1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA contorller is also added. 14 * 15 * This driver instructs the DMA controller to issue the PCI Read Multiple 16 * command for PCI read operations, instead of using the default PCI Read Line 17 * command. Please be aware that this setting may result in read pre-fetching 18 * on some platforms. 19 * 20 * This is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 */ 26 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/interrupt.h> 31 #include <linux/dmaengine.h> 32 #include <linux/delay.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/dmapool.h> 35 #include <linux/of_platform.h> 36 37 #include "fsldma.h" 38 39 static void dma_init(struct fsl_dma_chan *fsl_chan) 40 { 41 /* Reset the channel */ 42 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32); 43 44 switch (fsl_chan->feature & FSL_DMA_IP_MASK) { 45 case FSL_DMA_IP_85XX: 46 /* Set the channel to below modes: 47 * EIE - Error interrupt enable 48 * EOSIE - End of segments interrupt enable (basic mode) 49 * EOLNIE - End of links interrupt enable 50 */ 51 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE 52 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32); 53 break; 54 case FSL_DMA_IP_83XX: 55 /* Set the channel to below modes: 56 * EOTIE - End-of-transfer interrupt enable 57 * PRC_RM - PCI read multiple 58 */ 59 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE 60 | FSL_DMA_MR_PRC_RM, 32); 61 break; 62 } 63 64 } 65 66 static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val) 67 { 68 DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32); 69 } 70 71 static u32 get_sr(struct fsl_dma_chan *fsl_chan) 72 { 73 return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32); 74 } 75 76 static void set_desc_cnt(struct fsl_dma_chan *fsl_chan, 77 struct fsl_dma_ld_hw *hw, u32 count) 78 { 79 hw->count = CPU_TO_DMA(fsl_chan, count, 32); 80 } 81 82 static void set_desc_src(struct fsl_dma_chan *fsl_chan, 83 struct fsl_dma_ld_hw *hw, dma_addr_t src) 84 { 85 u64 snoop_bits; 86 87 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 88 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 89 hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64); 90 } 91 92 static void set_desc_dest(struct fsl_dma_chan *fsl_chan, 93 struct fsl_dma_ld_hw *hw, dma_addr_t dest) 94 { 95 u64 snoop_bits; 96 97 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 98 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 99 hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64); 100 } 101 102 static void set_desc_next(struct fsl_dma_chan *fsl_chan, 103 struct fsl_dma_ld_hw *hw, dma_addr_t next) 104 { 105 u64 snoop_bits; 106 107 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 108 ? FSL_DMA_SNEN : 0; 109 hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64); 110 } 111 112 static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) 113 { 114 DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64); 115 } 116 117 static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan) 118 { 119 return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN; 120 } 121 122 static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) 123 { 124 DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64); 125 } 126 127 static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan) 128 { 129 return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64); 130 } 131 132 static u32 get_bcr(struct fsl_dma_chan *fsl_chan) 133 { 134 return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32); 135 } 136 137 static int dma_is_idle(struct fsl_dma_chan *fsl_chan) 138 { 139 u32 sr = get_sr(fsl_chan); 140 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 141 } 142 143 static void dma_start(struct fsl_dma_chan *fsl_chan) 144 { 145 u32 mr_set = 0;; 146 147 if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 148 DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32); 149 mr_set |= FSL_DMA_MR_EMP_EN; 150 } else 151 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 152 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 153 & ~FSL_DMA_MR_EMP_EN, 32); 154 155 if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT) 156 mr_set |= FSL_DMA_MR_EMS_EN; 157 else 158 mr_set |= FSL_DMA_MR_CS; 159 160 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 161 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 162 | mr_set, 32); 163 } 164 165 static void dma_halt(struct fsl_dma_chan *fsl_chan) 166 { 167 int i; 168 169 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 170 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA, 171 32); 172 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 173 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS 174 | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32); 175 176 for (i = 0; i < 100; i++) { 177 if (dma_is_idle(fsl_chan)) 178 break; 179 udelay(10); 180 } 181 if (i >= 100 && !dma_is_idle(fsl_chan)) 182 dev_err(fsl_chan->dev, "DMA halt timeout!\n"); 183 } 184 185 static void set_ld_eol(struct fsl_dma_chan *fsl_chan, 186 struct fsl_desc_sw *desc) 187 { 188 u64 snoop_bits; 189 190 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 191 ? FSL_DMA_SNEN : 0; 192 193 desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, 194 DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL 195 | snoop_bits, 64); 196 } 197 198 static void append_ld_queue(struct fsl_dma_chan *fsl_chan, 199 struct fsl_desc_sw *new_desc) 200 { 201 struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev); 202 203 if (list_empty(&fsl_chan->ld_queue)) 204 return; 205 206 /* Link to the new descriptor physical address and 207 * Enable End-of-segment interrupt for 208 * the last link descriptor. 209 * (the previous node's next link descriptor) 210 * 211 * For FSL_DMA_IP_83xx, the snoop enable bit need be set. 212 */ 213 queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, 214 new_desc->async_tx.phys | FSL_DMA_EOSIE | 215 (((fsl_chan->feature & FSL_DMA_IP_MASK) 216 == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64); 217 } 218 219 /** 220 * fsl_chan_set_src_loop_size - Set source address hold transfer size 221 * @fsl_chan : Freescale DMA channel 222 * @size : Address loop size, 0 for disable loop 223 * 224 * The set source address hold transfer size. The source 225 * address hold or loop transfer size is when the DMA transfer 226 * data from source address (SA), if the loop size is 4, the DMA will 227 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 228 * SA + 1 ... and so on. 229 */ 230 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size) 231 { 232 switch (size) { 233 case 0: 234 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 235 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & 236 (~FSL_DMA_MR_SAHE), 32); 237 break; 238 case 1: 239 case 2: 240 case 4: 241 case 8: 242 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 243 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | 244 FSL_DMA_MR_SAHE | (__ilog2(size) << 14), 245 32); 246 break; 247 } 248 } 249 250 /** 251 * fsl_chan_set_dest_loop_size - Set destination address hold transfer size 252 * @fsl_chan : Freescale DMA channel 253 * @size : Address loop size, 0 for disable loop 254 * 255 * The set destination address hold transfer size. The destination 256 * address hold or loop transfer size is when the DMA transfer 257 * data to destination address (TA), if the loop size is 4, the DMA will 258 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 259 * TA + 1 ... and so on. 260 */ 261 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size) 262 { 263 switch (size) { 264 case 0: 265 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 266 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & 267 (~FSL_DMA_MR_DAHE), 32); 268 break; 269 case 1: 270 case 2: 271 case 4: 272 case 8: 273 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 274 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | 275 FSL_DMA_MR_DAHE | (__ilog2(size) << 16), 276 32); 277 break; 278 } 279 } 280 281 /** 282 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 283 * @fsl_chan : Freescale DMA channel 284 * @size : Pause control size, 0 for disable external pause control. 285 * The maximum is 1024. 286 * 287 * The Freescale DMA channel can be controlled by the external 288 * signal DREQ#. The pause control size is how many bytes are allowed 289 * to transfer before pausing the channel, after which a new assertion 290 * of DREQ# resumes channel operation. 291 */ 292 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size) 293 { 294 if (size > 1024) 295 return; 296 297 if (size) { 298 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 299 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 300 | ((__ilog2(size) << 24) & 0x0f000000), 301 32); 302 fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 303 } else 304 fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 305 } 306 307 /** 308 * fsl_chan_toggle_ext_start - Toggle channel external start status 309 * @fsl_chan : Freescale DMA channel 310 * @enable : 0 is disabled, 1 is enabled. 311 * 312 * If enable the external start, the channel can be started by an 313 * external DMA start pin. So the dma_start() does not start the 314 * transfer immediately. The DMA channel will wait for the 315 * control pin asserted. 316 */ 317 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable) 318 { 319 if (enable) 320 fsl_chan->feature |= FSL_DMA_CHAN_START_EXT; 321 else 322 fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT; 323 } 324 325 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 326 { 327 struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan); 328 struct fsl_desc_sw *desc; 329 unsigned long flags; 330 dma_cookie_t cookie; 331 332 /* cookie increment and adding to ld_queue must be atomic */ 333 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 334 335 cookie = fsl_chan->common.cookie; 336 list_for_each_entry(desc, &tx->tx_list, node) { 337 cookie++; 338 if (cookie < 0) 339 cookie = 1; 340 341 desc->async_tx.cookie = cookie; 342 } 343 344 fsl_chan->common.cookie = cookie; 345 append_ld_queue(fsl_chan, tx_to_fsl_desc(tx)); 346 list_splice_init(&tx->tx_list, fsl_chan->ld_queue.prev); 347 348 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 349 350 return cookie; 351 } 352 353 /** 354 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 355 * @fsl_chan : Freescale DMA channel 356 * 357 * Return - The descriptor allocated. NULL for failed. 358 */ 359 static struct fsl_desc_sw *fsl_dma_alloc_descriptor( 360 struct fsl_dma_chan *fsl_chan) 361 { 362 dma_addr_t pdesc; 363 struct fsl_desc_sw *desc_sw; 364 365 desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc); 366 if (desc_sw) { 367 memset(desc_sw, 0, sizeof(struct fsl_desc_sw)); 368 dma_async_tx_descriptor_init(&desc_sw->async_tx, 369 &fsl_chan->common); 370 desc_sw->async_tx.tx_submit = fsl_dma_tx_submit; 371 desc_sw->async_tx.phys = pdesc; 372 } 373 374 return desc_sw; 375 } 376 377 378 /** 379 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 380 * @fsl_chan : Freescale DMA channel 381 * 382 * This function will create a dma pool for descriptor allocation. 383 * 384 * Return - The number of descriptors allocated. 385 */ 386 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan) 387 { 388 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 389 390 /* Has this channel already been allocated? */ 391 if (fsl_chan->desc_pool) 392 return 1; 393 394 /* We need the descriptor to be aligned to 32bytes 395 * for meeting FSL DMA specification requirement. 396 */ 397 fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool", 398 fsl_chan->dev, sizeof(struct fsl_desc_sw), 399 32, 0); 400 if (!fsl_chan->desc_pool) { 401 dev_err(fsl_chan->dev, "No memory for channel %d " 402 "descriptor dma pool.\n", fsl_chan->id); 403 return 0; 404 } 405 406 return 1; 407 } 408 409 /** 410 * fsl_dma_free_chan_resources - Free all resources of the channel. 411 * @fsl_chan : Freescale DMA channel 412 */ 413 static void fsl_dma_free_chan_resources(struct dma_chan *chan) 414 { 415 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 416 struct fsl_desc_sw *desc, *_desc; 417 unsigned long flags; 418 419 dev_dbg(fsl_chan->dev, "Free all channel resources.\n"); 420 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 421 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { 422 #ifdef FSL_DMA_LD_DEBUG 423 dev_dbg(fsl_chan->dev, 424 "LD %p will be released.\n", desc); 425 #endif 426 list_del(&desc->node); 427 /* free link descriptor */ 428 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); 429 } 430 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 431 dma_pool_destroy(fsl_chan->desc_pool); 432 433 fsl_chan->desc_pool = NULL; 434 } 435 436 static struct dma_async_tx_descriptor * 437 fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags) 438 { 439 struct fsl_dma_chan *fsl_chan; 440 struct fsl_desc_sw *new; 441 442 if (!chan) 443 return NULL; 444 445 fsl_chan = to_fsl_chan(chan); 446 447 new = fsl_dma_alloc_descriptor(fsl_chan); 448 if (!new) { 449 dev_err(fsl_chan->dev, "No free memory for link descriptor\n"); 450 return NULL; 451 } 452 453 new->async_tx.cookie = -EBUSY; 454 new->async_tx.flags = flags; 455 456 /* Insert the link descriptor to the LD ring */ 457 list_add_tail(&new->node, &new->async_tx.tx_list); 458 459 /* Set End-of-link to the last link descriptor of new list*/ 460 set_ld_eol(fsl_chan, new); 461 462 return &new->async_tx; 463 } 464 465 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( 466 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, 467 size_t len, unsigned long flags) 468 { 469 struct fsl_dma_chan *fsl_chan; 470 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 471 struct list_head *list; 472 size_t copy; 473 474 if (!chan) 475 return NULL; 476 477 if (!len) 478 return NULL; 479 480 fsl_chan = to_fsl_chan(chan); 481 482 do { 483 484 /* Allocate the link descriptor from DMA pool */ 485 new = fsl_dma_alloc_descriptor(fsl_chan); 486 if (!new) { 487 dev_err(fsl_chan->dev, 488 "No free memory for link descriptor\n"); 489 goto fail; 490 } 491 #ifdef FSL_DMA_LD_DEBUG 492 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new); 493 #endif 494 495 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 496 497 set_desc_cnt(fsl_chan, &new->hw, copy); 498 set_desc_src(fsl_chan, &new->hw, dma_src); 499 set_desc_dest(fsl_chan, &new->hw, dma_dest); 500 501 if (!first) 502 first = new; 503 else 504 set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys); 505 506 new->async_tx.cookie = 0; 507 async_tx_ack(&new->async_tx); 508 509 prev = new; 510 len -= copy; 511 dma_src += copy; 512 dma_dest += copy; 513 514 /* Insert the link descriptor to the LD ring */ 515 list_add_tail(&new->node, &first->async_tx.tx_list); 516 } while (len); 517 518 new->async_tx.flags = flags; /* client is in control of this ack */ 519 new->async_tx.cookie = -EBUSY; 520 521 /* Set End-of-link to the last link descriptor of new list*/ 522 set_ld_eol(fsl_chan, new); 523 524 return &first->async_tx; 525 526 fail: 527 if (!first) 528 return NULL; 529 530 list = &first->async_tx.tx_list; 531 list_for_each_entry_safe_reverse(new, prev, list, node) { 532 list_del(&new->node); 533 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys); 534 } 535 536 return NULL; 537 } 538 539 /** 540 * fsl_dma_update_completed_cookie - Update the completed cookie. 541 * @fsl_chan : Freescale DMA channel 542 */ 543 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan) 544 { 545 struct fsl_desc_sw *cur_desc, *desc; 546 dma_addr_t ld_phy; 547 548 ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK; 549 550 if (ld_phy) { 551 cur_desc = NULL; 552 list_for_each_entry(desc, &fsl_chan->ld_queue, node) 553 if (desc->async_tx.phys == ld_phy) { 554 cur_desc = desc; 555 break; 556 } 557 558 if (cur_desc && cur_desc->async_tx.cookie) { 559 if (dma_is_idle(fsl_chan)) 560 fsl_chan->completed_cookie = 561 cur_desc->async_tx.cookie; 562 else 563 fsl_chan->completed_cookie = 564 cur_desc->async_tx.cookie - 1; 565 } 566 } 567 } 568 569 /** 570 * fsl_chan_ld_cleanup - Clean up link descriptors 571 * @fsl_chan : Freescale DMA channel 572 * 573 * This function clean up the ld_queue of DMA channel. 574 * If 'in_intr' is set, the function will move the link descriptor to 575 * the recycle list. Otherwise, free it directly. 576 */ 577 static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan) 578 { 579 struct fsl_desc_sw *desc, *_desc; 580 unsigned long flags; 581 582 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 583 584 dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n", 585 fsl_chan->completed_cookie); 586 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { 587 dma_async_tx_callback callback; 588 void *callback_param; 589 590 if (dma_async_is_complete(desc->async_tx.cookie, 591 fsl_chan->completed_cookie, fsl_chan->common.cookie) 592 == DMA_IN_PROGRESS) 593 break; 594 595 callback = desc->async_tx.callback; 596 callback_param = desc->async_tx.callback_param; 597 598 /* Remove from ld_queue list */ 599 list_del(&desc->node); 600 601 dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n", 602 desc); 603 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); 604 605 /* Run the link descriptor callback function */ 606 if (callback) { 607 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 608 dev_dbg(fsl_chan->dev, "link descriptor %p callback\n", 609 desc); 610 callback(callback_param); 611 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 612 } 613 } 614 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 615 } 616 617 /** 618 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue. 619 * @fsl_chan : Freescale DMA channel 620 */ 621 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan) 622 { 623 struct list_head *ld_node; 624 dma_addr_t next_dest_addr; 625 unsigned long flags; 626 627 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 628 629 if (!dma_is_idle(fsl_chan)) 630 goto out_unlock; 631 632 dma_halt(fsl_chan); 633 634 /* If there are some link descriptors 635 * not transfered in queue. We need to start it. 636 */ 637 638 /* Find the first un-transfer desciptor */ 639 for (ld_node = fsl_chan->ld_queue.next; 640 (ld_node != &fsl_chan->ld_queue) 641 && (dma_async_is_complete( 642 to_fsl_desc(ld_node)->async_tx.cookie, 643 fsl_chan->completed_cookie, 644 fsl_chan->common.cookie) == DMA_SUCCESS); 645 ld_node = ld_node->next); 646 647 if (ld_node != &fsl_chan->ld_queue) { 648 /* Get the ld start address from ld_queue */ 649 next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys; 650 dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n", 651 (unsigned long long)next_dest_addr); 652 set_cdar(fsl_chan, next_dest_addr); 653 dma_start(fsl_chan); 654 } else { 655 set_cdar(fsl_chan, 0); 656 set_ndar(fsl_chan, 0); 657 } 658 659 out_unlock: 660 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 661 } 662 663 /** 664 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 665 * @fsl_chan : Freescale DMA channel 666 */ 667 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan) 668 { 669 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 670 671 #ifdef FSL_DMA_LD_DEBUG 672 struct fsl_desc_sw *ld; 673 unsigned long flags; 674 675 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 676 if (list_empty(&fsl_chan->ld_queue)) { 677 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 678 return; 679 } 680 681 dev_dbg(fsl_chan->dev, "--memcpy issue--\n"); 682 list_for_each_entry(ld, &fsl_chan->ld_queue, node) { 683 int i; 684 dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n", 685 fsl_chan->id, ld->async_tx.phys); 686 for (i = 0; i < 8; i++) 687 dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n", 688 i, *(((u32 *)&ld->hw) + i)); 689 } 690 dev_dbg(fsl_chan->dev, "----------------\n"); 691 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 692 #endif 693 694 fsl_chan_xfer_ld_queue(fsl_chan); 695 } 696 697 /** 698 * fsl_dma_is_complete - Determine the DMA status 699 * @fsl_chan : Freescale DMA channel 700 */ 701 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan, 702 dma_cookie_t cookie, 703 dma_cookie_t *done, 704 dma_cookie_t *used) 705 { 706 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 707 dma_cookie_t last_used; 708 dma_cookie_t last_complete; 709 710 fsl_chan_ld_cleanup(fsl_chan); 711 712 last_used = chan->cookie; 713 last_complete = fsl_chan->completed_cookie; 714 715 if (done) 716 *done = last_complete; 717 718 if (used) 719 *used = last_used; 720 721 return dma_async_is_complete(cookie, last_complete, last_used); 722 } 723 724 static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data) 725 { 726 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; 727 u32 stat; 728 int update_cookie = 0; 729 int xfer_ld_q = 0; 730 731 stat = get_sr(fsl_chan); 732 dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n", 733 fsl_chan->id, stat); 734 set_sr(fsl_chan, stat); /* Clear the event register */ 735 736 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 737 if (!stat) 738 return IRQ_NONE; 739 740 if (stat & FSL_DMA_SR_TE) 741 dev_err(fsl_chan->dev, "Transfer Error!\n"); 742 743 /* Programming Error 744 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 745 * triger a PE interrupt. 746 */ 747 if (stat & FSL_DMA_SR_PE) { 748 dev_dbg(fsl_chan->dev, "event: Programming Error INT\n"); 749 if (get_bcr(fsl_chan) == 0) { 750 /* BCR register is 0, this is a DMA_INTERRUPT async_tx. 751 * Now, update the completed cookie, and continue the 752 * next uncompleted transfer. 753 */ 754 update_cookie = 1; 755 xfer_ld_q = 1; 756 } 757 stat &= ~FSL_DMA_SR_PE; 758 } 759 760 /* If the link descriptor segment transfer finishes, 761 * we will recycle the used descriptor. 762 */ 763 if (stat & FSL_DMA_SR_EOSI) { 764 dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n"); 765 dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n", 766 (unsigned long long)get_cdar(fsl_chan), 767 (unsigned long long)get_ndar(fsl_chan)); 768 stat &= ~FSL_DMA_SR_EOSI; 769 update_cookie = 1; 770 } 771 772 /* For MPC8349, EOCDI event need to update cookie 773 * and start the next transfer if it exist. 774 */ 775 if (stat & FSL_DMA_SR_EOCDI) { 776 dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n"); 777 stat &= ~FSL_DMA_SR_EOCDI; 778 update_cookie = 1; 779 xfer_ld_q = 1; 780 } 781 782 /* If it current transfer is the end-of-transfer, 783 * we should clear the Channel Start bit for 784 * prepare next transfer. 785 */ 786 if (stat & FSL_DMA_SR_EOLNI) { 787 dev_dbg(fsl_chan->dev, "event: End-of-link INT\n"); 788 stat &= ~FSL_DMA_SR_EOLNI; 789 xfer_ld_q = 1; 790 } 791 792 if (update_cookie) 793 fsl_dma_update_completed_cookie(fsl_chan); 794 if (xfer_ld_q) 795 fsl_chan_xfer_ld_queue(fsl_chan); 796 if (stat) 797 dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n", 798 stat); 799 800 dev_dbg(fsl_chan->dev, "event: Exit\n"); 801 tasklet_schedule(&fsl_chan->tasklet); 802 return IRQ_HANDLED; 803 } 804 805 static irqreturn_t fsl_dma_do_interrupt(int irq, void *data) 806 { 807 struct fsl_dma_device *fdev = (struct fsl_dma_device *)data; 808 u32 gsr; 809 int ch_nr; 810 811 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base) 812 : in_le32(fdev->reg_base); 813 ch_nr = (32 - ffs(gsr)) / 8; 814 815 return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq, 816 fdev->chan[ch_nr]) : IRQ_NONE; 817 } 818 819 static void dma_do_tasklet(unsigned long data) 820 { 821 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; 822 fsl_chan_ld_cleanup(fsl_chan); 823 } 824 825 static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev, 826 struct device_node *node, u32 feature, const char *compatible) 827 { 828 struct fsl_dma_chan *new_fsl_chan; 829 int err; 830 831 /* alloc channel */ 832 new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL); 833 if (!new_fsl_chan) { 834 dev_err(fdev->dev, "No free memory for allocating " 835 "dma channels!\n"); 836 return -ENOMEM; 837 } 838 839 /* get dma channel register base */ 840 err = of_address_to_resource(node, 0, &new_fsl_chan->reg); 841 if (err) { 842 dev_err(fdev->dev, "Can't get %s property 'reg'\n", 843 node->full_name); 844 goto err_no_reg; 845 } 846 847 new_fsl_chan->feature = feature; 848 849 if (!fdev->feature) 850 fdev->feature = new_fsl_chan->feature; 851 852 /* If the DMA device's feature is different than its channels', 853 * report the bug. 854 */ 855 WARN_ON(fdev->feature != new_fsl_chan->feature); 856 857 new_fsl_chan->dev = fdev->dev; 858 new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start, 859 new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1); 860 861 new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7; 862 if (new_fsl_chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { 863 dev_err(fdev->dev, "There is no %d channel!\n", 864 new_fsl_chan->id); 865 err = -EINVAL; 866 goto err_no_chan; 867 } 868 fdev->chan[new_fsl_chan->id] = new_fsl_chan; 869 tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet, 870 (unsigned long)new_fsl_chan); 871 872 /* Init the channel */ 873 dma_init(new_fsl_chan); 874 875 /* Clear cdar registers */ 876 set_cdar(new_fsl_chan, 0); 877 878 switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) { 879 case FSL_DMA_IP_85XX: 880 new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start; 881 new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 882 case FSL_DMA_IP_83XX: 883 new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size; 884 new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size; 885 } 886 887 spin_lock_init(&new_fsl_chan->desc_lock); 888 INIT_LIST_HEAD(&new_fsl_chan->ld_queue); 889 890 new_fsl_chan->common.device = &fdev->common; 891 892 /* Add the channel to DMA device channel list */ 893 list_add_tail(&new_fsl_chan->common.device_node, 894 &fdev->common.channels); 895 fdev->common.chancnt++; 896 897 new_fsl_chan->irq = irq_of_parse_and_map(node, 0); 898 if (new_fsl_chan->irq != NO_IRQ) { 899 err = request_irq(new_fsl_chan->irq, 900 &fsl_dma_chan_do_interrupt, IRQF_SHARED, 901 "fsldma-channel", new_fsl_chan); 902 if (err) { 903 dev_err(fdev->dev, "DMA channel %s request_irq error " 904 "with return %d\n", node->full_name, err); 905 goto err_no_irq; 906 } 907 } 908 909 dev_info(fdev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id, 910 compatible, 911 new_fsl_chan->irq != NO_IRQ ? new_fsl_chan->irq : fdev->irq); 912 913 return 0; 914 915 err_no_irq: 916 list_del(&new_fsl_chan->common.device_node); 917 err_no_chan: 918 iounmap(new_fsl_chan->reg_base); 919 err_no_reg: 920 kfree(new_fsl_chan); 921 return err; 922 } 923 924 static void fsl_dma_chan_remove(struct fsl_dma_chan *fchan) 925 { 926 if (fchan->irq != NO_IRQ) 927 free_irq(fchan->irq, fchan); 928 list_del(&fchan->common.device_node); 929 iounmap(fchan->reg_base); 930 kfree(fchan); 931 } 932 933 static int __devinit of_fsl_dma_probe(struct of_device *dev, 934 const struct of_device_id *match) 935 { 936 int err; 937 struct fsl_dma_device *fdev; 938 struct device_node *child; 939 940 fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL); 941 if (!fdev) { 942 dev_err(&dev->dev, "No enough memory for 'priv'\n"); 943 return -ENOMEM; 944 } 945 fdev->dev = &dev->dev; 946 INIT_LIST_HEAD(&fdev->common.channels); 947 948 /* get DMA controller register base */ 949 err = of_address_to_resource(dev->node, 0, &fdev->reg); 950 if (err) { 951 dev_err(&dev->dev, "Can't get %s property 'reg'\n", 952 dev->node->full_name); 953 goto err_no_reg; 954 } 955 956 dev_info(&dev->dev, "Probe the Freescale DMA driver for %s " 957 "controller at 0x%llx...\n", 958 match->compatible, (unsigned long long)fdev->reg.start); 959 fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end 960 - fdev->reg.start + 1); 961 962 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 963 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); 964 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 965 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 966 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; 967 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 968 fdev->common.device_is_tx_complete = fsl_dma_is_complete; 969 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 970 fdev->common.dev = &dev->dev; 971 972 fdev->irq = irq_of_parse_and_map(dev->node, 0); 973 if (fdev->irq != NO_IRQ) { 974 err = request_irq(fdev->irq, &fsl_dma_do_interrupt, IRQF_SHARED, 975 "fsldma-device", fdev); 976 if (err) { 977 dev_err(&dev->dev, "DMA device request_irq error " 978 "with return %d\n", err); 979 goto err; 980 } 981 } 982 983 dev_set_drvdata(&(dev->dev), fdev); 984 985 /* We cannot use of_platform_bus_probe() because there is no 986 * of_platform_bus_remove. Instead, we manually instantiate every DMA 987 * channel object. 988 */ 989 for_each_child_of_node(dev->node, child) { 990 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) 991 fsl_dma_chan_probe(fdev, child, 992 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, 993 "fsl,eloplus-dma-channel"); 994 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) 995 fsl_dma_chan_probe(fdev, child, 996 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, 997 "fsl,elo-dma-channel"); 998 } 999 1000 dma_async_device_register(&fdev->common); 1001 return 0; 1002 1003 err: 1004 iounmap(fdev->reg_base); 1005 err_no_reg: 1006 kfree(fdev); 1007 return err; 1008 } 1009 1010 static int of_fsl_dma_remove(struct of_device *of_dev) 1011 { 1012 struct fsl_dma_device *fdev; 1013 unsigned int i; 1014 1015 fdev = dev_get_drvdata(&of_dev->dev); 1016 1017 dma_async_device_unregister(&fdev->common); 1018 1019 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) 1020 if (fdev->chan[i]) 1021 fsl_dma_chan_remove(fdev->chan[i]); 1022 1023 if (fdev->irq != NO_IRQ) 1024 free_irq(fdev->irq, fdev); 1025 1026 iounmap(fdev->reg_base); 1027 1028 kfree(fdev); 1029 dev_set_drvdata(&of_dev->dev, NULL); 1030 1031 return 0; 1032 } 1033 1034 static struct of_device_id of_fsl_dma_ids[] = { 1035 { .compatible = "fsl,eloplus-dma", }, 1036 { .compatible = "fsl,elo-dma", }, 1037 {} 1038 }; 1039 1040 static struct of_platform_driver of_fsl_dma_driver = { 1041 .name = "fsl-elo-dma", 1042 .match_table = of_fsl_dma_ids, 1043 .probe = of_fsl_dma_probe, 1044 .remove = of_fsl_dma_remove, 1045 }; 1046 1047 static __init int of_fsl_dma_init(void) 1048 { 1049 int ret; 1050 1051 pr_info("Freescale Elo / Elo Plus DMA driver\n"); 1052 1053 ret = of_register_platform_driver(&of_fsl_dma_driver); 1054 if (ret) 1055 pr_err("fsldma: failed to register platform driver\n"); 1056 1057 return ret; 1058 } 1059 1060 static void __exit of_fsl_dma_exit(void) 1061 { 1062 of_unregister_platform_driver(&of_fsl_dma_driver); 1063 } 1064 1065 subsys_initcall(of_fsl_dma_init); 1066 module_exit(of_fsl_dma_exit); 1067 1068 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver"); 1069 MODULE_LICENSE("GPL"); 1070