1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA controller is also added. 14 * 15 * This driver instructs the DMA controller to issue the PCI Read Multiple 16 * command for PCI read operations, instead of using the default PCI Read Line 17 * command. Please be aware that this setting may result in read pre-fetching 18 * on some platforms. 19 * 20 * This is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 */ 26 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/slab.h> 31 #include <linux/interrupt.h> 32 #include <linux/dmaengine.h> 33 #include <linux/delay.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/dmapool.h> 36 #include <linux/of_address.h> 37 #include <linux/of_irq.h> 38 #include <linux/of_platform.h> 39 40 #include "dmaengine.h" 41 #include "fsldma.h" 42 43 #define chan_dbg(chan, fmt, arg...) \ 44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) 45 #define chan_err(chan, fmt, arg...) \ 46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) 47 48 static const char msg_ld_oom[] = "No free memory for link descriptor"; 49 50 /* 51 * Register Helpers 52 */ 53 54 static void set_sr(struct fsldma_chan *chan, u32 val) 55 { 56 DMA_OUT(chan, &chan->regs->sr, val, 32); 57 } 58 59 static u32 get_sr(struct fsldma_chan *chan) 60 { 61 return DMA_IN(chan, &chan->regs->sr, 32); 62 } 63 64 static void set_mr(struct fsldma_chan *chan, u32 val) 65 { 66 DMA_OUT(chan, &chan->regs->mr, val, 32); 67 } 68 69 static u32 get_mr(struct fsldma_chan *chan) 70 { 71 return DMA_IN(chan, &chan->regs->mr, 32); 72 } 73 74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) 75 { 76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); 77 } 78 79 static dma_addr_t get_cdar(struct fsldma_chan *chan) 80 { 81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; 82 } 83 84 static void set_bcr(struct fsldma_chan *chan, u32 val) 85 { 86 DMA_OUT(chan, &chan->regs->bcr, val, 32); 87 } 88 89 static u32 get_bcr(struct fsldma_chan *chan) 90 { 91 return DMA_IN(chan, &chan->regs->bcr, 32); 92 } 93 94 /* 95 * Descriptor Helpers 96 */ 97 98 static void set_desc_cnt(struct fsldma_chan *chan, 99 struct fsl_dma_ld_hw *hw, u32 count) 100 { 101 hw->count = CPU_TO_DMA(chan, count, 32); 102 } 103 104 static void set_desc_src(struct fsldma_chan *chan, 105 struct fsl_dma_ld_hw *hw, dma_addr_t src) 106 { 107 u64 snoop_bits; 108 109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64); 112 } 113 114 static void set_desc_dst(struct fsldma_chan *chan, 115 struct fsl_dma_ld_hw *hw, dma_addr_t dst) 116 { 117 u64 snoop_bits; 118 119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64); 122 } 123 124 static void set_desc_next(struct fsldma_chan *chan, 125 struct fsl_dma_ld_hw *hw, dma_addr_t next) 126 { 127 u64 snoop_bits; 128 129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 130 ? FSL_DMA_SNEN : 0; 131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64); 132 } 133 134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 135 { 136 u64 snoop_bits; 137 138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 139 ? FSL_DMA_SNEN : 0; 140 141 desc->hw.next_ln_addr = CPU_TO_DMA(chan, 142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL 143 | snoop_bits, 64); 144 } 145 146 /* 147 * DMA Engine Hardware Control Helpers 148 */ 149 150 static void dma_init(struct fsldma_chan *chan) 151 { 152 /* Reset the channel */ 153 set_mr(chan, 0); 154 155 switch (chan->feature & FSL_DMA_IP_MASK) { 156 case FSL_DMA_IP_85XX: 157 /* Set the channel to below modes: 158 * EIE - Error interrupt enable 159 * EOLNIE - End of links interrupt enable 160 * BWC - Bandwidth sharing among channels 161 */ 162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE 163 | FSL_DMA_MR_EOLNIE); 164 break; 165 case FSL_DMA_IP_83XX: 166 /* Set the channel to below modes: 167 * EOTIE - End-of-transfer interrupt enable 168 * PRC_RM - PCI read multiple 169 */ 170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM); 171 break; 172 } 173 } 174 175 static int dma_is_idle(struct fsldma_chan *chan) 176 { 177 u32 sr = get_sr(chan); 178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 179 } 180 181 /* 182 * Start the DMA controller 183 * 184 * Preconditions: 185 * - the CDAR register must point to the start descriptor 186 * - the MRn[CS] bit must be cleared 187 */ 188 static void dma_start(struct fsldma_chan *chan) 189 { 190 u32 mode; 191 192 mode = get_mr(chan); 193 194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 195 set_bcr(chan, 0); 196 mode |= FSL_DMA_MR_EMP_EN; 197 } else { 198 mode &= ~FSL_DMA_MR_EMP_EN; 199 } 200 201 if (chan->feature & FSL_DMA_CHAN_START_EXT) { 202 mode |= FSL_DMA_MR_EMS_EN; 203 } else { 204 mode &= ~FSL_DMA_MR_EMS_EN; 205 mode |= FSL_DMA_MR_CS; 206 } 207 208 set_mr(chan, mode); 209 } 210 211 static void dma_halt(struct fsldma_chan *chan) 212 { 213 u32 mode; 214 int i; 215 216 /* read the mode register */ 217 mode = get_mr(chan); 218 219 /* 220 * The 85xx controller supports channel abort, which will stop 221 * the current transfer. On 83xx, this bit is the transfer error 222 * mask bit, which should not be changed. 223 */ 224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 225 mode |= FSL_DMA_MR_CA; 226 set_mr(chan, mode); 227 228 mode &= ~FSL_DMA_MR_CA; 229 } 230 231 /* stop the DMA controller */ 232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN); 233 set_mr(chan, mode); 234 235 /* wait for the DMA controller to become idle */ 236 for (i = 0; i < 100; i++) { 237 if (dma_is_idle(chan)) 238 return; 239 240 udelay(10); 241 } 242 243 if (!dma_is_idle(chan)) 244 chan_err(chan, "DMA halt timeout!\n"); 245 } 246 247 /** 248 * fsl_chan_set_src_loop_size - Set source address hold transfer size 249 * @chan : Freescale DMA channel 250 * @size : Address loop size, 0 for disable loop 251 * 252 * The set source address hold transfer size. The source 253 * address hold or loop transfer size is when the DMA transfer 254 * data from source address (SA), if the loop size is 4, the DMA will 255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 256 * SA + 1 ... and so on. 257 */ 258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size) 259 { 260 u32 mode; 261 262 mode = get_mr(chan); 263 264 switch (size) { 265 case 0: 266 mode &= ~FSL_DMA_MR_SAHE; 267 break; 268 case 1: 269 case 2: 270 case 4: 271 case 8: 272 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14); 273 break; 274 } 275 276 set_mr(chan, mode); 277 } 278 279 /** 280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size 281 * @chan : Freescale DMA channel 282 * @size : Address loop size, 0 for disable loop 283 * 284 * The set destination address hold transfer size. The destination 285 * address hold or loop transfer size is when the DMA transfer 286 * data to destination address (TA), if the loop size is 4, the DMA will 287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 288 * TA + 1 ... and so on. 289 */ 290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size) 291 { 292 u32 mode; 293 294 mode = get_mr(chan); 295 296 switch (size) { 297 case 0: 298 mode &= ~FSL_DMA_MR_DAHE; 299 break; 300 case 1: 301 case 2: 302 case 4: 303 case 8: 304 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16); 305 break; 306 } 307 308 set_mr(chan, mode); 309 } 310 311 /** 312 * fsl_chan_set_request_count - Set DMA Request Count for external control 313 * @chan : Freescale DMA channel 314 * @size : Number of bytes to transfer in a single request 315 * 316 * The Freescale DMA channel can be controlled by the external signal DREQ#. 317 * The DMA request count is how many bytes are allowed to transfer before 318 * pausing the channel, after which a new assertion of DREQ# resumes channel 319 * operation. 320 * 321 * A size of 0 disables external pause control. The maximum size is 1024. 322 */ 323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size) 324 { 325 u32 mode; 326 327 BUG_ON(size > 1024); 328 329 mode = get_mr(chan); 330 mode |= (__ilog2(size) << 24) & 0x0f000000; 331 332 set_mr(chan, mode); 333 } 334 335 /** 336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 337 * @chan : Freescale DMA channel 338 * @enable : 0 is disabled, 1 is enabled. 339 * 340 * The Freescale DMA channel can be controlled by the external signal DREQ#. 341 * The DMA Request Count feature should be used in addition to this feature 342 * to set the number of bytes to transfer before pausing the channel. 343 */ 344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable) 345 { 346 if (enable) 347 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 348 else 349 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 350 } 351 352 /** 353 * fsl_chan_toggle_ext_start - Toggle channel external start status 354 * @chan : Freescale DMA channel 355 * @enable : 0 is disabled, 1 is enabled. 356 * 357 * If enable the external start, the channel can be started by an 358 * external DMA start pin. So the dma_start() does not start the 359 * transfer immediately. The DMA channel will wait for the 360 * control pin asserted. 361 */ 362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable) 363 { 364 if (enable) 365 chan->feature |= FSL_DMA_CHAN_START_EXT; 366 else 367 chan->feature &= ~FSL_DMA_CHAN_START_EXT; 368 } 369 370 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 371 { 372 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev); 373 374 if (list_empty(&chan->ld_pending)) 375 goto out_splice; 376 377 /* 378 * Add the hardware descriptor to the chain of hardware descriptors 379 * that already exists in memory. 380 * 381 * This will un-set the EOL bit of the existing transaction, and the 382 * last link in this transaction will become the EOL descriptor. 383 */ 384 set_desc_next(chan, &tail->hw, desc->async_tx.phys); 385 386 /* 387 * Add the software descriptor and all children to the list 388 * of pending transactions 389 */ 390 out_splice: 391 list_splice_tail_init(&desc->tx_list, &chan->ld_pending); 392 } 393 394 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 395 { 396 struct fsldma_chan *chan = to_fsl_chan(tx->chan); 397 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); 398 struct fsl_desc_sw *child; 399 unsigned long flags; 400 dma_cookie_t cookie = -EINVAL; 401 402 spin_lock_irqsave(&chan->desc_lock, flags); 403 404 /* 405 * assign cookies to all of the software descriptors 406 * that make up this transaction 407 */ 408 list_for_each_entry(child, &desc->tx_list, node) { 409 cookie = dma_cookie_assign(&child->async_tx); 410 } 411 412 /* put this transaction onto the tail of the pending queue */ 413 append_ld_queue(chan, desc); 414 415 spin_unlock_irqrestore(&chan->desc_lock, flags); 416 417 return cookie; 418 } 419 420 /** 421 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool. 422 * @chan : Freescale DMA channel 423 * @desc: descriptor to be freed 424 */ 425 static void fsl_dma_free_descriptor(struct fsldma_chan *chan, 426 struct fsl_desc_sw *desc) 427 { 428 list_del(&desc->node); 429 chan_dbg(chan, "LD %p free\n", desc); 430 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 431 } 432 433 /** 434 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 435 * @chan : Freescale DMA channel 436 * 437 * Return - The descriptor allocated. NULL for failed. 438 */ 439 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan) 440 { 441 struct fsl_desc_sw *desc; 442 dma_addr_t pdesc; 443 444 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 445 if (!desc) { 446 chan_dbg(chan, "out of memory for link descriptor\n"); 447 return NULL; 448 } 449 450 memset(desc, 0, sizeof(*desc)); 451 INIT_LIST_HEAD(&desc->tx_list); 452 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 453 desc->async_tx.tx_submit = fsl_dma_tx_submit; 454 desc->async_tx.phys = pdesc; 455 456 chan_dbg(chan, "LD %p allocated\n", desc); 457 458 return desc; 459 } 460 461 /** 462 * fsl_chan_xfer_ld_queue - transfer any pending transactions 463 * @chan : Freescale DMA channel 464 * 465 * HARDWARE STATE: idle 466 * LOCKING: must hold chan->desc_lock 467 */ 468 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan) 469 { 470 struct fsl_desc_sw *desc; 471 472 /* 473 * If the list of pending descriptors is empty, then we 474 * don't need to do any work at all 475 */ 476 if (list_empty(&chan->ld_pending)) { 477 chan_dbg(chan, "no pending LDs\n"); 478 return; 479 } 480 481 /* 482 * The DMA controller is not idle, which means that the interrupt 483 * handler will start any queued transactions when it runs after 484 * this transaction finishes 485 */ 486 if (!chan->idle) { 487 chan_dbg(chan, "DMA controller still busy\n"); 488 return; 489 } 490 491 /* 492 * If there are some link descriptors which have not been 493 * transferred, we need to start the controller 494 */ 495 496 /* 497 * Move all elements from the queue of pending transactions 498 * onto the list of running transactions 499 */ 500 chan_dbg(chan, "idle, starting controller\n"); 501 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node); 502 list_splice_tail_init(&chan->ld_pending, &chan->ld_running); 503 504 /* 505 * The 85xx DMA controller doesn't clear the channel start bit 506 * automatically at the end of a transfer. Therefore we must clear 507 * it in software before starting the transfer. 508 */ 509 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 510 u32 mode; 511 512 mode = get_mr(chan); 513 mode &= ~FSL_DMA_MR_CS; 514 set_mr(chan, mode); 515 } 516 517 /* 518 * Program the descriptor's address into the DMA controller, 519 * then start the DMA transaction 520 */ 521 set_cdar(chan, desc->async_tx.phys); 522 get_cdar(chan); 523 524 dma_start(chan); 525 chan->idle = false; 526 } 527 528 /** 529 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor 530 * @chan: Freescale DMA channel 531 * @desc: descriptor to cleanup and free 532 * 533 * This function is used on a descriptor which has been executed by the DMA 534 * controller. It will run any callbacks, submit any dependencies, and then 535 * free the descriptor. 536 */ 537 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan, 538 struct fsl_desc_sw *desc) 539 { 540 struct dma_async_tx_descriptor *txd = &desc->async_tx; 541 542 /* Run the link descriptor callback function */ 543 if (txd->callback) { 544 chan_dbg(chan, "LD %p callback\n", desc); 545 txd->callback(txd->callback_param); 546 } 547 548 /* Run any dependencies */ 549 dma_run_dependencies(txd); 550 551 dma_descriptor_unmap(txd); 552 chan_dbg(chan, "LD %p free\n", desc); 553 dma_pool_free(chan->desc_pool, desc, txd->phys); 554 } 555 556 /** 557 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 558 * @chan : Freescale DMA channel 559 * 560 * This function will create a dma pool for descriptor allocation. 561 * 562 * Return - The number of descriptors allocated. 563 */ 564 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan) 565 { 566 struct fsldma_chan *chan = to_fsl_chan(dchan); 567 568 /* Has this channel already been allocated? */ 569 if (chan->desc_pool) 570 return 1; 571 572 /* 573 * We need the descriptor to be aligned to 32bytes 574 * for meeting FSL DMA specification requirement. 575 */ 576 chan->desc_pool = dma_pool_create(chan->name, chan->dev, 577 sizeof(struct fsl_desc_sw), 578 __alignof__(struct fsl_desc_sw), 0); 579 if (!chan->desc_pool) { 580 chan_err(chan, "unable to allocate descriptor pool\n"); 581 return -ENOMEM; 582 } 583 584 /* there is at least one descriptor free to be allocated */ 585 return 1; 586 } 587 588 /** 589 * fsldma_free_desc_list - Free all descriptors in a queue 590 * @chan: Freescae DMA channel 591 * @list: the list to free 592 * 593 * LOCKING: must hold chan->desc_lock 594 */ 595 static void fsldma_free_desc_list(struct fsldma_chan *chan, 596 struct list_head *list) 597 { 598 struct fsl_desc_sw *desc, *_desc; 599 600 list_for_each_entry_safe(desc, _desc, list, node) 601 fsl_dma_free_descriptor(chan, desc); 602 } 603 604 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan, 605 struct list_head *list) 606 { 607 struct fsl_desc_sw *desc, *_desc; 608 609 list_for_each_entry_safe_reverse(desc, _desc, list, node) 610 fsl_dma_free_descriptor(chan, desc); 611 } 612 613 /** 614 * fsl_dma_free_chan_resources - Free all resources of the channel. 615 * @chan : Freescale DMA channel 616 */ 617 static void fsl_dma_free_chan_resources(struct dma_chan *dchan) 618 { 619 struct fsldma_chan *chan = to_fsl_chan(dchan); 620 unsigned long flags; 621 622 chan_dbg(chan, "free all channel resources\n"); 623 spin_lock_irqsave(&chan->desc_lock, flags); 624 fsldma_free_desc_list(chan, &chan->ld_pending); 625 fsldma_free_desc_list(chan, &chan->ld_running); 626 spin_unlock_irqrestore(&chan->desc_lock, flags); 627 628 dma_pool_destroy(chan->desc_pool); 629 chan->desc_pool = NULL; 630 } 631 632 static struct dma_async_tx_descriptor * 633 fsl_dma_prep_memcpy(struct dma_chan *dchan, 634 dma_addr_t dma_dst, dma_addr_t dma_src, 635 size_t len, unsigned long flags) 636 { 637 struct fsldma_chan *chan; 638 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 639 size_t copy; 640 641 if (!dchan) 642 return NULL; 643 644 if (!len) 645 return NULL; 646 647 chan = to_fsl_chan(dchan); 648 649 do { 650 651 /* Allocate the link descriptor from DMA pool */ 652 new = fsl_dma_alloc_descriptor(chan); 653 if (!new) { 654 chan_err(chan, "%s\n", msg_ld_oom); 655 goto fail; 656 } 657 658 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 659 660 set_desc_cnt(chan, &new->hw, copy); 661 set_desc_src(chan, &new->hw, dma_src); 662 set_desc_dst(chan, &new->hw, dma_dst); 663 664 if (!first) 665 first = new; 666 else 667 set_desc_next(chan, &prev->hw, new->async_tx.phys); 668 669 new->async_tx.cookie = 0; 670 async_tx_ack(&new->async_tx); 671 672 prev = new; 673 len -= copy; 674 dma_src += copy; 675 dma_dst += copy; 676 677 /* Insert the link descriptor to the LD ring */ 678 list_add_tail(&new->node, &first->tx_list); 679 } while (len); 680 681 new->async_tx.flags = flags; /* client is in control of this ack */ 682 new->async_tx.cookie = -EBUSY; 683 684 /* Set End-of-link to the last link descriptor of new list */ 685 set_ld_eol(chan, new); 686 687 return &first->async_tx; 688 689 fail: 690 if (!first) 691 return NULL; 692 693 fsldma_free_desc_list_reverse(chan, &first->tx_list); 694 return NULL; 695 } 696 697 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan, 698 struct scatterlist *dst_sg, unsigned int dst_nents, 699 struct scatterlist *src_sg, unsigned int src_nents, 700 unsigned long flags) 701 { 702 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL; 703 struct fsldma_chan *chan = to_fsl_chan(dchan); 704 size_t dst_avail, src_avail; 705 dma_addr_t dst, src; 706 size_t len; 707 708 /* basic sanity checks */ 709 if (dst_nents == 0 || src_nents == 0) 710 return NULL; 711 712 if (dst_sg == NULL || src_sg == NULL) 713 return NULL; 714 715 /* 716 * TODO: should we check that both scatterlists have the same 717 * TODO: number of bytes in total? Is that really an error? 718 */ 719 720 /* get prepared for the loop */ 721 dst_avail = sg_dma_len(dst_sg); 722 src_avail = sg_dma_len(src_sg); 723 724 /* run until we are out of scatterlist entries */ 725 while (true) { 726 727 /* create the largest transaction possible */ 728 len = min_t(size_t, src_avail, dst_avail); 729 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT); 730 if (len == 0) 731 goto fetch; 732 733 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail; 734 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail; 735 736 /* allocate and populate the descriptor */ 737 new = fsl_dma_alloc_descriptor(chan); 738 if (!new) { 739 chan_err(chan, "%s\n", msg_ld_oom); 740 goto fail; 741 } 742 743 set_desc_cnt(chan, &new->hw, len); 744 set_desc_src(chan, &new->hw, src); 745 set_desc_dst(chan, &new->hw, dst); 746 747 if (!first) 748 first = new; 749 else 750 set_desc_next(chan, &prev->hw, new->async_tx.phys); 751 752 new->async_tx.cookie = 0; 753 async_tx_ack(&new->async_tx); 754 prev = new; 755 756 /* Insert the link descriptor to the LD ring */ 757 list_add_tail(&new->node, &first->tx_list); 758 759 /* update metadata */ 760 dst_avail -= len; 761 src_avail -= len; 762 763 fetch: 764 /* fetch the next dst scatterlist entry */ 765 if (dst_avail == 0) { 766 767 /* no more entries: we're done */ 768 if (dst_nents == 0) 769 break; 770 771 /* fetch the next entry: if there are no more: done */ 772 dst_sg = sg_next(dst_sg); 773 if (dst_sg == NULL) 774 break; 775 776 dst_nents--; 777 dst_avail = sg_dma_len(dst_sg); 778 } 779 780 /* fetch the next src scatterlist entry */ 781 if (src_avail == 0) { 782 783 /* no more entries: we're done */ 784 if (src_nents == 0) 785 break; 786 787 /* fetch the next entry: if there are no more: done */ 788 src_sg = sg_next(src_sg); 789 if (src_sg == NULL) 790 break; 791 792 src_nents--; 793 src_avail = sg_dma_len(src_sg); 794 } 795 } 796 797 new->async_tx.flags = flags; /* client is in control of this ack */ 798 new->async_tx.cookie = -EBUSY; 799 800 /* Set End-of-link to the last link descriptor of new list */ 801 set_ld_eol(chan, new); 802 803 return &first->async_tx; 804 805 fail: 806 if (!first) 807 return NULL; 808 809 fsldma_free_desc_list_reverse(chan, &first->tx_list); 810 return NULL; 811 } 812 813 /** 814 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 815 * @chan: DMA channel 816 * @sgl: scatterlist to transfer to/from 817 * @sg_len: number of entries in @scatterlist 818 * @direction: DMA direction 819 * @flags: DMAEngine flags 820 * @context: transaction context (ignored) 821 * 822 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the 823 * DMA_SLAVE API, this gets the device-specific information from the 824 * chan->private variable. 825 */ 826 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( 827 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, 828 enum dma_transfer_direction direction, unsigned long flags, 829 void *context) 830 { 831 /* 832 * This operation is not supported on the Freescale DMA controller 833 * 834 * However, we need to provide the function pointer to allow the 835 * device_control() method to work. 836 */ 837 return NULL; 838 } 839 840 static int fsl_dma_device_control(struct dma_chan *dchan, 841 enum dma_ctrl_cmd cmd, unsigned long arg) 842 { 843 struct dma_slave_config *config; 844 struct fsldma_chan *chan; 845 unsigned long flags; 846 int size; 847 848 if (!dchan) 849 return -EINVAL; 850 851 chan = to_fsl_chan(dchan); 852 853 switch (cmd) { 854 case DMA_TERMINATE_ALL: 855 spin_lock_irqsave(&chan->desc_lock, flags); 856 857 /* Halt the DMA engine */ 858 dma_halt(chan); 859 860 /* Remove and free all of the descriptors in the LD queue */ 861 fsldma_free_desc_list(chan, &chan->ld_pending); 862 fsldma_free_desc_list(chan, &chan->ld_running); 863 chan->idle = true; 864 865 spin_unlock_irqrestore(&chan->desc_lock, flags); 866 return 0; 867 868 case DMA_SLAVE_CONFIG: 869 config = (struct dma_slave_config *)arg; 870 871 /* make sure the channel supports setting burst size */ 872 if (!chan->set_request_count) 873 return -ENXIO; 874 875 /* we set the controller burst size depending on direction */ 876 if (config->direction == DMA_MEM_TO_DEV) 877 size = config->dst_addr_width * config->dst_maxburst; 878 else 879 size = config->src_addr_width * config->src_maxburst; 880 881 chan->set_request_count(chan, size); 882 return 0; 883 884 case FSLDMA_EXTERNAL_START: 885 886 /* make sure the channel supports external start */ 887 if (!chan->toggle_ext_start) 888 return -ENXIO; 889 890 chan->toggle_ext_start(chan, arg); 891 return 0; 892 893 default: 894 return -ENXIO; 895 } 896 897 return 0; 898 } 899 900 /** 901 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 902 * @chan : Freescale DMA channel 903 */ 904 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan) 905 { 906 struct fsldma_chan *chan = to_fsl_chan(dchan); 907 unsigned long flags; 908 909 spin_lock_irqsave(&chan->desc_lock, flags); 910 fsl_chan_xfer_ld_queue(chan); 911 spin_unlock_irqrestore(&chan->desc_lock, flags); 912 } 913 914 /** 915 * fsl_tx_status - Determine the DMA status 916 * @chan : Freescale DMA channel 917 */ 918 static enum dma_status fsl_tx_status(struct dma_chan *dchan, 919 dma_cookie_t cookie, 920 struct dma_tx_state *txstate) 921 { 922 return dma_cookie_status(dchan, cookie, txstate); 923 } 924 925 /*----------------------------------------------------------------------------*/ 926 /* Interrupt Handling */ 927 /*----------------------------------------------------------------------------*/ 928 929 static irqreturn_t fsldma_chan_irq(int irq, void *data) 930 { 931 struct fsldma_chan *chan = data; 932 u32 stat; 933 934 /* save and clear the status register */ 935 stat = get_sr(chan); 936 set_sr(chan, stat); 937 chan_dbg(chan, "irq: stat = 0x%x\n", stat); 938 939 /* check that this was really our device */ 940 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 941 if (!stat) 942 return IRQ_NONE; 943 944 if (stat & FSL_DMA_SR_TE) 945 chan_err(chan, "Transfer Error!\n"); 946 947 /* 948 * Programming Error 949 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 950 * trigger a PE interrupt. 951 */ 952 if (stat & FSL_DMA_SR_PE) { 953 chan_dbg(chan, "irq: Programming Error INT\n"); 954 stat &= ~FSL_DMA_SR_PE; 955 if (get_bcr(chan) != 0) 956 chan_err(chan, "Programming Error!\n"); 957 } 958 959 /* 960 * For MPC8349, EOCDI event need to update cookie 961 * and start the next transfer if it exist. 962 */ 963 if (stat & FSL_DMA_SR_EOCDI) { 964 chan_dbg(chan, "irq: End-of-Chain link INT\n"); 965 stat &= ~FSL_DMA_SR_EOCDI; 966 } 967 968 /* 969 * If it current transfer is the end-of-transfer, 970 * we should clear the Channel Start bit for 971 * prepare next transfer. 972 */ 973 if (stat & FSL_DMA_SR_EOLNI) { 974 chan_dbg(chan, "irq: End-of-link INT\n"); 975 stat &= ~FSL_DMA_SR_EOLNI; 976 } 977 978 /* check that the DMA controller is really idle */ 979 if (!dma_is_idle(chan)) 980 chan_err(chan, "irq: controller not idle!\n"); 981 982 /* check that we handled all of the bits */ 983 if (stat) 984 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat); 985 986 /* 987 * Schedule the tasklet to handle all cleanup of the current 988 * transaction. It will start a new transaction if there is 989 * one pending. 990 */ 991 tasklet_schedule(&chan->tasklet); 992 chan_dbg(chan, "irq: Exit\n"); 993 return IRQ_HANDLED; 994 } 995 996 static void dma_do_tasklet(unsigned long data) 997 { 998 struct fsldma_chan *chan = (struct fsldma_chan *)data; 999 struct fsl_desc_sw *desc, *_desc; 1000 LIST_HEAD(ld_cleanup); 1001 unsigned long flags; 1002 1003 chan_dbg(chan, "tasklet entry\n"); 1004 1005 spin_lock_irqsave(&chan->desc_lock, flags); 1006 1007 /* update the cookie if we have some descriptors to cleanup */ 1008 if (!list_empty(&chan->ld_running)) { 1009 dma_cookie_t cookie; 1010 1011 desc = to_fsl_desc(chan->ld_running.prev); 1012 cookie = desc->async_tx.cookie; 1013 dma_cookie_complete(&desc->async_tx); 1014 1015 chan_dbg(chan, "completed_cookie=%d\n", cookie); 1016 } 1017 1018 /* 1019 * move the descriptors to a temporary list so we can drop the lock 1020 * during the entire cleanup operation 1021 */ 1022 list_splice_tail_init(&chan->ld_running, &ld_cleanup); 1023 1024 /* the hardware is now idle and ready for more */ 1025 chan->idle = true; 1026 1027 /* 1028 * Start any pending transactions automatically 1029 * 1030 * In the ideal case, we keep the DMA controller busy while we go 1031 * ahead and free the descriptors below. 1032 */ 1033 fsl_chan_xfer_ld_queue(chan); 1034 spin_unlock_irqrestore(&chan->desc_lock, flags); 1035 1036 /* Run the callback for each descriptor, in order */ 1037 list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) { 1038 1039 /* Remove from the list of transactions */ 1040 list_del(&desc->node); 1041 1042 /* Run all cleanup for this descriptor */ 1043 fsldma_cleanup_descriptor(chan, desc); 1044 } 1045 1046 chan_dbg(chan, "tasklet exit\n"); 1047 } 1048 1049 static irqreturn_t fsldma_ctrl_irq(int irq, void *data) 1050 { 1051 struct fsldma_device *fdev = data; 1052 struct fsldma_chan *chan; 1053 unsigned int handled = 0; 1054 u32 gsr, mask; 1055 int i; 1056 1057 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs) 1058 : in_le32(fdev->regs); 1059 mask = 0xff000000; 1060 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr); 1061 1062 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1063 chan = fdev->chan[i]; 1064 if (!chan) 1065 continue; 1066 1067 if (gsr & mask) { 1068 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id); 1069 fsldma_chan_irq(irq, chan); 1070 handled++; 1071 } 1072 1073 gsr &= ~mask; 1074 mask >>= 8; 1075 } 1076 1077 return IRQ_RETVAL(handled); 1078 } 1079 1080 static void fsldma_free_irqs(struct fsldma_device *fdev) 1081 { 1082 struct fsldma_chan *chan; 1083 int i; 1084 1085 if (fdev->irq != NO_IRQ) { 1086 dev_dbg(fdev->dev, "free per-controller IRQ\n"); 1087 free_irq(fdev->irq, fdev); 1088 return; 1089 } 1090 1091 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1092 chan = fdev->chan[i]; 1093 if (chan && chan->irq != NO_IRQ) { 1094 chan_dbg(chan, "free per-channel IRQ\n"); 1095 free_irq(chan->irq, chan); 1096 } 1097 } 1098 } 1099 1100 static int fsldma_request_irqs(struct fsldma_device *fdev) 1101 { 1102 struct fsldma_chan *chan; 1103 int ret; 1104 int i; 1105 1106 /* if we have a per-controller IRQ, use that */ 1107 if (fdev->irq != NO_IRQ) { 1108 dev_dbg(fdev->dev, "request per-controller IRQ\n"); 1109 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED, 1110 "fsldma-controller", fdev); 1111 return ret; 1112 } 1113 1114 /* no per-controller IRQ, use the per-channel IRQs */ 1115 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1116 chan = fdev->chan[i]; 1117 if (!chan) 1118 continue; 1119 1120 if (chan->irq == NO_IRQ) { 1121 chan_err(chan, "interrupts property missing in device tree\n"); 1122 ret = -ENODEV; 1123 goto out_unwind; 1124 } 1125 1126 chan_dbg(chan, "request per-channel IRQ\n"); 1127 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED, 1128 "fsldma-chan", chan); 1129 if (ret) { 1130 chan_err(chan, "unable to request per-channel IRQ\n"); 1131 goto out_unwind; 1132 } 1133 } 1134 1135 return 0; 1136 1137 out_unwind: 1138 for (/* none */; i >= 0; i--) { 1139 chan = fdev->chan[i]; 1140 if (!chan) 1141 continue; 1142 1143 if (chan->irq == NO_IRQ) 1144 continue; 1145 1146 free_irq(chan->irq, chan); 1147 } 1148 1149 return ret; 1150 } 1151 1152 /*----------------------------------------------------------------------------*/ 1153 /* OpenFirmware Subsystem */ 1154 /*----------------------------------------------------------------------------*/ 1155 1156 static int fsl_dma_chan_probe(struct fsldma_device *fdev, 1157 struct device_node *node, u32 feature, const char *compatible) 1158 { 1159 struct fsldma_chan *chan; 1160 struct resource res; 1161 int err; 1162 1163 /* alloc channel */ 1164 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1165 if (!chan) { 1166 dev_err(fdev->dev, "no free memory for DMA channels!\n"); 1167 err = -ENOMEM; 1168 goto out_return; 1169 } 1170 1171 /* ioremap registers for use */ 1172 chan->regs = of_iomap(node, 0); 1173 if (!chan->regs) { 1174 dev_err(fdev->dev, "unable to ioremap registers\n"); 1175 err = -ENOMEM; 1176 goto out_free_chan; 1177 } 1178 1179 err = of_address_to_resource(node, 0, &res); 1180 if (err) { 1181 dev_err(fdev->dev, "unable to find 'reg' property\n"); 1182 goto out_iounmap_regs; 1183 } 1184 1185 chan->feature = feature; 1186 if (!fdev->feature) 1187 fdev->feature = chan->feature; 1188 1189 /* 1190 * If the DMA device's feature is different than the feature 1191 * of its channels, report the bug 1192 */ 1193 WARN_ON(fdev->feature != chan->feature); 1194 1195 chan->dev = fdev->dev; 1196 chan->id = (res.start & 0xfff) < 0x300 ? 1197 ((res.start - 0x100) & 0xfff) >> 7 : 1198 ((res.start - 0x200) & 0xfff) >> 7; 1199 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { 1200 dev_err(fdev->dev, "too many channels for device\n"); 1201 err = -EINVAL; 1202 goto out_iounmap_regs; 1203 } 1204 1205 fdev->chan[chan->id] = chan; 1206 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 1207 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id); 1208 1209 /* Initialize the channel */ 1210 dma_init(chan); 1211 1212 /* Clear cdar registers */ 1213 set_cdar(chan, 0); 1214 1215 switch (chan->feature & FSL_DMA_IP_MASK) { 1216 case FSL_DMA_IP_85XX: 1217 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 1218 case FSL_DMA_IP_83XX: 1219 chan->toggle_ext_start = fsl_chan_toggle_ext_start; 1220 chan->set_src_loop_size = fsl_chan_set_src_loop_size; 1221 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size; 1222 chan->set_request_count = fsl_chan_set_request_count; 1223 } 1224 1225 spin_lock_init(&chan->desc_lock); 1226 INIT_LIST_HEAD(&chan->ld_pending); 1227 INIT_LIST_HEAD(&chan->ld_running); 1228 chan->idle = true; 1229 1230 chan->common.device = &fdev->common; 1231 dma_cookie_init(&chan->common); 1232 1233 /* find the IRQ line, if it exists in the device tree */ 1234 chan->irq = irq_of_parse_and_map(node, 0); 1235 1236 /* Add the channel to DMA device channel list */ 1237 list_add_tail(&chan->common.device_node, &fdev->common.channels); 1238 fdev->common.chancnt++; 1239 1240 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible, 1241 chan->irq != NO_IRQ ? chan->irq : fdev->irq); 1242 1243 return 0; 1244 1245 out_iounmap_regs: 1246 iounmap(chan->regs); 1247 out_free_chan: 1248 kfree(chan); 1249 out_return: 1250 return err; 1251 } 1252 1253 static void fsl_dma_chan_remove(struct fsldma_chan *chan) 1254 { 1255 irq_dispose_mapping(chan->irq); 1256 list_del(&chan->common.device_node); 1257 iounmap(chan->regs); 1258 kfree(chan); 1259 } 1260 1261 static int fsldma_of_probe(struct platform_device *op) 1262 { 1263 struct fsldma_device *fdev; 1264 struct device_node *child; 1265 int err; 1266 1267 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL); 1268 if (!fdev) { 1269 dev_err(&op->dev, "No enough memory for 'priv'\n"); 1270 err = -ENOMEM; 1271 goto out_return; 1272 } 1273 1274 fdev->dev = &op->dev; 1275 INIT_LIST_HEAD(&fdev->common.channels); 1276 1277 /* ioremap the registers for use */ 1278 fdev->regs = of_iomap(op->dev.of_node, 0); 1279 if (!fdev->regs) { 1280 dev_err(&op->dev, "unable to ioremap registers\n"); 1281 err = -ENOMEM; 1282 goto out_free_fdev; 1283 } 1284 1285 /* map the channel IRQ if it exists, but don't hookup the handler yet */ 1286 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0); 1287 1288 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1289 dma_cap_set(DMA_SG, fdev->common.cap_mask); 1290 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); 1291 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1292 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1293 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1294 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg; 1295 fdev->common.device_tx_status = fsl_tx_status; 1296 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1297 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg; 1298 fdev->common.device_control = fsl_dma_device_control; 1299 fdev->common.dev = &op->dev; 1300 1301 dma_set_mask(&(op->dev), DMA_BIT_MASK(36)); 1302 1303 platform_set_drvdata(op, fdev); 1304 1305 /* 1306 * We cannot use of_platform_bus_probe() because there is no 1307 * of_platform_bus_remove(). Instead, we manually instantiate every DMA 1308 * channel object. 1309 */ 1310 for_each_child_of_node(op->dev.of_node, child) { 1311 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) { 1312 fsl_dma_chan_probe(fdev, child, 1313 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, 1314 "fsl,eloplus-dma-channel"); 1315 } 1316 1317 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) { 1318 fsl_dma_chan_probe(fdev, child, 1319 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, 1320 "fsl,elo-dma-channel"); 1321 } 1322 } 1323 1324 /* 1325 * Hookup the IRQ handler(s) 1326 * 1327 * If we have a per-controller interrupt, we prefer that to the 1328 * per-channel interrupts to reduce the number of shared interrupt 1329 * handlers on the same IRQ line 1330 */ 1331 err = fsldma_request_irqs(fdev); 1332 if (err) { 1333 dev_err(fdev->dev, "unable to request IRQs\n"); 1334 goto out_free_fdev; 1335 } 1336 1337 dma_async_device_register(&fdev->common); 1338 return 0; 1339 1340 out_free_fdev: 1341 irq_dispose_mapping(fdev->irq); 1342 kfree(fdev); 1343 out_return: 1344 return err; 1345 } 1346 1347 static int fsldma_of_remove(struct platform_device *op) 1348 { 1349 struct fsldma_device *fdev; 1350 unsigned int i; 1351 1352 fdev = platform_get_drvdata(op); 1353 dma_async_device_unregister(&fdev->common); 1354 1355 fsldma_free_irqs(fdev); 1356 1357 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1358 if (fdev->chan[i]) 1359 fsl_dma_chan_remove(fdev->chan[i]); 1360 } 1361 1362 iounmap(fdev->regs); 1363 kfree(fdev); 1364 1365 return 0; 1366 } 1367 1368 static const struct of_device_id fsldma_of_ids[] = { 1369 { .compatible = "fsl,elo3-dma", }, 1370 { .compatible = "fsl,eloplus-dma", }, 1371 { .compatible = "fsl,elo-dma", }, 1372 {} 1373 }; 1374 1375 static struct platform_driver fsldma_of_driver = { 1376 .driver = { 1377 .name = "fsl-elo-dma", 1378 .owner = THIS_MODULE, 1379 .of_match_table = fsldma_of_ids, 1380 }, 1381 .probe = fsldma_of_probe, 1382 .remove = fsldma_of_remove, 1383 }; 1384 1385 /*----------------------------------------------------------------------------*/ 1386 /* Module Init / Exit */ 1387 /*----------------------------------------------------------------------------*/ 1388 1389 static __init int fsldma_init(void) 1390 { 1391 pr_info("Freescale Elo series DMA driver\n"); 1392 return platform_driver_register(&fsldma_of_driver); 1393 } 1394 1395 static void __exit fsldma_exit(void) 1396 { 1397 platform_driver_unregister(&fsldma_of_driver); 1398 } 1399 1400 subsys_initcall(fsldma_init); 1401 module_exit(fsldma_exit); 1402 1403 MODULE_DESCRIPTION("Freescale Elo series DMA driver"); 1404 MODULE_LICENSE("GPL"); 1405