xref: /openbmc/linux/drivers/dma/fsldma.c (revision d2999e1b)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 
40 #include "dmaengine.h"
41 #include "fsldma.h"
42 
43 #define chan_dbg(chan, fmt, arg...)					\
44 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)					\
46 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47 
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 
50 /*
51  * Register Helpers
52  */
53 
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 	DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58 
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 	return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63 
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 	DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68 
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 	return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73 
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78 
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83 
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 	DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88 
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 	return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93 
94 /*
95  * Descriptor Helpers
96  */
97 
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 				struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 	hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103 
104 static void set_desc_src(struct fsldma_chan *chan,
105 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113 
114 static void set_desc_dst(struct fsldma_chan *chan,
115 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 	u64 snoop_bits;
118 
119 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123 
124 static void set_desc_next(struct fsldma_chan *chan,
125 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 	u64 snoop_bits;
128 
129 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 		? FSL_DMA_SNEN : 0;
131 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133 
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 	u64 snoop_bits;
137 
138 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 		? FSL_DMA_SNEN : 0;
140 
141 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 			| snoop_bits, 64);
144 }
145 
146 /*
147  * DMA Engine Hardware Control Helpers
148  */
149 
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 	/* Reset the channel */
153 	set_mr(chan, 0);
154 
155 	switch (chan->feature & FSL_DMA_IP_MASK) {
156 	case FSL_DMA_IP_85XX:
157 		/* Set the channel to below modes:
158 		 * EIE - Error interrupt enable
159 		 * EOLNIE - End of links interrupt enable
160 		 * BWC - Bandwidth sharing among channels
161 		 */
162 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 			| FSL_DMA_MR_EOLNIE);
164 		break;
165 	case FSL_DMA_IP_83XX:
166 		/* Set the channel to below modes:
167 		 * EOTIE - End-of-transfer interrupt enable
168 		 * PRC_RM - PCI read multiple
169 		 */
170 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 		break;
172 	}
173 }
174 
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 	u32 sr = get_sr(chan);
178 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180 
181 /*
182  * Start the DMA controller
183  *
184  * Preconditions:
185  * - the CDAR register must point to the start descriptor
186  * - the MRn[CS] bit must be cleared
187  */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 	u32 mode;
191 
192 	mode = get_mr(chan);
193 
194 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 		set_bcr(chan, 0);
196 		mode |= FSL_DMA_MR_EMP_EN;
197 	} else {
198 		mode &= ~FSL_DMA_MR_EMP_EN;
199 	}
200 
201 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 		mode |= FSL_DMA_MR_EMS_EN;
203 	} else {
204 		mode &= ~FSL_DMA_MR_EMS_EN;
205 		mode |= FSL_DMA_MR_CS;
206 	}
207 
208 	set_mr(chan, mode);
209 }
210 
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 	u32 mode;
214 	int i;
215 
216 	/* read the mode register */
217 	mode = get_mr(chan);
218 
219 	/*
220 	 * The 85xx controller supports channel abort, which will stop
221 	 * the current transfer. On 83xx, this bit is the transfer error
222 	 * mask bit, which should not be changed.
223 	 */
224 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 		mode |= FSL_DMA_MR_CA;
226 		set_mr(chan, mode);
227 
228 		mode &= ~FSL_DMA_MR_CA;
229 	}
230 
231 	/* stop the DMA controller */
232 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 	set_mr(chan, mode);
234 
235 	/* wait for the DMA controller to become idle */
236 	for (i = 0; i < 100; i++) {
237 		if (dma_is_idle(chan))
238 			return;
239 
240 		udelay(10);
241 	}
242 
243 	if (!dma_is_idle(chan))
244 		chan_err(chan, "DMA halt timeout!\n");
245 }
246 
247 /**
248  * fsl_chan_set_src_loop_size - Set source address hold transfer size
249  * @chan : Freescale DMA channel
250  * @size     : Address loop size, 0 for disable loop
251  *
252  * The set source address hold transfer size. The source
253  * address hold or loop transfer size is when the DMA transfer
254  * data from source address (SA), if the loop size is 4, the DMA will
255  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256  * SA + 1 ... and so on.
257  */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 	u32 mode;
261 
262 	mode = get_mr(chan);
263 
264 	switch (size) {
265 	case 0:
266 		mode &= ~FSL_DMA_MR_SAHE;
267 		break;
268 	case 1:
269 	case 2:
270 	case 4:
271 	case 8:
272 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 		break;
274 	}
275 
276 	set_mr(chan, mode);
277 }
278 
279 /**
280  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281  * @chan : Freescale DMA channel
282  * @size     : Address loop size, 0 for disable loop
283  *
284  * The set destination address hold transfer size. The destination
285  * address hold or loop transfer size is when the DMA transfer
286  * data to destination address (TA), if the loop size is 4, the DMA will
287  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288  * TA + 1 ... and so on.
289  */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292 	u32 mode;
293 
294 	mode = get_mr(chan);
295 
296 	switch (size) {
297 	case 0:
298 		mode &= ~FSL_DMA_MR_DAHE;
299 		break;
300 	case 1:
301 	case 2:
302 	case 4:
303 	case 8:
304 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 		break;
306 	}
307 
308 	set_mr(chan, mode);
309 }
310 
311 /**
312  * fsl_chan_set_request_count - Set DMA Request Count for external control
313  * @chan : Freescale DMA channel
314  * @size     : Number of bytes to transfer in a single request
315  *
316  * The Freescale DMA channel can be controlled by the external signal DREQ#.
317  * The DMA request count is how many bytes are allowed to transfer before
318  * pausing the channel, after which a new assertion of DREQ# resumes channel
319  * operation.
320  *
321  * A size of 0 disables external pause control. The maximum size is 1024.
322  */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325 	u32 mode;
326 
327 	BUG_ON(size > 1024);
328 
329 	mode = get_mr(chan);
330 	mode |= (__ilog2(size) << 24) & 0x0f000000;
331 
332 	set_mr(chan, mode);
333 }
334 
335 /**
336  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337  * @chan : Freescale DMA channel
338  * @enable   : 0 is disabled, 1 is enabled.
339  *
340  * The Freescale DMA channel can be controlled by the external signal DREQ#.
341  * The DMA Request Count feature should be used in addition to this feature
342  * to set the number of bytes to transfer before pausing the channel.
343  */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346 	if (enable)
347 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 	else
349 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351 
352 /**
353  * fsl_chan_toggle_ext_start - Toggle channel external start status
354  * @chan : Freescale DMA channel
355  * @enable   : 0 is disabled, 1 is enabled.
356  *
357  * If enable the external start, the channel can be started by an
358  * external DMA start pin. So the dma_start() does not start the
359  * transfer immediately. The DMA channel will wait for the
360  * control pin asserted.
361  */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364 	if (enable)
365 		chan->feature |= FSL_DMA_CHAN_START_EXT;
366 	else
367 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369 
370 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
371 {
372 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
373 
374 	if (list_empty(&chan->ld_pending))
375 		goto out_splice;
376 
377 	/*
378 	 * Add the hardware descriptor to the chain of hardware descriptors
379 	 * that already exists in memory.
380 	 *
381 	 * This will un-set the EOL bit of the existing transaction, and the
382 	 * last link in this transaction will become the EOL descriptor.
383 	 */
384 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
385 
386 	/*
387 	 * Add the software descriptor and all children to the list
388 	 * of pending transactions
389 	 */
390 out_splice:
391 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
392 }
393 
394 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
395 {
396 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
397 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
398 	struct fsl_desc_sw *child;
399 	unsigned long flags;
400 	dma_cookie_t cookie = -EINVAL;
401 
402 	spin_lock_irqsave(&chan->desc_lock, flags);
403 
404 	/*
405 	 * assign cookies to all of the software descriptors
406 	 * that make up this transaction
407 	 */
408 	list_for_each_entry(child, &desc->tx_list, node) {
409 		cookie = dma_cookie_assign(&child->async_tx);
410 	}
411 
412 	/* put this transaction onto the tail of the pending queue */
413 	append_ld_queue(chan, desc);
414 
415 	spin_unlock_irqrestore(&chan->desc_lock, flags);
416 
417 	return cookie;
418 }
419 
420 /**
421  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
422  * @chan : Freescale DMA channel
423  * @desc: descriptor to be freed
424  */
425 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
426 		struct fsl_desc_sw *desc)
427 {
428 	list_del(&desc->node);
429 	chan_dbg(chan, "LD %p free\n", desc);
430 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
431 }
432 
433 /**
434  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
435  * @chan : Freescale DMA channel
436  *
437  * Return - The descriptor allocated. NULL for failed.
438  */
439 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
440 {
441 	struct fsl_desc_sw *desc;
442 	dma_addr_t pdesc;
443 
444 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
445 	if (!desc) {
446 		chan_dbg(chan, "out of memory for link descriptor\n");
447 		return NULL;
448 	}
449 
450 	memset(desc, 0, sizeof(*desc));
451 	INIT_LIST_HEAD(&desc->tx_list);
452 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
453 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
454 	desc->async_tx.phys = pdesc;
455 
456 	chan_dbg(chan, "LD %p allocated\n", desc);
457 
458 	return desc;
459 }
460 
461 /**
462  * fsl_chan_xfer_ld_queue - transfer any pending transactions
463  * @chan : Freescale DMA channel
464  *
465  * HARDWARE STATE: idle
466  * LOCKING: must hold chan->desc_lock
467  */
468 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
469 {
470 	struct fsl_desc_sw *desc;
471 
472 	/*
473 	 * If the list of pending descriptors is empty, then we
474 	 * don't need to do any work at all
475 	 */
476 	if (list_empty(&chan->ld_pending)) {
477 		chan_dbg(chan, "no pending LDs\n");
478 		return;
479 	}
480 
481 	/*
482 	 * The DMA controller is not idle, which means that the interrupt
483 	 * handler will start any queued transactions when it runs after
484 	 * this transaction finishes
485 	 */
486 	if (!chan->idle) {
487 		chan_dbg(chan, "DMA controller still busy\n");
488 		return;
489 	}
490 
491 	/*
492 	 * If there are some link descriptors which have not been
493 	 * transferred, we need to start the controller
494 	 */
495 
496 	/*
497 	 * Move all elements from the queue of pending transactions
498 	 * onto the list of running transactions
499 	 */
500 	chan_dbg(chan, "idle, starting controller\n");
501 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
502 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
503 
504 	/*
505 	 * The 85xx DMA controller doesn't clear the channel start bit
506 	 * automatically at the end of a transfer. Therefore we must clear
507 	 * it in software before starting the transfer.
508 	 */
509 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
510 		u32 mode;
511 
512 		mode = get_mr(chan);
513 		mode &= ~FSL_DMA_MR_CS;
514 		set_mr(chan, mode);
515 	}
516 
517 	/*
518 	 * Program the descriptor's address into the DMA controller,
519 	 * then start the DMA transaction
520 	 */
521 	set_cdar(chan, desc->async_tx.phys);
522 	get_cdar(chan);
523 
524 	dma_start(chan);
525 	chan->idle = false;
526 }
527 
528 /**
529  * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
530  * @chan: Freescale DMA channel
531  * @desc: descriptor to cleanup and free
532  *
533  * This function is used on a descriptor which has been executed by the DMA
534  * controller. It will run any callbacks, submit any dependencies, and then
535  * free the descriptor.
536  */
537 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
538 				      struct fsl_desc_sw *desc)
539 {
540 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
541 
542 	/* Run the link descriptor callback function */
543 	if (txd->callback) {
544 		chan_dbg(chan, "LD %p callback\n", desc);
545 		txd->callback(txd->callback_param);
546 	}
547 
548 	/* Run any dependencies */
549 	dma_run_dependencies(txd);
550 
551 	dma_descriptor_unmap(txd);
552 	chan_dbg(chan, "LD %p free\n", desc);
553 	dma_pool_free(chan->desc_pool, desc, txd->phys);
554 }
555 
556 /**
557  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
558  * @chan : Freescale DMA channel
559  *
560  * This function will create a dma pool for descriptor allocation.
561  *
562  * Return - The number of descriptors allocated.
563  */
564 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
565 {
566 	struct fsldma_chan *chan = to_fsl_chan(dchan);
567 
568 	/* Has this channel already been allocated? */
569 	if (chan->desc_pool)
570 		return 1;
571 
572 	/*
573 	 * We need the descriptor to be aligned to 32bytes
574 	 * for meeting FSL DMA specification requirement.
575 	 */
576 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
577 					  sizeof(struct fsl_desc_sw),
578 					  __alignof__(struct fsl_desc_sw), 0);
579 	if (!chan->desc_pool) {
580 		chan_err(chan, "unable to allocate descriptor pool\n");
581 		return -ENOMEM;
582 	}
583 
584 	/* there is at least one descriptor free to be allocated */
585 	return 1;
586 }
587 
588 /**
589  * fsldma_free_desc_list - Free all descriptors in a queue
590  * @chan: Freescae DMA channel
591  * @list: the list to free
592  *
593  * LOCKING: must hold chan->desc_lock
594  */
595 static void fsldma_free_desc_list(struct fsldma_chan *chan,
596 				  struct list_head *list)
597 {
598 	struct fsl_desc_sw *desc, *_desc;
599 
600 	list_for_each_entry_safe(desc, _desc, list, node)
601 		fsl_dma_free_descriptor(chan, desc);
602 }
603 
604 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
605 					  struct list_head *list)
606 {
607 	struct fsl_desc_sw *desc, *_desc;
608 
609 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
610 		fsl_dma_free_descriptor(chan, desc);
611 }
612 
613 /**
614  * fsl_dma_free_chan_resources - Free all resources of the channel.
615  * @chan : Freescale DMA channel
616  */
617 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
618 {
619 	struct fsldma_chan *chan = to_fsl_chan(dchan);
620 	unsigned long flags;
621 
622 	chan_dbg(chan, "free all channel resources\n");
623 	spin_lock_irqsave(&chan->desc_lock, flags);
624 	fsldma_free_desc_list(chan, &chan->ld_pending);
625 	fsldma_free_desc_list(chan, &chan->ld_running);
626 	spin_unlock_irqrestore(&chan->desc_lock, flags);
627 
628 	dma_pool_destroy(chan->desc_pool);
629 	chan->desc_pool = NULL;
630 }
631 
632 static struct dma_async_tx_descriptor *
633 fsl_dma_prep_memcpy(struct dma_chan *dchan,
634 	dma_addr_t dma_dst, dma_addr_t dma_src,
635 	size_t len, unsigned long flags)
636 {
637 	struct fsldma_chan *chan;
638 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
639 	size_t copy;
640 
641 	if (!dchan)
642 		return NULL;
643 
644 	if (!len)
645 		return NULL;
646 
647 	chan = to_fsl_chan(dchan);
648 
649 	do {
650 
651 		/* Allocate the link descriptor from DMA pool */
652 		new = fsl_dma_alloc_descriptor(chan);
653 		if (!new) {
654 			chan_err(chan, "%s\n", msg_ld_oom);
655 			goto fail;
656 		}
657 
658 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
659 
660 		set_desc_cnt(chan, &new->hw, copy);
661 		set_desc_src(chan, &new->hw, dma_src);
662 		set_desc_dst(chan, &new->hw, dma_dst);
663 
664 		if (!first)
665 			first = new;
666 		else
667 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
668 
669 		new->async_tx.cookie = 0;
670 		async_tx_ack(&new->async_tx);
671 
672 		prev = new;
673 		len -= copy;
674 		dma_src += copy;
675 		dma_dst += copy;
676 
677 		/* Insert the link descriptor to the LD ring */
678 		list_add_tail(&new->node, &first->tx_list);
679 	} while (len);
680 
681 	new->async_tx.flags = flags; /* client is in control of this ack */
682 	new->async_tx.cookie = -EBUSY;
683 
684 	/* Set End-of-link to the last link descriptor of new list */
685 	set_ld_eol(chan, new);
686 
687 	return &first->async_tx;
688 
689 fail:
690 	if (!first)
691 		return NULL;
692 
693 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
694 	return NULL;
695 }
696 
697 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
698 	struct scatterlist *dst_sg, unsigned int dst_nents,
699 	struct scatterlist *src_sg, unsigned int src_nents,
700 	unsigned long flags)
701 {
702 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
703 	struct fsldma_chan *chan = to_fsl_chan(dchan);
704 	size_t dst_avail, src_avail;
705 	dma_addr_t dst, src;
706 	size_t len;
707 
708 	/* basic sanity checks */
709 	if (dst_nents == 0 || src_nents == 0)
710 		return NULL;
711 
712 	if (dst_sg == NULL || src_sg == NULL)
713 		return NULL;
714 
715 	/*
716 	 * TODO: should we check that both scatterlists have the same
717 	 * TODO: number of bytes in total? Is that really an error?
718 	 */
719 
720 	/* get prepared for the loop */
721 	dst_avail = sg_dma_len(dst_sg);
722 	src_avail = sg_dma_len(src_sg);
723 
724 	/* run until we are out of scatterlist entries */
725 	while (true) {
726 
727 		/* create the largest transaction possible */
728 		len = min_t(size_t, src_avail, dst_avail);
729 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
730 		if (len == 0)
731 			goto fetch;
732 
733 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
734 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
735 
736 		/* allocate and populate the descriptor */
737 		new = fsl_dma_alloc_descriptor(chan);
738 		if (!new) {
739 			chan_err(chan, "%s\n", msg_ld_oom);
740 			goto fail;
741 		}
742 
743 		set_desc_cnt(chan, &new->hw, len);
744 		set_desc_src(chan, &new->hw, src);
745 		set_desc_dst(chan, &new->hw, dst);
746 
747 		if (!first)
748 			first = new;
749 		else
750 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
751 
752 		new->async_tx.cookie = 0;
753 		async_tx_ack(&new->async_tx);
754 		prev = new;
755 
756 		/* Insert the link descriptor to the LD ring */
757 		list_add_tail(&new->node, &first->tx_list);
758 
759 		/* update metadata */
760 		dst_avail -= len;
761 		src_avail -= len;
762 
763 fetch:
764 		/* fetch the next dst scatterlist entry */
765 		if (dst_avail == 0) {
766 
767 			/* no more entries: we're done */
768 			if (dst_nents == 0)
769 				break;
770 
771 			/* fetch the next entry: if there are no more: done */
772 			dst_sg = sg_next(dst_sg);
773 			if (dst_sg == NULL)
774 				break;
775 
776 			dst_nents--;
777 			dst_avail = sg_dma_len(dst_sg);
778 		}
779 
780 		/* fetch the next src scatterlist entry */
781 		if (src_avail == 0) {
782 
783 			/* no more entries: we're done */
784 			if (src_nents == 0)
785 				break;
786 
787 			/* fetch the next entry: if there are no more: done */
788 			src_sg = sg_next(src_sg);
789 			if (src_sg == NULL)
790 				break;
791 
792 			src_nents--;
793 			src_avail = sg_dma_len(src_sg);
794 		}
795 	}
796 
797 	new->async_tx.flags = flags; /* client is in control of this ack */
798 	new->async_tx.cookie = -EBUSY;
799 
800 	/* Set End-of-link to the last link descriptor of new list */
801 	set_ld_eol(chan, new);
802 
803 	return &first->async_tx;
804 
805 fail:
806 	if (!first)
807 		return NULL;
808 
809 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
810 	return NULL;
811 }
812 
813 /**
814  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
815  * @chan: DMA channel
816  * @sgl: scatterlist to transfer to/from
817  * @sg_len: number of entries in @scatterlist
818  * @direction: DMA direction
819  * @flags: DMAEngine flags
820  * @context: transaction context (ignored)
821  *
822  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
823  * DMA_SLAVE API, this gets the device-specific information from the
824  * chan->private variable.
825  */
826 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
827 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
828 	enum dma_transfer_direction direction, unsigned long flags,
829 	void *context)
830 {
831 	/*
832 	 * This operation is not supported on the Freescale DMA controller
833 	 *
834 	 * However, we need to provide the function pointer to allow the
835 	 * device_control() method to work.
836 	 */
837 	return NULL;
838 }
839 
840 static int fsl_dma_device_control(struct dma_chan *dchan,
841 				  enum dma_ctrl_cmd cmd, unsigned long arg)
842 {
843 	struct dma_slave_config *config;
844 	struct fsldma_chan *chan;
845 	unsigned long flags;
846 	int size;
847 
848 	if (!dchan)
849 		return -EINVAL;
850 
851 	chan = to_fsl_chan(dchan);
852 
853 	switch (cmd) {
854 	case DMA_TERMINATE_ALL:
855 		spin_lock_irqsave(&chan->desc_lock, flags);
856 
857 		/* Halt the DMA engine */
858 		dma_halt(chan);
859 
860 		/* Remove and free all of the descriptors in the LD queue */
861 		fsldma_free_desc_list(chan, &chan->ld_pending);
862 		fsldma_free_desc_list(chan, &chan->ld_running);
863 		chan->idle = true;
864 
865 		spin_unlock_irqrestore(&chan->desc_lock, flags);
866 		return 0;
867 
868 	case DMA_SLAVE_CONFIG:
869 		config = (struct dma_slave_config *)arg;
870 
871 		/* make sure the channel supports setting burst size */
872 		if (!chan->set_request_count)
873 			return -ENXIO;
874 
875 		/* we set the controller burst size depending on direction */
876 		if (config->direction == DMA_MEM_TO_DEV)
877 			size = config->dst_addr_width * config->dst_maxburst;
878 		else
879 			size = config->src_addr_width * config->src_maxburst;
880 
881 		chan->set_request_count(chan, size);
882 		return 0;
883 
884 	case FSLDMA_EXTERNAL_START:
885 
886 		/* make sure the channel supports external start */
887 		if (!chan->toggle_ext_start)
888 			return -ENXIO;
889 
890 		chan->toggle_ext_start(chan, arg);
891 		return 0;
892 
893 	default:
894 		return -ENXIO;
895 	}
896 
897 	return 0;
898 }
899 
900 /**
901  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
902  * @chan : Freescale DMA channel
903  */
904 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
905 {
906 	struct fsldma_chan *chan = to_fsl_chan(dchan);
907 	unsigned long flags;
908 
909 	spin_lock_irqsave(&chan->desc_lock, flags);
910 	fsl_chan_xfer_ld_queue(chan);
911 	spin_unlock_irqrestore(&chan->desc_lock, flags);
912 }
913 
914 /**
915  * fsl_tx_status - Determine the DMA status
916  * @chan : Freescale DMA channel
917  */
918 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
919 					dma_cookie_t cookie,
920 					struct dma_tx_state *txstate)
921 {
922 	return dma_cookie_status(dchan, cookie, txstate);
923 }
924 
925 /*----------------------------------------------------------------------------*/
926 /* Interrupt Handling                                                         */
927 /*----------------------------------------------------------------------------*/
928 
929 static irqreturn_t fsldma_chan_irq(int irq, void *data)
930 {
931 	struct fsldma_chan *chan = data;
932 	u32 stat;
933 
934 	/* save and clear the status register */
935 	stat = get_sr(chan);
936 	set_sr(chan, stat);
937 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
938 
939 	/* check that this was really our device */
940 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
941 	if (!stat)
942 		return IRQ_NONE;
943 
944 	if (stat & FSL_DMA_SR_TE)
945 		chan_err(chan, "Transfer Error!\n");
946 
947 	/*
948 	 * Programming Error
949 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
950 	 * trigger a PE interrupt.
951 	 */
952 	if (stat & FSL_DMA_SR_PE) {
953 		chan_dbg(chan, "irq: Programming Error INT\n");
954 		stat &= ~FSL_DMA_SR_PE;
955 		if (get_bcr(chan) != 0)
956 			chan_err(chan, "Programming Error!\n");
957 	}
958 
959 	/*
960 	 * For MPC8349, EOCDI event need to update cookie
961 	 * and start the next transfer if it exist.
962 	 */
963 	if (stat & FSL_DMA_SR_EOCDI) {
964 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
965 		stat &= ~FSL_DMA_SR_EOCDI;
966 	}
967 
968 	/*
969 	 * If it current transfer is the end-of-transfer,
970 	 * we should clear the Channel Start bit for
971 	 * prepare next transfer.
972 	 */
973 	if (stat & FSL_DMA_SR_EOLNI) {
974 		chan_dbg(chan, "irq: End-of-link INT\n");
975 		stat &= ~FSL_DMA_SR_EOLNI;
976 	}
977 
978 	/* check that the DMA controller is really idle */
979 	if (!dma_is_idle(chan))
980 		chan_err(chan, "irq: controller not idle!\n");
981 
982 	/* check that we handled all of the bits */
983 	if (stat)
984 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
985 
986 	/*
987 	 * Schedule the tasklet to handle all cleanup of the current
988 	 * transaction. It will start a new transaction if there is
989 	 * one pending.
990 	 */
991 	tasklet_schedule(&chan->tasklet);
992 	chan_dbg(chan, "irq: Exit\n");
993 	return IRQ_HANDLED;
994 }
995 
996 static void dma_do_tasklet(unsigned long data)
997 {
998 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
999 	struct fsl_desc_sw *desc, *_desc;
1000 	LIST_HEAD(ld_cleanup);
1001 	unsigned long flags;
1002 
1003 	chan_dbg(chan, "tasklet entry\n");
1004 
1005 	spin_lock_irqsave(&chan->desc_lock, flags);
1006 
1007 	/* update the cookie if we have some descriptors to cleanup */
1008 	if (!list_empty(&chan->ld_running)) {
1009 		dma_cookie_t cookie;
1010 
1011 		desc = to_fsl_desc(chan->ld_running.prev);
1012 		cookie = desc->async_tx.cookie;
1013 		dma_cookie_complete(&desc->async_tx);
1014 
1015 		chan_dbg(chan, "completed_cookie=%d\n", cookie);
1016 	}
1017 
1018 	/*
1019 	 * move the descriptors to a temporary list so we can drop the lock
1020 	 * during the entire cleanup operation
1021 	 */
1022 	list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1023 
1024 	/* the hardware is now idle and ready for more */
1025 	chan->idle = true;
1026 
1027 	/*
1028 	 * Start any pending transactions automatically
1029 	 *
1030 	 * In the ideal case, we keep the DMA controller busy while we go
1031 	 * ahead and free the descriptors below.
1032 	 */
1033 	fsl_chan_xfer_ld_queue(chan);
1034 	spin_unlock_irqrestore(&chan->desc_lock, flags);
1035 
1036 	/* Run the callback for each descriptor, in order */
1037 	list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1038 
1039 		/* Remove from the list of transactions */
1040 		list_del(&desc->node);
1041 
1042 		/* Run all cleanup for this descriptor */
1043 		fsldma_cleanup_descriptor(chan, desc);
1044 	}
1045 
1046 	chan_dbg(chan, "tasklet exit\n");
1047 }
1048 
1049 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1050 {
1051 	struct fsldma_device *fdev = data;
1052 	struct fsldma_chan *chan;
1053 	unsigned int handled = 0;
1054 	u32 gsr, mask;
1055 	int i;
1056 
1057 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1058 						   : in_le32(fdev->regs);
1059 	mask = 0xff000000;
1060 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1061 
1062 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1063 		chan = fdev->chan[i];
1064 		if (!chan)
1065 			continue;
1066 
1067 		if (gsr & mask) {
1068 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1069 			fsldma_chan_irq(irq, chan);
1070 			handled++;
1071 		}
1072 
1073 		gsr &= ~mask;
1074 		mask >>= 8;
1075 	}
1076 
1077 	return IRQ_RETVAL(handled);
1078 }
1079 
1080 static void fsldma_free_irqs(struct fsldma_device *fdev)
1081 {
1082 	struct fsldma_chan *chan;
1083 	int i;
1084 
1085 	if (fdev->irq != NO_IRQ) {
1086 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1087 		free_irq(fdev->irq, fdev);
1088 		return;
1089 	}
1090 
1091 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1092 		chan = fdev->chan[i];
1093 		if (chan && chan->irq != NO_IRQ) {
1094 			chan_dbg(chan, "free per-channel IRQ\n");
1095 			free_irq(chan->irq, chan);
1096 		}
1097 	}
1098 }
1099 
1100 static int fsldma_request_irqs(struct fsldma_device *fdev)
1101 {
1102 	struct fsldma_chan *chan;
1103 	int ret;
1104 	int i;
1105 
1106 	/* if we have a per-controller IRQ, use that */
1107 	if (fdev->irq != NO_IRQ) {
1108 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1109 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1110 				  "fsldma-controller", fdev);
1111 		return ret;
1112 	}
1113 
1114 	/* no per-controller IRQ, use the per-channel IRQs */
1115 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1116 		chan = fdev->chan[i];
1117 		if (!chan)
1118 			continue;
1119 
1120 		if (chan->irq == NO_IRQ) {
1121 			chan_err(chan, "interrupts property missing in device tree\n");
1122 			ret = -ENODEV;
1123 			goto out_unwind;
1124 		}
1125 
1126 		chan_dbg(chan, "request per-channel IRQ\n");
1127 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1128 				  "fsldma-chan", chan);
1129 		if (ret) {
1130 			chan_err(chan, "unable to request per-channel IRQ\n");
1131 			goto out_unwind;
1132 		}
1133 	}
1134 
1135 	return 0;
1136 
1137 out_unwind:
1138 	for (/* none */; i >= 0; i--) {
1139 		chan = fdev->chan[i];
1140 		if (!chan)
1141 			continue;
1142 
1143 		if (chan->irq == NO_IRQ)
1144 			continue;
1145 
1146 		free_irq(chan->irq, chan);
1147 	}
1148 
1149 	return ret;
1150 }
1151 
1152 /*----------------------------------------------------------------------------*/
1153 /* OpenFirmware Subsystem                                                     */
1154 /*----------------------------------------------------------------------------*/
1155 
1156 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1157 	struct device_node *node, u32 feature, const char *compatible)
1158 {
1159 	struct fsldma_chan *chan;
1160 	struct resource res;
1161 	int err;
1162 
1163 	/* alloc channel */
1164 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1165 	if (!chan) {
1166 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1167 		err = -ENOMEM;
1168 		goto out_return;
1169 	}
1170 
1171 	/* ioremap registers for use */
1172 	chan->regs = of_iomap(node, 0);
1173 	if (!chan->regs) {
1174 		dev_err(fdev->dev, "unable to ioremap registers\n");
1175 		err = -ENOMEM;
1176 		goto out_free_chan;
1177 	}
1178 
1179 	err = of_address_to_resource(node, 0, &res);
1180 	if (err) {
1181 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1182 		goto out_iounmap_regs;
1183 	}
1184 
1185 	chan->feature = feature;
1186 	if (!fdev->feature)
1187 		fdev->feature = chan->feature;
1188 
1189 	/*
1190 	 * If the DMA device's feature is different than the feature
1191 	 * of its channels, report the bug
1192 	 */
1193 	WARN_ON(fdev->feature != chan->feature);
1194 
1195 	chan->dev = fdev->dev;
1196 	chan->id = (res.start & 0xfff) < 0x300 ?
1197 		   ((res.start - 0x100) & 0xfff) >> 7 :
1198 		   ((res.start - 0x200) & 0xfff) >> 7;
1199 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1200 		dev_err(fdev->dev, "too many channels for device\n");
1201 		err = -EINVAL;
1202 		goto out_iounmap_regs;
1203 	}
1204 
1205 	fdev->chan[chan->id] = chan;
1206 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1207 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1208 
1209 	/* Initialize the channel */
1210 	dma_init(chan);
1211 
1212 	/* Clear cdar registers */
1213 	set_cdar(chan, 0);
1214 
1215 	switch (chan->feature & FSL_DMA_IP_MASK) {
1216 	case FSL_DMA_IP_85XX:
1217 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1218 	case FSL_DMA_IP_83XX:
1219 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1220 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1221 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1222 		chan->set_request_count = fsl_chan_set_request_count;
1223 	}
1224 
1225 	spin_lock_init(&chan->desc_lock);
1226 	INIT_LIST_HEAD(&chan->ld_pending);
1227 	INIT_LIST_HEAD(&chan->ld_running);
1228 	chan->idle = true;
1229 
1230 	chan->common.device = &fdev->common;
1231 	dma_cookie_init(&chan->common);
1232 
1233 	/* find the IRQ line, if it exists in the device tree */
1234 	chan->irq = irq_of_parse_and_map(node, 0);
1235 
1236 	/* Add the channel to DMA device channel list */
1237 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1238 	fdev->common.chancnt++;
1239 
1240 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1241 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1242 
1243 	return 0;
1244 
1245 out_iounmap_regs:
1246 	iounmap(chan->regs);
1247 out_free_chan:
1248 	kfree(chan);
1249 out_return:
1250 	return err;
1251 }
1252 
1253 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1254 {
1255 	irq_dispose_mapping(chan->irq);
1256 	list_del(&chan->common.device_node);
1257 	iounmap(chan->regs);
1258 	kfree(chan);
1259 }
1260 
1261 static int fsldma_of_probe(struct platform_device *op)
1262 {
1263 	struct fsldma_device *fdev;
1264 	struct device_node *child;
1265 	int err;
1266 
1267 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1268 	if (!fdev) {
1269 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1270 		err = -ENOMEM;
1271 		goto out_return;
1272 	}
1273 
1274 	fdev->dev = &op->dev;
1275 	INIT_LIST_HEAD(&fdev->common.channels);
1276 
1277 	/* ioremap the registers for use */
1278 	fdev->regs = of_iomap(op->dev.of_node, 0);
1279 	if (!fdev->regs) {
1280 		dev_err(&op->dev, "unable to ioremap registers\n");
1281 		err = -ENOMEM;
1282 		goto out_free_fdev;
1283 	}
1284 
1285 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1286 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1287 
1288 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1289 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1290 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1291 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1292 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1293 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1294 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1295 	fdev->common.device_tx_status = fsl_tx_status;
1296 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1297 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1298 	fdev->common.device_control = fsl_dma_device_control;
1299 	fdev->common.dev = &op->dev;
1300 
1301 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1302 
1303 	platform_set_drvdata(op, fdev);
1304 
1305 	/*
1306 	 * We cannot use of_platform_bus_probe() because there is no
1307 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1308 	 * channel object.
1309 	 */
1310 	for_each_child_of_node(op->dev.of_node, child) {
1311 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1312 			fsl_dma_chan_probe(fdev, child,
1313 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1314 				"fsl,eloplus-dma-channel");
1315 		}
1316 
1317 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1318 			fsl_dma_chan_probe(fdev, child,
1319 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1320 				"fsl,elo-dma-channel");
1321 		}
1322 	}
1323 
1324 	/*
1325 	 * Hookup the IRQ handler(s)
1326 	 *
1327 	 * If we have a per-controller interrupt, we prefer that to the
1328 	 * per-channel interrupts to reduce the number of shared interrupt
1329 	 * handlers on the same IRQ line
1330 	 */
1331 	err = fsldma_request_irqs(fdev);
1332 	if (err) {
1333 		dev_err(fdev->dev, "unable to request IRQs\n");
1334 		goto out_free_fdev;
1335 	}
1336 
1337 	dma_async_device_register(&fdev->common);
1338 	return 0;
1339 
1340 out_free_fdev:
1341 	irq_dispose_mapping(fdev->irq);
1342 	kfree(fdev);
1343 out_return:
1344 	return err;
1345 }
1346 
1347 static int fsldma_of_remove(struct platform_device *op)
1348 {
1349 	struct fsldma_device *fdev;
1350 	unsigned int i;
1351 
1352 	fdev = platform_get_drvdata(op);
1353 	dma_async_device_unregister(&fdev->common);
1354 
1355 	fsldma_free_irqs(fdev);
1356 
1357 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1358 		if (fdev->chan[i])
1359 			fsl_dma_chan_remove(fdev->chan[i]);
1360 	}
1361 
1362 	iounmap(fdev->regs);
1363 	kfree(fdev);
1364 
1365 	return 0;
1366 }
1367 
1368 static const struct of_device_id fsldma_of_ids[] = {
1369 	{ .compatible = "fsl,elo3-dma", },
1370 	{ .compatible = "fsl,eloplus-dma", },
1371 	{ .compatible = "fsl,elo-dma", },
1372 	{}
1373 };
1374 
1375 static struct platform_driver fsldma_of_driver = {
1376 	.driver = {
1377 		.name = "fsl-elo-dma",
1378 		.owner = THIS_MODULE,
1379 		.of_match_table = fsldma_of_ids,
1380 	},
1381 	.probe = fsldma_of_probe,
1382 	.remove = fsldma_of_remove,
1383 };
1384 
1385 /*----------------------------------------------------------------------------*/
1386 /* Module Init / Exit                                                         */
1387 /*----------------------------------------------------------------------------*/
1388 
1389 static __init int fsldma_init(void)
1390 {
1391 	pr_info("Freescale Elo series DMA driver\n");
1392 	return platform_driver_register(&fsldma_of_driver);
1393 }
1394 
1395 static void __exit fsldma_exit(void)
1396 {
1397 	platform_driver_unregister(&fsldma_of_driver);
1398 }
1399 
1400 subsys_initcall(fsldma_init);
1401 module_exit(fsldma_exit);
1402 
1403 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1404 MODULE_LICENSE("GPL");
1405