 			if (src_nents == 0)
727 				break;
728 
729 			/* fetch the next entry: if there are no more: done */
730 			src_sg = sg_next(src_sg);
731 			if (src_sg == NULL)
732 				break;
733 
734 			src_nents--;
735 			src_avail = sg_dma_len(src_sg);
736 		}
737 	}
738 
739 	new->async_tx.flags = flags; /* client is in control of this ack */
740 	new->async_tx.cookie = -EBUSY;
741 
742 	/* Set End-of-link to the last link descriptor of new list */
743 	set_ld_eol(chan, new);
744 
745 	return &first->async_tx;
746 
747 fail:
748 	if (!first)
749 		return NULL;
750 
751 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
752 	return NULL;
753 }
754 
755 /**
756  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
757  * @chan: DMA channel
758  * @sgl: scatterlist to transfer to/from
759  * @sg_len: number of entries in @scatterlist
760  * @direction: DMA direction
761  * @flags: DMAEngine flags
762  * @context: transaction context (ignored)
763  *
764  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
765  * DMA_SLAVE API, this gets the device-specific information from the
766  * chan->private variable.
767  */
768 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
769 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
770 	enum dma_transfer_direction direction, unsigned long flags,
771 	void *context)
772 {
773 	/*
774 	 * This operation is not supported on the Freescale DMA controller
775 	 *
776 	 * However, we need to provide the function pointer to allow the
777 	 * device_control() method to work.
778 	 */
779 	return NULL;
780 }
781 
782 static int fsl_dma_device_control(struct dma_chan *dchan,
783 				  enum dma_ctrl_cmd cmd, unsigned long arg)
784 {
785 	struct dma_slave_config *config;
786 	struct fsldma_chan *chan;
787 	unsigned long flags;
788 	int size;
789 
790 	if (!dchan)
791 		return -EINVAL;
792 
793 	chan = to_fsl_chan(dchan);
794 
795 	switch (cmd) {
796 	case DMA_TERMINATE_ALL:
797 		spin_lock_irqsave(&chan->desc_lock, flags);
798 
799 		/* Halt the DMA engine */
800 		dma_halt(chan);
801 
802 		/* Remove and free all of the descriptors in the LD queue */
803 		fsldma_free_desc_list(chan, &chan->ld_pending);
804 		fsldma_free_desc_list(chan, &chan->ld_running);
805 		chan->idle = true;
806 
807 		spin_unlock_irqrestore(&chan->desc_lock, flags);
808 		return 0;
809 
810 	case DMA_SLAVE_CONFIG:
811 		config = (struct dma_slave_config *)arg;
812 
813 		/* make sure the channel supports setting burst size */
814 		if (!chan->set_request_count)
815 			return -ENXIO;
816 
817 		/* we set the controller burst size depending on direction */
818 		if (config->direction == DMA_MEM_TO_DEV)
819 			size = config->dst_addr_width * config->dst_maxburst;
820 		else
821 			size = config->src_addr_width * config->src_maxburst;
822 
823 		chan->set_request_count(chan, size);
824 		return 0;
825 
826 	case FSLDMA_EXTERNAL_START:
827 
828 		/* make sure the channel supports external start */
829 		if (!chan->toggle_ext_start)
830 			return -ENXIO;
831 
832 		chan->toggle_ext_start(chan, arg);
833 		return 0;
834 
835 	default:
836 		return -ENXIO;
837 	}
838 
839 	return 0;
840 }
841 
842 /**
843  * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
844  * @chan: Freescale DMA channel
845  * @desc: descriptor to cleanup and free
846  *
847  * This function is used on a descriptor which has been executed by the DMA
848  * controller. It will run any callbacks, submit any dependencies, and then
849  * free the descriptor.
850  */
851 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
852 				      struct fsl_desc_sw *desc)
853 {
854 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
855 	struct device *dev = chan->common.device->dev;
856 	dma_addr_t src = get_desc_src(chan, desc);
857 	dma_addr_t dst = get_desc_dst(chan, desc);
858 	u32 len = get_desc_cnt(chan, desc);
859 
860 	/* Run the link descriptor callback function */
861 	if (txd->callback) {
862 #ifdef FSL_DMA_LD_DEBUG
863 		chan_dbg(chan, "LD %p callback\n", desc);
864 #endif
865 		txd->callback(txd->callback_param);
866 	}
867 
868 	/* Run any dependencies */
869 	dma_run_dependencies(txd);
870 
871 	/* Unmap the dst buffer, if requested */
872 	if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
873 		if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
874 			dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
875 		else
876 			dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
877 	}
878 
879 	/* Unmap the src buffer, if requested */
880 	if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
881 		if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
882 			dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
883 		else
884 			dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
885 	}
886 
887 #ifdef FSL_DMA_LD_DEBUG
888 	chan_dbg(chan, "LD %p free\n", desc);
889 #endif
890 	dma_pool_free(chan->desc_pool, desc, txd->phys);
891 }
892 
893 /**
894  * fsl_chan_xfer_ld_queue - transfer any pending transactions
895  * @chan : Freescale DMA channel
896  *
897  * HARDWARE STATE: idle
898  * LOCKING: must hold chan->desc_lock
899  */
900 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
901 {
902 	struct fsl_desc_sw *desc;
903 
904 	/*
905 	 * If the list of pending descriptors is empty, then we
906 	 * don't need to do any work at all
907 	 */
908 	if (list_empty(&chan->ld_pending)) {
909 		chan_dbg(chan, "no pending LDs\n");
910 		return;
911 	}
912 
913 	/*
914 	 * The DMA controller is not idle, which means that the interrupt
915 	 * handler will start any queued transactions when it runs after
916 	 * this transaction finishes
917 	 */
918 	if (!chan->idle) {
919 		chan_dbg(chan, "DMA controller still busy\n");
920 		return;
921 	}
922 
923 	/*
924 	 * If there are some link descriptors which have not been
925 	 * transferred, we need to start the controller
926 	 */
927 
928 	/*
929 	 * Move all elements from the queue of pending transactions
930 	 * onto the list of running transactions
931 	 */
932 	chan_dbg(chan, "idle, starting controller\n");
933 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
934 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
935 
936 	/*
937 	 * The 85xx DMA controller doesn't clear the channel start bit
938 	 * automatically at the end of a transfer. Therefore we must clear
939 	 * it in software before starting the transfer.
940 	 */
941 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
942 		u32 mode;
943 
944 		mode = DMA_IN(chan, &chan->regs->mr, 32);
945 		mode &= ~FSL_DMA_MR_CS;
946 		DMA_OUT(chan, &chan->regs->mr, mode, 32);
947 	}
948 
949 	/*
950 	 * Program the descriptor's address into the DMA controller,
951 	 * then start the DMA transaction
952 	 */
953 	set_cdar(chan, desc->async_tx.phys);
954 	get_cdar(chan);
955 
956 	dma_start(chan);
957 	chan->idle = false;
958 }
959 
960 /**
961  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
962  * @chan : Freescale DMA channel
963  */
964 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
965 {
966 	struct fsldma_chan *chan = to_fsl_chan(dchan);
967 	unsigned long flags;
968 
969 	spin_lock_irqsave(&chan->desc_lock, flags);
970 	fsl_chan_xfer_ld_queue(chan);
971 	spin_unlock_irqrestore(&chan->desc_lock, flags);
972 }
973 
974 /**
975  * fsl_tx_status - Determine the DMA status
976  * @chan : Freescale DMA channel
977  */
978 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
979 					dma_cookie_t cookie,
980 					struct dma_tx_state *txstate)
981 {
982 	return dma_cookie_status(dchan, cookie, txstate);
983 }
984 
985 /*----------------------------------------------------------------------------*/
986 /* Interrupt Handling                                                         */
987 /*----------------------------------------------------------------------------*/
988 
989 static irqreturn_t fsldma_chan_irq(int irq, void *data)
990 {
991 	struct fsldma_chan *chan = data;
992 	u32 stat;
993 
994 	/* save and clear the status register */
995 	stat = get_sr(chan);
996 	set_sr(chan, stat);
997 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
998 
999 	/* check that this was really our device */
1000 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1001 	if (!stat)
1002 		return IRQ_NONE;
1003 
1004 	if (stat & FSL_DMA_SR_TE)
1005 		chan_err(chan, "Transfer Error!\n");
1006 
1007 	/*
1008 	 * Programming Error
1009 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1010 	 * trigger a PE interrupt.
1011 	 */
1012 	if (stat & FSL_DMA_SR_PE) {
1013 		chan_dbg(chan, "irq: Programming Error INT\n");
1014 		stat &= ~FSL_DMA_SR_PE;
1015 		if (get_bcr(chan) != 0)
1016 			chan_err(chan, "Programming Error!\n");
1017 	}
1018 
1019 	/*
1020 	 * For MPC8349, EOCDI event need to update cookie
1021 	 * and start the next transfer if it exist.
1022 	 */
1023 	if (stat & FSL_DMA_SR_EOCDI) {
1024 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1025 		stat &= ~FSL_DMA_SR_EOCDI;
1026 	}
1027 
1028 	/*
1029 	 * If it current transfer is the end-of-transfer,
1030 	 * we should clear the Channel Start bit for
1031 	 * prepare next transfer.
1032 	 */
1033 	if (stat & FSL_DMA_SR_EOLNI) {
1034 		chan_dbg(chan, "irq: End-of-link INT\n");
1035 		stat &= ~FSL_DMA_SR_EOLNI;
1036 	}
1037 
1038 	/* check that the DMA controller is really idle */
1039 	if (!dma_is_idle(chan))
1040 		chan_err(chan, "irq: controller not idle!\n");
1041 
1042 	/* check that we handled all of the bits */
1043 	if (stat)
1044 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1045 
1046 	/*
1047 	 * Schedule the tasklet to handle all cleanup of the current
1048 	 * transaction. It will start a new transaction if there is
1049 	 * one pending.
1050 	 */
1051 	tasklet_schedule(&chan->tasklet);
1052 	chan_dbg(chan, "irq: Exit\n");
1053 	return IRQ_HANDLED;
1054 }
1055 
1056 static void dma_do_tasklet(unsigned long data)
1057 {
1058 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1059 	struct fsl_desc_sw *desc, *_desc;
1060 	LIST_HEAD(ld_cleanup);
1061 	unsigned long flags;
1062 
1063 	chan_dbg(chan, "tasklet entry\n");
1064 
1065 	spin_lock_irqsave(&chan->desc_lock, flags);
1066 
1067 	/* update the cookie if we have some descriptors to cleanup */
1068 	if (!list_empty(&chan->ld_running)) {
1069 		dma_cookie_t cookie;
1070 
1071 		desc = to_fsl_desc(chan->ld_running.prev);
1072 		cookie = desc->async_tx.cookie;
1073 		dma_cookie_complete(&desc->async_tx);
1074 
1075 		chan_dbg(chan, "completed_cookie=%d\n", cookie);
1076 	}
1077 
1078 	/*
1079 	 * move the descriptors to a temporary list so we can drop the lock
1080 	 * during the entire cleanup operation
1081 	 */
1082 	list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1083 
1084 	/* the hardware is now idle and ready for more */
1085 	chan->idle = true;
1086 
1087 	/*
1088 	 * Start any pending transactions automatically
1089 	 *
1090 	 * In the ideal case, we keep the DMA controller busy while we go
1091 	 * ahead and free the descriptors below.
1092 	 */
1093 	fsl_chan_xfer_ld_queue(chan);
1094 	spin_unlock_irqrestore(&chan->desc_lock, flags);
1095 
1096 	/* Run the callback for each descriptor, in order */
1097 	list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1098 
1099 		/* Remove from the list of transactions */
1100 		list_del(&desc->node);
1101 
1102 		/* Run all cleanup for this descriptor */
1103 		fsldma_cleanup_descriptor(chan, desc);
1104 	}
1105 
1106 	chan_dbg(chan, "tasklet exit\n");
1107 }
1108 
1109 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1110 {
1111 	struct fsldma_device *fdev = data;
1112 	struct fsldma_chan *chan;
1113 	unsigned int handled = 0;
1114 	u32 gsr, mask;
1115 	int i;
1116 
1117 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1118 						   : in_le32(fdev->regs);
1119 	mask = 0xff000000;
1120 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1121 
1122 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1123 		chan = fdev->chan[i];
1124 		if (!chan)
1125 			continue;
1126 
1127 		if (gsr & mask) {
1128 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1129 			fsldma_chan_irq(irq, chan);
1130 			handled++;
1131 		}
1132 
1133 		gsr &= ~mask;
1134 		mask >>= 8;
1135 	}
1136 
1137 	return IRQ_RETVAL(handled);
1138 }
1139 
1140 static void fsldma_free_irqs(struct fsldma_device *fdev)
1141 {
1142 	struct fsldma_chan *chan;
1143 	int i;
1144 
1145 	if (fdev->irq != NO_IRQ) {
1146 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1147 		free_irq(fdev->irq, fdev);
1148 		return;
1149 	}
1150 
1151 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1152 		chan = fdev->chan[i];
1153 		if (chan && chan->irq != NO_IRQ) {
1154 			chan_dbg(chan, "free per-channel IRQ\n");
1155 			free_irq(chan->irq, chan);
1156 		}
1157 	}
1158 }
1159 
1160 static int fsldma_request_irqs(struct fsldma_device *fdev)
1161 {
1162 	struct fsldma_chan *chan;
1163 	int ret;
1164 	int i;
1165 
1166 	/* if we have a per-controller IRQ, use that */
1167 	if (fdev->irq != NO_IRQ) {
1168 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1169 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1170 				  "fsldma-controller", fdev);
1171 		return ret;
1172 	}
1173 
1174 	/* no per-controller IRQ, use the per-channel IRQs */
1175 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1176 		chan = fdev->chan[i];
1177 		if (!chan)
1178 			continue;
1179 
1180 		if (chan->irq == NO_IRQ) {
1181 			chan_err(chan, "interrupts property missing in device tree\n");
1182 			ret = -ENODEV;
1183 			goto out_unwind;
1184 		}
1185 
1186 		chan_dbg(chan, "request per-channel IRQ\n");
1187 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1188 				  "fsldma-chan", chan);
1189 		if (ret) {
1190 			chan_err(chan, "unable to request per-channel IRQ\n");
1191 			goto out_unwind;
1192 		}
1193 	}
1194 
1195 	return 0;
1196 
1197 out_unwind:
1198 	for (/* none */; i >= 0; i--) {
1199 		chan = fdev->chan[i];
1200 		if (!chan)
1201 			continue;
1202 
1203 		if (chan->irq == NO_IRQ)
1204 			continue;
1205 
1206 		free_irq(chan->irq, chan);
1207 	}
1208 
1209 	return ret;
1210 }
1211 
1212 /*----------------------------------------------------------------------------*/
1213 /* OpenFirmware Subsystem                                                     */
1214 /*----------------------------------------------------------------------------*/
1215 
1216 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1217 	struct device_node *node, u32 feature, const char *compatible)
1218 {
1219 	struct fsldma_chan *chan;
1220 	struct resource res;
1221 	int err;
1222 
1223 	/* alloc channel */
1224 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1225 	if (!chan) {
1226 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1227 		err = -ENOMEM;
1228 		goto out_return;
1229 	}
1230 
1231 	/* ioremap registers for use */
1232 	chan->regs = of_iomap(node, 0);
1233 	if (!chan->regs) {
1234 		dev_err(fdev->dev, "unable to ioremap registers\n");
1235 		err = -ENOMEM;
1236 		goto out_free_chan;
1237 	}
1238 
1239 	err = of_address_to_resource(node, 0, &res);
1240 	if (err) {
1241 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1242 		goto out_iounmap_regs;
1243 	}
1244 
1245 	chan->feature = feature;
1246 	if (!fdev->feature)
1247 		fdev->feature = chan->feature;
1248 
1249 	/*
1250 	 * If the DMA device's feature is different than the feature
1251 	 * of its channels, report the bug
1252 	 */
1253 	WARN_ON(fdev->feature != chan->feature);
1254 
1255 	chan->dev = fdev->dev;
1256 	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1257 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1258 		dev_err(fdev->dev, "too many channels for device\n");
1259 		err = -EINVAL;
1260 		goto out_iounmap_regs;
1261 	}
1262 
1263 	fdev->chan[chan->id] = chan;
1264 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1265 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1266 
1267 	/* Initialize the channel */
1268 	dma_init(chan);
1269 
1270 	/* Clear cdar registers */
1271 	set_cdar(chan, 0);
1272 
1273 	switch (chan->feature & FSL_DMA_IP_MASK) {
1274 	case FSL_DMA_IP_85XX:
1275 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1276 	case FSL_DMA_IP_83XX:
1277 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1278 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1279 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1280 		chan->set_request_count = fsl_chan_set_request_count;
1281 	}
1282 
1283 	spin_lock_init(&chan->desc_lock);
1284 	INIT_LIST_HEAD(&chan->ld_pending);
1285 	INIT_LIST_HEAD(&chan->ld_running);
1286 	chan->idle = true;
1287 
1288 	chan->common.device = &fdev->common;
1289 	dma_cookie_init(&chan->common);
1290 
1291 	/* find the IRQ line, if it exists in the device tree */
1292 	chan->irq = irq_of_parse_and_map(node, 0);
1293 
1294 	/* Add the channel to DMA device channel list */
1295 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1296 	fdev->common.chancnt++;
1297 
1298 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1299 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1300 
1301 	return 0;
1302 
1303 out_iounmap_regs:
1304 	iounmap(chan->regs);
1305 out_free_chan:
1306 	kfree(chan);
1307 out_return:
1308 	return err;
1309 }
1310 
1311 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1312 {
1313 	irq_dispose_mapping(chan->irq);
1314 	list_del(&chan->common.device_node);
1315 	iounmap(chan->regs);
1316 	kfree(chan);
1317 }
1318 
1319 static int fsldma_of_probe(struct platform_device *op)
1320 {
1321 	struct fsldma_device *fdev;
1322 	struct device_node *child;
1323 	int err;
1324 
1325 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1326 	if (!fdev) {
1327 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1328 		err = -ENOMEM;
1329 		goto out_return;
1330 	}
1331 
1332 	fdev->dev = &op->dev;
1333 	INIT_LIST_HEAD(&fdev->common.channels);
1334 
1335 	/* ioremap the registers for use */
1336 	fdev->regs = of_iomap(op->dev.of_node, 0);
1337 	if (!fdev->regs) {
1338 		dev_err(&op->dev, "unable to ioremap registers\n");
1339 		err = -ENOMEM;
1340 		goto out_free_fdev;
1341 	}
1342 
1343 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1344 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1345 
1346 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1347 	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1348 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1349 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1350 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1351 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1352 	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1353 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1354 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1355 	fdev->common.device_tx_status = fsl_tx_status;
1356 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1357 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1358 	fdev->common.device_control = fsl_dma_device_control;
1359 	fdev->common.dev = &op->dev;
1360 
1361 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1362 
1363 	platform_set_drvdata(op, fdev);
1364 
1365 	/*
1366 	 * We cannot use of_platform_bus_probe() because there is no
1367 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1368 	 * channel object.
1369 	 */
1370 	for_each_child_of_node(op->dev.of_node, child) {
1371 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1372 			fsl_dma_chan_probe(fdev, child,
1373 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1374 				"fsl,eloplus-dma-channel");
1375 		}
1376 
1377 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1378 			fsl_dma_chan_probe(fdev, child,
1379 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1380 				"fsl,elo-dma-channel");
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * Hookup the IRQ handler(s)
1386 	 *
1387 	 * If we have a per-controller interrupt, we prefer that to the
1388 	 * per-channel interrupts to reduce the number of shared interrupt
1389 	 * handlers on the same IRQ line
1390 	 */
1391 	err = fsldma_request_irqs(fdev);
1392 	if (err) {
1393 		dev_err(fdev->dev, "unable to request IRQs\n");
1394 		goto out_free_fdev;
1395 	}
1396 
1397 	dma_async_device_register(&fdev->common);
1398 	return 0;
1399 
1400 out_free_fdev:
1401 	irq_dispose_mapping(fdev->irq);
1402 	kfree(fdev);
1403 out_return:
1404 	return err;
1405 }
1406 
1407 static int fsldma_of_remove(struct platform_device *op)
1408 {
1409 	struct fsldma_device *fdev;
1410 	unsigned int i;
1411 
1412 	fdev = platform_get_drvdata(op);
1413 	dma_async_device_unregister(&fdev->common);
1414 
1415 	fsldma_free_irqs(fdev);
1416 
1417 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1418 		if (fdev->chan[i])
1419 			fsl_dma_chan_remove(fdev->chan[i]);
1420 	}
1421 
1422 	iounmap(fdev->regs);
1423 	kfree(fdev);
1424 
1425 	return 0;
1426 }
1427 
1428 static const struct of_device_id fsldma_of_ids[] = {
1429 	{ .compatible = "fsl,eloplus-dma", },
1430 	{ .compatible = "fsl,elo-dma", },
1431 	{}
1432 };
1433 
1434 static struct platform_driver fsldma_of_driver = {
1435 	.driver = {
1436 		.name = "fsl-elo-dma",
1437 		.owner = THIS_MODULE,
1438 		.of_match_table = fsldma_of_ids,
1439 	},
1440 	.probe = fsldma_of_probe,
1441 	.remove = fsldma_of_remove,
1442 };
1443 
1444 /*----------------------------------------------------------------------------*/
1445 /* Module Init / Exit                                                         */
1446 /*----------------------------------------------------------------------------*/
1447 
1448 static __init int fsldma_init(void)
1449 {
1450 	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1451 	return platform_driver_register(&fsldma_of_driver);
1452 }
1453 
1454 static void __exit fsldma_exit(void)
1455 {
1456 	platform_driver_unregister(&fsldma_of_driver);
1457 }
1458 
1459 subsys_initcall(fsldma_init);
1460 module_exit(fsldma_exit);
1461 
1462 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1463 MODULE_LICENSE("GPL");
1464