xref: /openbmc/linux/drivers/dma/fsldma.c (revision bc000245)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 
40 #include "dmaengine.h"
41 #include "fsldma.h"
42 
43 #define chan_dbg(chan, fmt, arg...)					\
44 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)					\
46 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47 
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 
50 /*
51  * Register Helpers
52  */
53 
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 	DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58 
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 	return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63 
64 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
65 {
66 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
67 }
68 
69 static dma_addr_t get_cdar(struct fsldma_chan *chan)
70 {
71 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
72 }
73 
74 static u32 get_bcr(struct fsldma_chan *chan)
75 {
76 	return DMA_IN(chan, &chan->regs->bcr, 32);
77 }
78 
79 /*
80  * Descriptor Helpers
81  */
82 
83 static void set_desc_cnt(struct fsldma_chan *chan,
84 				struct fsl_dma_ld_hw *hw, u32 count)
85 {
86 	hw->count = CPU_TO_DMA(chan, count, 32);
87 }
88 
89 static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
90 {
91 	return DMA_TO_CPU(chan, desc->hw.count, 32);
92 }
93 
94 static void set_desc_src(struct fsldma_chan *chan,
95 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
96 {
97 	u64 snoop_bits;
98 
99 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
100 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
101 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
102 }
103 
104 static dma_addr_t get_desc_src(struct fsldma_chan *chan,
105 			       struct fsl_desc_sw *desc)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 	return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
112 }
113 
114 static void set_desc_dst(struct fsldma_chan *chan,
115 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 	u64 snoop_bits;
118 
119 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123 
124 static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
125 			       struct fsl_desc_sw *desc)
126 {
127 	u64 snoop_bits;
128 
129 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
130 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
131 	return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
132 }
133 
134 static void set_desc_next(struct fsldma_chan *chan,
135 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
136 {
137 	u64 snoop_bits;
138 
139 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
140 		? FSL_DMA_SNEN : 0;
141 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
142 }
143 
144 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
145 {
146 	u64 snoop_bits;
147 
148 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
149 		? FSL_DMA_SNEN : 0;
150 
151 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
152 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
153 			| snoop_bits, 64);
154 }
155 
156 /*
157  * DMA Engine Hardware Control Helpers
158  */
159 
160 static void dma_init(struct fsldma_chan *chan)
161 {
162 	/* Reset the channel */
163 	DMA_OUT(chan, &chan->regs->mr, 0, 32);
164 
165 	switch (chan->feature & FSL_DMA_IP_MASK) {
166 	case FSL_DMA_IP_85XX:
167 		/* Set the channel to below modes:
168 		 * EIE - Error interrupt enable
169 		 * EOLNIE - End of links interrupt enable
170 		 * BWC - Bandwidth sharing among channels
171 		 */
172 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
173 				| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
174 		break;
175 	case FSL_DMA_IP_83XX:
176 		/* Set the channel to below modes:
177 		 * EOTIE - End-of-transfer interrupt enable
178 		 * PRC_RM - PCI read multiple
179 		 */
180 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
181 				| FSL_DMA_MR_PRC_RM, 32);
182 		break;
183 	}
184 }
185 
186 static int dma_is_idle(struct fsldma_chan *chan)
187 {
188 	u32 sr = get_sr(chan);
189 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
190 }
191 
192 /*
193  * Start the DMA controller
194  *
195  * Preconditions:
196  * - the CDAR register must point to the start descriptor
197  * - the MRn[CS] bit must be cleared
198  */
199 static void dma_start(struct fsldma_chan *chan)
200 {
201 	u32 mode;
202 
203 	mode = DMA_IN(chan, &chan->regs->mr, 32);
204 
205 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
206 		DMA_OUT(chan, &chan->regs->bcr, 0, 32);
207 		mode |= FSL_DMA_MR_EMP_EN;
208 	} else {
209 		mode &= ~FSL_DMA_MR_EMP_EN;
210 	}
211 
212 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
213 		mode |= FSL_DMA_MR_EMS_EN;
214 	} else {
215 		mode &= ~FSL_DMA_MR_EMS_EN;
216 		mode |= FSL_DMA_MR_CS;
217 	}
218 
219 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
220 }
221 
222 static void dma_halt(struct fsldma_chan *chan)
223 {
224 	u32 mode;
225 	int i;
226 
227 	/* read the mode register */
228 	mode = DMA_IN(chan, &chan->regs->mr, 32);
229 
230 	/*
231 	 * The 85xx controller supports channel abort, which will stop
232 	 * the current transfer. On 83xx, this bit is the transfer error
233 	 * mask bit, which should not be changed.
234 	 */
235 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
236 		mode |= FSL_DMA_MR_CA;
237 		DMA_OUT(chan, &chan->regs->mr, mode, 32);
238 
239 		mode &= ~FSL_DMA_MR_CA;
240 	}
241 
242 	/* stop the DMA controller */
243 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
244 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
245 
246 	/* wait for the DMA controller to become idle */
247 	for (i = 0; i < 100; i++) {
248 		if (dma_is_idle(chan))
249 			return;
250 
251 		udelay(10);
252 	}
253 
254 	if (!dma_is_idle(chan))
255 		chan_err(chan, "DMA halt timeout!\n");
256 }
257 
258 /**
259  * fsl_chan_set_src_loop_size - Set source address hold transfer size
260  * @chan : Freescale DMA channel
261  * @size     : Address loop size, 0 for disable loop
262  *
263  * The set source address hold transfer size. The source
264  * address hold or loop transfer size is when the DMA transfer
265  * data from source address (SA), if the loop size is 4, the DMA will
266  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
267  * SA + 1 ... and so on.
268  */
269 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
270 {
271 	u32 mode;
272 
273 	mode = DMA_IN(chan, &chan->regs->mr, 32);
274 
275 	switch (size) {
276 	case 0:
277 		mode &= ~FSL_DMA_MR_SAHE;
278 		break;
279 	case 1:
280 	case 2:
281 	case 4:
282 	case 8:
283 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
284 		break;
285 	}
286 
287 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
288 }
289 
290 /**
291  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
292  * @chan : Freescale DMA channel
293  * @size     : Address loop size, 0 for disable loop
294  *
295  * The set destination address hold transfer size. The destination
296  * address hold or loop transfer size is when the DMA transfer
297  * data to destination address (TA), if the loop size is 4, the DMA will
298  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
299  * TA + 1 ... and so on.
300  */
301 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
302 {
303 	u32 mode;
304 
305 	mode = DMA_IN(chan, &chan->regs->mr, 32);
306 
307 	switch (size) {
308 	case 0:
309 		mode &= ~FSL_DMA_MR_DAHE;
310 		break;
311 	case 1:
312 	case 2:
313 	case 4:
314 	case 8:
315 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
316 		break;
317 	}
318 
319 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
320 }
321 
322 /**
323  * fsl_chan_set_request_count - Set DMA Request Count for external control
324  * @chan : Freescale DMA channel
325  * @size     : Number of bytes to transfer in a single request
326  *
327  * The Freescale DMA channel can be controlled by the external signal DREQ#.
328  * The DMA request count is how many bytes are allowed to transfer before
329  * pausing the channel, after which a new assertion of DREQ# resumes channel
330  * operation.
331  *
332  * A size of 0 disables external pause control. The maximum size is 1024.
333  */
334 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
335 {
336 	u32 mode;
337 
338 	BUG_ON(size > 1024);
339 
340 	mode = DMA_IN(chan, &chan->regs->mr, 32);
341 	mode |= (__ilog2(size) << 24) & 0x0f000000;
342 
343 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
344 }
345 
346 /**
347  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
348  * @chan : Freescale DMA channel
349  * @enable   : 0 is disabled, 1 is enabled.
350  *
351  * The Freescale DMA channel can be controlled by the external signal DREQ#.
352  * The DMA Request Count feature should be used in addition to this feature
353  * to set the number of bytes to transfer before pausing the channel.
354  */
355 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
356 {
357 	if (enable)
358 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
359 	else
360 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
361 }
362 
363 /**
364  * fsl_chan_toggle_ext_start - Toggle channel external start status
365  * @chan : Freescale DMA channel
366  * @enable   : 0 is disabled, 1 is enabled.
367  *
368  * If enable the external start, the channel can be started by an
369  * external DMA start pin. So the dma_start() does not start the
370  * transfer immediately. The DMA channel will wait for the
371  * control pin asserted.
372  */
373 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
374 {
375 	if (enable)
376 		chan->feature |= FSL_DMA_CHAN_START_EXT;
377 	else
378 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
379 }
380 
381 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
382 {
383 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
384 
385 	if (list_empty(&chan->ld_pending))
386 		goto out_splice;
387 
388 	/*
389 	 * Add the hardware descriptor to the chain of hardware descriptors
390 	 * that already exists in memory.
391 	 *
392 	 * This will un-set the EOL bit of the existing transaction, and the
393 	 * last link in this transaction will become the EOL descriptor.
394 	 */
395 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
396 
397 	/*
398 	 * Add the software descriptor and all children to the list
399 	 * of pending transactions
400 	 */
401 out_splice:
402 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
403 }
404 
405 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
406 {
407 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
408 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
409 	struct fsl_desc_sw *child;
410 	unsigned long flags;
411 	dma_cookie_t cookie;
412 
413 	spin_lock_irqsave(&chan->desc_lock, flags);
414 
415 	/*
416 	 * assign cookies to all of the software descriptors
417 	 * that make up this transaction
418 	 */
419 	list_for_each_entry(child, &desc->tx_list, node) {
420 		cookie = dma_cookie_assign(&child->async_tx);
421 	}
422 
423 	/* put this transaction onto the tail of the pending queue */
424 	append_ld_queue(chan, desc);
425 
426 	spin_unlock_irqrestore(&chan->desc_lock, flags);
427 
428 	return cookie;
429 }
430 
431 /**
432  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
433  * @chan : Freescale DMA channel
434  *
435  * Return - The descriptor allocated. NULL for failed.
436  */
437 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
438 {
439 	struct fsl_desc_sw *desc;
440 	dma_addr_t pdesc;
441 
442 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
443 	if (!desc) {
444 		chan_dbg(chan, "out of memory for link descriptor\n");
445 		return NULL;
446 	}
447 
448 	memset(desc, 0, sizeof(*desc));
449 	INIT_LIST_HEAD(&desc->tx_list);
450 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
451 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
452 	desc->async_tx.phys = pdesc;
453 
454 #ifdef FSL_DMA_LD_DEBUG
455 	chan_dbg(chan, "LD %p allocated\n", desc);
456 #endif
457 
458 	return desc;
459 }
460 
461 /**
462  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
463  * @chan : Freescale DMA channel
464  *
465  * This function will create a dma pool for descriptor allocation.
466  *
467  * Return - The number of descriptors allocated.
468  */
469 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
470 {
471 	struct fsldma_chan *chan = to_fsl_chan(dchan);
472 
473 	/* Has this channel already been allocated? */
474 	if (chan->desc_pool)
475 		return 1;
476 
477 	/*
478 	 * We need the descriptor to be aligned to 32bytes
479 	 * for meeting FSL DMA specification requirement.
480 	 */
481 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
482 					  sizeof(struct fsl_desc_sw),
483 					  __alignof__(struct fsl_desc_sw), 0);
484 	if (!chan->desc_pool) {
485 		chan_err(chan, "unable to allocate descriptor pool\n");
486 		return -ENOMEM;
487 	}
488 
489 	/* there is at least one descriptor free to be allocated */
490 	return 1;
491 }
492 
493 /**
494  * fsldma_free_desc_list - Free all descriptors in a queue
495  * @chan: Freescae DMA channel
496  * @list: the list to free
497  *
498  * LOCKING: must hold chan->desc_lock
499  */
500 static void fsldma_free_desc_list(struct fsldma_chan *chan,
501 				  struct list_head *list)
502 {
503 	struct fsl_desc_sw *desc, *_desc;
504 
505 	list_for_each_entry_safe(desc, _desc, list, node) {
506 		list_del(&desc->node);
507 #ifdef FSL_DMA_LD_DEBUG
508 		chan_dbg(chan, "LD %p free\n", desc);
509 #endif
510 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
511 	}
512 }
513 
514 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
515 					  struct list_head *list)
516 {
517 	struct fsl_desc_sw *desc, *_desc;
518 
519 	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
520 		list_del(&desc->node);
521 #ifdef FSL_DMA_LD_DEBUG
522 		chan_dbg(chan, "LD %p free\n", desc);
523 #endif
524 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
525 	}
526 }
527 
528 /**
529  * fsl_dma_free_chan_resources - Free all resources of the channel.
530  * @chan : Freescale DMA channel
531  */
532 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
533 {
534 	struct fsldma_chan *chan = to_fsl_chan(dchan);
535 	unsigned long flags;
536 
537 	chan_dbg(chan, "free all channel resources\n");
538 	spin_lock_irqsave(&chan->desc_lock, flags);
539 	fsldma_free_desc_list(chan, &chan->ld_pending);
540 	fsldma_free_desc_list(chan, &chan->ld_running);
541 	spin_unlock_irqrestore(&chan->desc_lock, flags);
542 
543 	dma_pool_destroy(chan->desc_pool);
544 	chan->desc_pool = NULL;
545 }
546 
547 static struct dma_async_tx_descriptor *
548 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
549 {
550 	struct fsldma_chan *chan;
551 	struct fsl_desc_sw *new;
552 
553 	if (!dchan)
554 		return NULL;
555 
556 	chan = to_fsl_chan(dchan);
557 
558 	new = fsl_dma_alloc_descriptor(chan);
559 	if (!new) {
560 		chan_err(chan, "%s\n", msg_ld_oom);
561 		return NULL;
562 	}
563 
564 	new->async_tx.cookie = -EBUSY;
565 	new->async_tx.flags = flags;
566 
567 	/* Insert the link descriptor to the LD ring */
568 	list_add_tail(&new->node, &new->tx_list);
569 
570 	/* Set End-of-link to the last link descriptor of new list */
571 	set_ld_eol(chan, new);
572 
573 	return &new->async_tx;
574 }
575 
576 static struct dma_async_tx_descriptor *
577 fsl_dma_prep_memcpy(struct dma_chan *dchan,
578 	dma_addr_t dma_dst, dma_addr_t dma_src,
579 	size_t len, unsigned long flags)
580 {
581 	struct fsldma_chan *chan;
582 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
583 	size_t copy;
584 
585 	if (!dchan)
586 		return NULL;
587 
588 	if (!len)
589 		return NULL;
590 
591 	chan = to_fsl_chan(dchan);
592 
593 	do {
594 
595 		/* Allocate the link descriptor from DMA pool */
596 		new = fsl_dma_alloc_descriptor(chan);
597 		if (!new) {
598 			chan_err(chan, "%s\n", msg_ld_oom);
599 			goto fail;
600 		}
601 
602 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
603 
604 		set_desc_cnt(chan, &new->hw, copy);
605 		set_desc_src(chan, &new->hw, dma_src);
606 		set_desc_dst(chan, &new->hw, dma_dst);
607 
608 		if (!first)
609 			first = new;
610 		else
611 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
612 
613 		new->async_tx.cookie = 0;
614 		async_tx_ack(&new->async_tx);
615 
616 		prev = new;
617 		len -= copy;
618 		dma_src += copy;
619 		dma_dst += copy;
620 
621 		/* Insert the link descriptor to the LD ring */
622 		list_add_tail(&new->node, &first->tx_list);
623 	} while (len);
624 
625 	new->async_tx.flags = flags; /* client is in control of this ack */
626 	new->async_tx.cookie = -EBUSY;
627 
628 	/* Set End-of-link to the last link descriptor of new list */
629 	set_ld_eol(chan, new);
630 
631 	return &first->async_tx;
632 
633 fail:
634 	if (!first)
635 		return NULL;
636 
637 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
638 	return NULL;
639 }
640 
641 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
642 	struct scatterlist *dst_sg, unsigned int dst_nents,
643 	struct scatterlist *src_sg, unsigned int src_nents,
644 	unsigned long flags)
645 {
646 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
647 	struct fsldma_chan *chan = to_fsl_chan(dchan);
648 	size_t dst_avail, src_avail;
649 	dma_addr_t dst, src;
650 	size_t len;
651 
652 	/* basic sanity checks */
653 	if (dst_nents == 0 || src_nents == 0)
654 		return NULL;
655 
656 	if (dst_sg == NULL || src_sg == NULL)
657 		return NULL;
658 
659 	/*
660 	 * TODO: should we check that both scatterlists have the same
661 	 * TODO: number of bytes in total? Is that really an error?
662 	 */
663 
664 	/* get prepared for the loop */
665 	dst_avail = sg_dma_len(dst_sg);
666 	src_avail = sg_dma_len(src_sg);
667 
668 	/* run until we are out of scatterlist entries */
669 	while (true) {
670 
671 		/* create the largest transaction possible */
672 		len = min_t(size_t, src_avail, dst_avail);
673 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
674 		if (len == 0)
675 			goto fetch;
676 
677 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
678 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
679 
680 		/* allocate and populate the descriptor */
681 		new = fsl_dma_alloc_descriptor(chan);
682 		if (!new) {
683 			chan_err(chan, "%s\n", msg_ld_oom);
684 			goto fail;
685 		}
686 
687 		set_desc_cnt(chan, &new->hw, len);
688 		set_desc_src(chan, &new->hw, src);
689 		set_desc_dst(chan, &new->hw, dst);
690 
691 		if (!first)
692 			first = new;
693 		else
694 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
695 
696 		new->async_tx.cookie = 0;
697 		async_tx_ack(&new->async_tx);
698 		prev = new;
699 
700 		/* Insert the link descriptor to the LD ring */
701 		list_add_tail(&new->node, &first->tx_list);
702 
703 		/* update metadata */
704 		dst_avail -= len;
705 		src_avail -= len;
706 
707 fetch:
708 		/* fetch the next dst scatterlist entry */
709 		if (dst_avail == 0) {
710 
711 			/* no more entries: we're done */
712 			if (dst_nents == 0)
713 				break;
714 
715 			/* fetch the next entry: if there are no more: done */
716 			dst_sg = sg_next(dst_sg);
717 			if (dst_sg == NULL)
718 				break;
719 
720 			dst_nents--;
721 			dst_avail = sg_dma_len(dst_sg);
722 		}
723 
724 		/* fetch the next src scatterlist entry */
725 		if (src_avail == 0) {
726 
727 			/* no more entries: we're done */
728 			if (src_nents == 0)
729 				break;
730 
731 			/* fetch the next entry: if there are no more: done */
732 			src_sg = sg_next(src_sg);
733 			if (src_sg == NULL)
734 				break;
735 
736 			src_nents--;
737 			src_avail = sg_dma_len(src_sg);
738 		}
739 	}
740 
741 	new->async_tx.flags = flags; /* client is in control of this ack */
742 	new->async_tx.cookie = -EBUSY;
743 
744 	/* Set End-of-link to the last link descriptor of new list */
745 	set_ld_eol(chan, new);
746 
747 	return &first->async_tx;
748 
749 fail:
750 	if (!first)
751 		return NULL;
752 
753 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
754 	return NULL;
755 }
756 
757 /**
758  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
759  * @chan: DMA channel
760  * @sgl: scatterlist to transfer to/from
761  * @sg_len: number of entries in @scatterlist
762  * @direction: DMA direction
763  * @flags: DMAEngine flags
764  * @context: transaction context (ignored)
765  *
766  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
767  * DMA_SLAVE API, this gets the device-specific information from the
768  * chan->private variable.
769  */
770 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
771 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
772 	enum dma_transfer_direction direction, unsigned long flags,
773 	void *context)
774 {
775 	/*
776 	 * This operation is not supported on the Freescale DMA controller
777 	 *
778 	 * However, we need to provide the function pointer to allow the
779 	 * device_control() method to work.
780 	 */
781 	return NULL;
782 }
783 
784 static int fsl_dma_device_control(struct dma_chan *dchan,
785 				  enum dma_ctrl_cmd cmd, unsigned long arg)
786 {
787 	struct dma_slave_config *config;
788 	struct fsldma_chan *chan;
789 	unsigned long flags;
790 	int size;
791 
792 	if (!dchan)
793 		return -EINVAL;
794 
795 	chan = to_fsl_chan(dchan);
796 
797 	switch (cmd) {
798 	case DMA_TERMINATE_ALL:
799 		spin_lock_irqsave(&chan->desc_lock, flags);
800 
801 		/* Halt the DMA engine */
802 		dma_halt(chan);
803 
804 		/* Remove and free all of the descriptors in the LD queue */
805 		fsldma_free_desc_list(chan, &chan->ld_pending);
806 		fsldma_free_desc_list(chan, &chan->ld_running);
807 		chan->idle = true;
808 
809 		spin_unlock_irqrestore(&chan->desc_lock, flags);
810 		return 0;
811 
812 	case DMA_SLAVE_CONFIG:
813 		config = (struct dma_slave_config *)arg;
814 
815 		/* make sure the channel supports setting burst size */
816 		if (!chan->set_request_count)
817 			return -ENXIO;
818 
819 		/* we set the controller burst size depending on direction */
820 		if (config->direction == DMA_MEM_TO_DEV)
821 			size = config->dst_addr_width * config->dst_maxburst;
822 		else
823 			size = config->src_addr_width * config->src_maxburst;
824 
825 		chan->set_request_count(chan, size);
826 		return 0;
827 
828 	case FSLDMA_EXTERNAL_START:
829 
830 		/* make sure the channel supports external start */
831 		if (!chan->toggle_ext_start)
832 			return -ENXIO;
833 
834 		chan->toggle_ext_start(chan, arg);
835 		return 0;
836 
837 	default:
838 		return -ENXIO;
839 	}
840 
841 	return 0;
842 }
843 
844 /**
845  * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
846  * @chan: Freescale DMA channel
847  * @desc: descriptor to cleanup and free
848  *
849  * This function is used on a descriptor which has been executed by the DMA
850  * controller. It will run any callbacks, submit any dependencies, and then
851  * free the descriptor.
852  */
853 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
854 				      struct fsl_desc_sw *desc)
855 {
856 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
857 	struct device *dev = chan->common.device->dev;
858 	dma_addr_t src = get_desc_src(chan, desc);
859 	dma_addr_t dst = get_desc_dst(chan, desc);
860 	u32 len = get_desc_cnt(chan, desc);
861 
862 	/* Run the link descriptor callback function */
863 	if (txd->callback) {
864 #ifdef FSL_DMA_LD_DEBUG
865 		chan_dbg(chan, "LD %p callback\n", desc);
866 #endif
867 		txd->callback(txd->callback_param);
868 	}
869 
870 	/* Run any dependencies */
871 	dma_run_dependencies(txd);
872 
873 	dma_descriptor_unmap(txd);
874 #ifdef FSL_DMA_LD_DEBUG
875 	chan_dbg(chan, "LD %p free\n", desc);
876 #endif
877 	dma_pool_free(chan->desc_pool, desc, txd->phys);
878 }
879 
880 /**
881  * fsl_chan_xfer_ld_queue - transfer any pending transactions
882  * @chan : Freescale DMA channel
883  *
884  * HARDWARE STATE: idle
885  * LOCKING: must hold chan->desc_lock
886  */
887 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
888 {
889 	struct fsl_desc_sw *desc;
890 
891 	/*
892 	 * If the list of pending descriptors is empty, then we
893 	 * don't need to do any work at all
894 	 */
895 	if (list_empty(&chan->ld_pending)) {
896 		chan_dbg(chan, "no pending LDs\n");
897 		return;
898 	}
899 
900 	/*
901 	 * The DMA controller is not idle, which means that the interrupt
902 	 * handler will start any queued transactions when it runs after
903 	 * this transaction finishes
904 	 */
905 	if (!chan->idle) {
906 		chan_dbg(chan, "DMA controller still busy\n");
907 		return;
908 	}
909 
910 	/*
911 	 * If there are some link descriptors which have not been
912 	 * transferred, we need to start the controller
913 	 */
914 
915 	/*
916 	 * Move all elements from the queue of pending transactions
917 	 * onto the list of running transactions
918 	 */
919 	chan_dbg(chan, "idle, starting controller\n");
920 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
921 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
922 
923 	/*
924 	 * The 85xx DMA controller doesn't clear the channel start bit
925 	 * automatically at the end of a transfer. Therefore we must clear
926 	 * it in software before starting the transfer.
927 	 */
928 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
929 		u32 mode;
930 
931 		mode = DMA_IN(chan, &chan->regs->mr, 32);
932 		mode &= ~FSL_DMA_MR_CS;
933 		DMA_OUT(chan, &chan->regs->mr, mode, 32);
934 	}
935 
936 	/*
937 	 * Program the descriptor's address into the DMA controller,
938 	 * then start the DMA transaction
939 	 */
940 	set_cdar(chan, desc->async_tx.phys);
941 	get_cdar(chan);
942 
943 	dma_start(chan);
944 	chan->idle = false;
945 }
946 
947 /**
948  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
949  * @chan : Freescale DMA channel
950  */
951 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
952 {
953 	struct fsldma_chan *chan = to_fsl_chan(dchan);
954 	unsigned long flags;
955 
956 	spin_lock_irqsave(&chan->desc_lock, flags);
957 	fsl_chan_xfer_ld_queue(chan);
958 	spin_unlock_irqrestore(&chan->desc_lock, flags);
959 }
960 
961 /**
962  * fsl_tx_status - Determine the DMA status
963  * @chan : Freescale DMA channel
964  */
965 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
966 					dma_cookie_t cookie,
967 					struct dma_tx_state *txstate)
968 {
969 	return dma_cookie_status(dchan, cookie, txstate);
970 }
971 
972 /*----------------------------------------------------------------------------*/
973 /* Interrupt Handling                                                         */
974 /*----------------------------------------------------------------------------*/
975 
976 static irqreturn_t fsldma_chan_irq(int irq, void *data)
977 {
978 	struct fsldma_chan *chan = data;
979 	u32 stat;
980 
981 	/* save and clear the status register */
982 	stat = get_sr(chan);
983 	set_sr(chan, stat);
984 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
985 
986 	/* check that this was really our device */
987 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
988 	if (!stat)
989 		return IRQ_NONE;
990 
991 	if (stat & FSL_DMA_SR_TE)
992 		chan_err(chan, "Transfer Error!\n");
993 
994 	/*
995 	 * Programming Error
996 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
997 	 * trigger a PE interrupt.
998 	 */
999 	if (stat & FSL_DMA_SR_PE) {
1000 		chan_dbg(chan, "irq: Programming Error INT\n");
1001 		stat &= ~FSL_DMA_SR_PE;
1002 		if (get_bcr(chan) != 0)
1003 			chan_err(chan, "Programming Error!\n");
1004 	}
1005 
1006 	/*
1007 	 * For MPC8349, EOCDI event need to update cookie
1008 	 * and start the next transfer if it exist.
1009 	 */
1010 	if (stat & FSL_DMA_SR_EOCDI) {
1011 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1012 		stat &= ~FSL_DMA_SR_EOCDI;
1013 	}
1014 
1015 	/*
1016 	 * If it current transfer is the end-of-transfer,
1017 	 * we should clear the Channel Start bit for
1018 	 * prepare next transfer.
1019 	 */
1020 	if (stat & FSL_DMA_SR_EOLNI) {
1021 		chan_dbg(chan, "irq: End-of-link INT\n");
1022 		stat &= ~FSL_DMA_SR_EOLNI;
1023 	}
1024 
1025 	/* check that the DMA controller is really idle */
1026 	if (!dma_is_idle(chan))
1027 		chan_err(chan, "irq: controller not idle!\n");
1028 
1029 	/* check that we handled all of the bits */
1030 	if (stat)
1031 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1032 
1033 	/*
1034 	 * Schedule the tasklet to handle all cleanup of the current
1035 	 * transaction. It will start a new transaction if there is
1036 	 * one pending.
1037 	 */
1038 	tasklet_schedule(&chan->tasklet);
1039 	chan_dbg(chan, "irq: Exit\n");
1040 	return IRQ_HANDLED;
1041 }
1042 
1043 static void dma_do_tasklet(unsigned long data)
1044 {
1045 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1046 	struct fsl_desc_sw *desc, *_desc;
1047 	LIST_HEAD(ld_cleanup);
1048 	unsigned long flags;
1049 
1050 	chan_dbg(chan, "tasklet entry\n");
1051 
1052 	spin_lock_irqsave(&chan->desc_lock, flags);
1053 
1054 	/* update the cookie if we have some descriptors to cleanup */
1055 	if (!list_empty(&chan->ld_running)) {
1056 		dma_cookie_t cookie;
1057 
1058 		desc = to_fsl_desc(chan->ld_running.prev);
1059 		cookie = desc->async_tx.cookie;
1060 		dma_cookie_complete(&desc->async_tx);
1061 
1062 		chan_dbg(chan, "completed_cookie=%d\n", cookie);
1063 	}
1064 
1065 	/*
1066 	 * move the descriptors to a temporary list so we can drop the lock
1067 	 * during the entire cleanup operation
1068 	 */
1069 	list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1070 
1071 	/* the hardware is now idle and ready for more */
1072 	chan->idle = true;
1073 
1074 	/*
1075 	 * Start any pending transactions automatically
1076 	 *
1077 	 * In the ideal case, we keep the DMA controller busy while we go
1078 	 * ahead and free the descriptors below.
1079 	 */
1080 	fsl_chan_xfer_ld_queue(chan);
1081 	spin_unlock_irqrestore(&chan->desc_lock, flags);
1082 
1083 	/* Run the callback for each descriptor, in order */
1084 	list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1085 
1086 		/* Remove from the list of transactions */
1087 		list_del(&desc->node);
1088 
1089 		/* Run all cleanup for this descriptor */
1090 		fsldma_cleanup_descriptor(chan, desc);
1091 	}
1092 
1093 	chan_dbg(chan, "tasklet exit\n");
1094 }
1095 
1096 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1097 {
1098 	struct fsldma_device *fdev = data;
1099 	struct fsldma_chan *chan;
1100 	unsigned int handled = 0;
1101 	u32 gsr, mask;
1102 	int i;
1103 
1104 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1105 						   : in_le32(fdev->regs);
1106 	mask = 0xff000000;
1107 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1108 
1109 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1110 		chan = fdev->chan[i];
1111 		if (!chan)
1112 			continue;
1113 
1114 		if (gsr & mask) {
1115 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1116 			fsldma_chan_irq(irq, chan);
1117 			handled++;
1118 		}
1119 
1120 		gsr &= ~mask;
1121 		mask >>= 8;
1122 	}
1123 
1124 	return IRQ_RETVAL(handled);
1125 }
1126 
1127 static void fsldma_free_irqs(struct fsldma_device *fdev)
1128 {
1129 	struct fsldma_chan *chan;
1130 	int i;
1131 
1132 	if (fdev->irq != NO_IRQ) {
1133 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1134 		free_irq(fdev->irq, fdev);
1135 		return;
1136 	}
1137 
1138 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1139 		chan = fdev->chan[i];
1140 		if (chan && chan->irq != NO_IRQ) {
1141 			chan_dbg(chan, "free per-channel IRQ\n");
1142 			free_irq(chan->irq, chan);
1143 		}
1144 	}
1145 }
1146 
1147 static int fsldma_request_irqs(struct fsldma_device *fdev)
1148 {
1149 	struct fsldma_chan *chan;
1150 	int ret;
1151 	int i;
1152 
1153 	/* if we have a per-controller IRQ, use that */
1154 	if (fdev->irq != NO_IRQ) {
1155 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1156 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1157 				  "fsldma-controller", fdev);
1158 		return ret;
1159 	}
1160 
1161 	/* no per-controller IRQ, use the per-channel IRQs */
1162 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1163 		chan = fdev->chan[i];
1164 		if (!chan)
1165 			continue;
1166 
1167 		if (chan->irq == NO_IRQ) {
1168 			chan_err(chan, "interrupts property missing in device tree\n");
1169 			ret = -ENODEV;
1170 			goto out_unwind;
1171 		}
1172 
1173 		chan_dbg(chan, "request per-channel IRQ\n");
1174 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1175 				  "fsldma-chan", chan);
1176 		if (ret) {
1177 			chan_err(chan, "unable to request per-channel IRQ\n");
1178 			goto out_unwind;
1179 		}
1180 	}
1181 
1182 	return 0;
1183 
1184 out_unwind:
1185 	for (/* none */; i >= 0; i--) {
1186 		chan = fdev->chan[i];
1187 		if (!chan)
1188 			continue;
1189 
1190 		if (chan->irq == NO_IRQ)
1191 			continue;
1192 
1193 		free_irq(chan->irq, chan);
1194 	}
1195 
1196 	return ret;
1197 }
1198 
1199 /*----------------------------------------------------------------------------*/
1200 /* OpenFirmware Subsystem                                                     */
1201 /*----------------------------------------------------------------------------*/
1202 
1203 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1204 	struct device_node *node, u32 feature, const char *compatible)
1205 {
1206 	struct fsldma_chan *chan;
1207 	struct resource res;
1208 	int err;
1209 
1210 	/* alloc channel */
1211 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1212 	if (!chan) {
1213 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1214 		err = -ENOMEM;
1215 		goto out_return;
1216 	}
1217 
1218 	/* ioremap registers for use */
1219 	chan->regs = of_iomap(node, 0);
1220 	if (!chan->regs) {
1221 		dev_err(fdev->dev, "unable to ioremap registers\n");
1222 		err = -ENOMEM;
1223 		goto out_free_chan;
1224 	}
1225 
1226 	err = of_address_to_resource(node, 0, &res);
1227 	if (err) {
1228 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1229 		goto out_iounmap_regs;
1230 	}
1231 
1232 	chan->feature = feature;
1233 	if (!fdev->feature)
1234 		fdev->feature = chan->feature;
1235 
1236 	/*
1237 	 * If the DMA device's feature is different than the feature
1238 	 * of its channels, report the bug
1239 	 */
1240 	WARN_ON(fdev->feature != chan->feature);
1241 
1242 	chan->dev = fdev->dev;
1243 	chan->id = (res.start & 0xfff) < 0x300 ?
1244 		   ((res.start - 0x100) & 0xfff) >> 7 :
1245 		   ((res.start - 0x200) & 0xfff) >> 7;
1246 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1247 		dev_err(fdev->dev, "too many channels for device\n");
1248 		err = -EINVAL;
1249 		goto out_iounmap_regs;
1250 	}
1251 
1252 	fdev->chan[chan->id] = chan;
1253 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1254 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1255 
1256 	/* Initialize the channel */
1257 	dma_init(chan);
1258 
1259 	/* Clear cdar registers */
1260 	set_cdar(chan, 0);
1261 
1262 	switch (chan->feature & FSL_DMA_IP_MASK) {
1263 	case FSL_DMA_IP_85XX:
1264 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1265 	case FSL_DMA_IP_83XX:
1266 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1267 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1268 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1269 		chan->set_request_count = fsl_chan_set_request_count;
1270 	}
1271 
1272 	spin_lock_init(&chan->desc_lock);
1273 	INIT_LIST_HEAD(&chan->ld_pending);
1274 	INIT_LIST_HEAD(&chan->ld_running);
1275 	chan->idle = true;
1276 
1277 	chan->common.device = &fdev->common;
1278 	dma_cookie_init(&chan->common);
1279 
1280 	/* find the IRQ line, if it exists in the device tree */
1281 	chan->irq = irq_of_parse_and_map(node, 0);
1282 
1283 	/* Add the channel to DMA device channel list */
1284 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1285 	fdev->common.chancnt++;
1286 
1287 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1288 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1289 
1290 	return 0;
1291 
1292 out_iounmap_regs:
1293 	iounmap(chan->regs);
1294 out_free_chan:
1295 	kfree(chan);
1296 out_return:
1297 	return err;
1298 }
1299 
1300 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1301 {
1302 	irq_dispose_mapping(chan->irq);
1303 	list_del(&chan->common.device_node);
1304 	iounmap(chan->regs);
1305 	kfree(chan);
1306 }
1307 
1308 static int fsldma_of_probe(struct platform_device *op)
1309 {
1310 	struct fsldma_device *fdev;
1311 	struct device_node *child;
1312 	int err;
1313 
1314 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1315 	if (!fdev) {
1316 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1317 		err = -ENOMEM;
1318 		goto out_return;
1319 	}
1320 
1321 	fdev->dev = &op->dev;
1322 	INIT_LIST_HEAD(&fdev->common.channels);
1323 
1324 	/* ioremap the registers for use */
1325 	fdev->regs = of_iomap(op->dev.of_node, 0);
1326 	if (!fdev->regs) {
1327 		dev_err(&op->dev, "unable to ioremap registers\n");
1328 		err = -ENOMEM;
1329 		goto out_free_fdev;
1330 	}
1331 
1332 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1333 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1334 
1335 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1336 	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1337 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1338 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1339 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1340 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1341 	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1342 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1343 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1344 	fdev->common.device_tx_status = fsl_tx_status;
1345 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1346 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1347 	fdev->common.device_control = fsl_dma_device_control;
1348 	fdev->common.dev = &op->dev;
1349 
1350 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1351 
1352 	platform_set_drvdata(op, fdev);
1353 
1354 	/*
1355 	 * We cannot use of_platform_bus_probe() because there is no
1356 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1357 	 * channel object.
1358 	 */
1359 	for_each_child_of_node(op->dev.of_node, child) {
1360 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1361 			fsl_dma_chan_probe(fdev, child,
1362 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1363 				"fsl,eloplus-dma-channel");
1364 		}
1365 
1366 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1367 			fsl_dma_chan_probe(fdev, child,
1368 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1369 				"fsl,elo-dma-channel");
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * Hookup the IRQ handler(s)
1375 	 *
1376 	 * If we have a per-controller interrupt, we prefer that to the
1377 	 * per-channel interrupts to reduce the number of shared interrupt
1378 	 * handlers on the same IRQ line
1379 	 */
1380 	err = fsldma_request_irqs(fdev);
1381 	if (err) {
1382 		dev_err(fdev->dev, "unable to request IRQs\n");
1383 		goto out_free_fdev;
1384 	}
1385 
1386 	dma_async_device_register(&fdev->common);
1387 	return 0;
1388 
1389 out_free_fdev:
1390 	irq_dispose_mapping(fdev->irq);
1391 	kfree(fdev);
1392 out_return:
1393 	return err;
1394 }
1395 
1396 static int fsldma_of_remove(struct platform_device *op)
1397 {
1398 	struct fsldma_device *fdev;
1399 	unsigned int i;
1400 
1401 	fdev = platform_get_drvdata(op);
1402 	dma_async_device_unregister(&fdev->common);
1403 
1404 	fsldma_free_irqs(fdev);
1405 
1406 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1407 		if (fdev->chan[i])
1408 			fsl_dma_chan_remove(fdev->chan[i]);
1409 	}
1410 
1411 	iounmap(fdev->regs);
1412 	kfree(fdev);
1413 
1414 	return 0;
1415 }
1416 
1417 static const struct of_device_id fsldma_of_ids[] = {
1418 	{ .compatible = "fsl,elo3-dma", },
1419 	{ .compatible = "fsl,eloplus-dma", },
1420 	{ .compatible = "fsl,elo-dma", },
1421 	{}
1422 };
1423 
1424 static struct platform_driver fsldma_of_driver = {
1425 	.driver = {
1426 		.name = "fsl-elo-dma",
1427 		.owner = THIS_MODULE,
1428 		.of_match_table = fsldma_of_ids,
1429 	},
1430 	.probe = fsldma_of_probe,
1431 	.remove = fsldma_of_remove,
1432 };
1433 
1434 /*----------------------------------------------------------------------------*/
1435 /* Module Init / Exit                                                         */
1436 /*----------------------------------------------------------------------------*/
1437 
1438 static __init int fsldma_init(void)
1439 {
1440 	pr_info("Freescale Elo series DMA driver\n");
1441 	return platform_driver_register(&fsldma_of_driver);
1442 }
1443 
1444 static void __exit fsldma_exit(void)
1445 {
1446 	platform_driver_unregister(&fsldma_of_driver);
1447 }
1448 
1449 subsys_initcall(fsldma_init);
1450 module_exit(fsldma_exit);
1451 
1452 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1453 MODULE_LICENSE("GPL");
1454