1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA contorller is also added. 14 * 15 * This driver instructs the DMA controller to issue the PCI Read Multiple 16 * command for PCI read operations, instead of using the default PCI Read Line 17 * command. Please be aware that this setting may result in read pre-fetching 18 * on some platforms. 19 * 20 * This is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 */ 26 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/interrupt.h> 31 #include <linux/dmaengine.h> 32 #include <linux/delay.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/dmapool.h> 35 #include <linux/of_platform.h> 36 37 #include <asm/fsldma.h> 38 #include "fsldma.h" 39 40 static void dma_init(struct fsl_dma_chan *fsl_chan) 41 { 42 /* Reset the channel */ 43 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32); 44 45 switch (fsl_chan->feature & FSL_DMA_IP_MASK) { 46 case FSL_DMA_IP_85XX: 47 /* Set the channel to below modes: 48 * EIE - Error interrupt enable 49 * EOSIE - End of segments interrupt enable (basic mode) 50 * EOLNIE - End of links interrupt enable 51 */ 52 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE 53 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32); 54 break; 55 case FSL_DMA_IP_83XX: 56 /* Set the channel to below modes: 57 * EOTIE - End-of-transfer interrupt enable 58 * PRC_RM - PCI read multiple 59 */ 60 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE 61 | FSL_DMA_MR_PRC_RM, 32); 62 break; 63 } 64 65 } 66 67 static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val) 68 { 69 DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32); 70 } 71 72 static u32 get_sr(struct fsl_dma_chan *fsl_chan) 73 { 74 return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32); 75 } 76 77 static void set_desc_cnt(struct fsl_dma_chan *fsl_chan, 78 struct fsl_dma_ld_hw *hw, u32 count) 79 { 80 hw->count = CPU_TO_DMA(fsl_chan, count, 32); 81 } 82 83 static void set_desc_src(struct fsl_dma_chan *fsl_chan, 84 struct fsl_dma_ld_hw *hw, dma_addr_t src) 85 { 86 u64 snoop_bits; 87 88 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 89 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 90 hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64); 91 } 92 93 static void set_desc_dest(struct fsl_dma_chan *fsl_chan, 94 struct fsl_dma_ld_hw *hw, dma_addr_t dest) 95 { 96 u64 snoop_bits; 97 98 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 99 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 100 hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64); 101 } 102 103 static void set_desc_next(struct fsl_dma_chan *fsl_chan, 104 struct fsl_dma_ld_hw *hw, dma_addr_t next) 105 { 106 u64 snoop_bits; 107 108 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 109 ? FSL_DMA_SNEN : 0; 110 hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64); 111 } 112 113 static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) 114 { 115 DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64); 116 } 117 118 static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan) 119 { 120 return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN; 121 } 122 123 static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) 124 { 125 DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64); 126 } 127 128 static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan) 129 { 130 return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64); 131 } 132 133 static u32 get_bcr(struct fsl_dma_chan *fsl_chan) 134 { 135 return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32); 136 } 137 138 static int dma_is_idle(struct fsl_dma_chan *fsl_chan) 139 { 140 u32 sr = get_sr(fsl_chan); 141 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 142 } 143 144 static void dma_start(struct fsl_dma_chan *fsl_chan) 145 { 146 u32 mr_set = 0; 147 148 if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 149 DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32); 150 mr_set |= FSL_DMA_MR_EMP_EN; 151 } else if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 152 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 153 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 154 & ~FSL_DMA_MR_EMP_EN, 32); 155 } 156 157 if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT) 158 mr_set |= FSL_DMA_MR_EMS_EN; 159 else 160 mr_set |= FSL_DMA_MR_CS; 161 162 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 163 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 164 | mr_set, 32); 165 } 166 167 static void dma_halt(struct fsl_dma_chan *fsl_chan) 168 { 169 int i; 170 171 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 172 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA, 173 32); 174 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 175 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS 176 | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32); 177 178 for (i = 0; i < 100; i++) { 179 if (dma_is_idle(fsl_chan)) 180 break; 181 udelay(10); 182 } 183 if (i >= 100 && !dma_is_idle(fsl_chan)) 184 dev_err(fsl_chan->dev, "DMA halt timeout!\n"); 185 } 186 187 static void set_ld_eol(struct fsl_dma_chan *fsl_chan, 188 struct fsl_desc_sw *desc) 189 { 190 u64 snoop_bits; 191 192 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 193 ? FSL_DMA_SNEN : 0; 194 195 desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, 196 DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL 197 | snoop_bits, 64); 198 } 199 200 static void append_ld_queue(struct fsl_dma_chan *fsl_chan, 201 struct fsl_desc_sw *new_desc) 202 { 203 struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev); 204 205 if (list_empty(&fsl_chan->ld_queue)) 206 return; 207 208 /* Link to the new descriptor physical address and 209 * Enable End-of-segment interrupt for 210 * the last link descriptor. 211 * (the previous node's next link descriptor) 212 * 213 * For FSL_DMA_IP_83xx, the snoop enable bit need be set. 214 */ 215 queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, 216 new_desc->async_tx.phys | FSL_DMA_EOSIE | 217 (((fsl_chan->feature & FSL_DMA_IP_MASK) 218 == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64); 219 } 220 221 /** 222 * fsl_chan_set_src_loop_size - Set source address hold transfer size 223 * @fsl_chan : Freescale DMA channel 224 * @size : Address loop size, 0 for disable loop 225 * 226 * The set source address hold transfer size. The source 227 * address hold or loop transfer size is when the DMA transfer 228 * data from source address (SA), if the loop size is 4, the DMA will 229 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 230 * SA + 1 ... and so on. 231 */ 232 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size) 233 { 234 switch (size) { 235 case 0: 236 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 237 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & 238 (~FSL_DMA_MR_SAHE), 32); 239 break; 240 case 1: 241 case 2: 242 case 4: 243 case 8: 244 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 245 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | 246 FSL_DMA_MR_SAHE | (__ilog2(size) << 14), 247 32); 248 break; 249 } 250 } 251 252 /** 253 * fsl_chan_set_dest_loop_size - Set destination address hold transfer size 254 * @fsl_chan : Freescale DMA channel 255 * @size : Address loop size, 0 for disable loop 256 * 257 * The set destination address hold transfer size. The destination 258 * address hold or loop transfer size is when the DMA transfer 259 * data to destination address (TA), if the loop size is 4, the DMA will 260 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 261 * TA + 1 ... and so on. 262 */ 263 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size) 264 { 265 switch (size) { 266 case 0: 267 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 268 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & 269 (~FSL_DMA_MR_DAHE), 32); 270 break; 271 case 1: 272 case 2: 273 case 4: 274 case 8: 275 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 276 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | 277 FSL_DMA_MR_DAHE | (__ilog2(size) << 16), 278 32); 279 break; 280 } 281 } 282 283 /** 284 * fsl_chan_set_request_count - Set DMA Request Count for external control 285 * @fsl_chan : Freescale DMA channel 286 * @size : Number of bytes to transfer in a single request 287 * 288 * The Freescale DMA channel can be controlled by the external signal DREQ#. 289 * The DMA request count is how many bytes are allowed to transfer before 290 * pausing the channel, after which a new assertion of DREQ# resumes channel 291 * operation. 292 * 293 * A size of 0 disables external pause control. The maximum size is 1024. 294 */ 295 static void fsl_chan_set_request_count(struct fsl_dma_chan *fsl_chan, int size) 296 { 297 BUG_ON(size > 1024); 298 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 299 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 300 | ((__ilog2(size) << 24) & 0x0f000000), 301 32); 302 } 303 304 /** 305 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 306 * @fsl_chan : Freescale DMA channel 307 * @enable : 0 is disabled, 1 is enabled. 308 * 309 * The Freescale DMA channel can be controlled by the external signal DREQ#. 310 * The DMA Request Count feature should be used in addition to this feature 311 * to set the number of bytes to transfer before pausing the channel. 312 */ 313 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int enable) 314 { 315 if (enable) 316 fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 317 else 318 fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 319 } 320 321 /** 322 * fsl_chan_toggle_ext_start - Toggle channel external start status 323 * @fsl_chan : Freescale DMA channel 324 * @enable : 0 is disabled, 1 is enabled. 325 * 326 * If enable the external start, the channel can be started by an 327 * external DMA start pin. So the dma_start() does not start the 328 * transfer immediately. The DMA channel will wait for the 329 * control pin asserted. 330 */ 331 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable) 332 { 333 if (enable) 334 fsl_chan->feature |= FSL_DMA_CHAN_START_EXT; 335 else 336 fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT; 337 } 338 339 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 340 { 341 struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan); 342 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); 343 struct fsl_desc_sw *child; 344 unsigned long flags; 345 dma_cookie_t cookie; 346 347 /* cookie increment and adding to ld_queue must be atomic */ 348 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 349 350 cookie = fsl_chan->common.cookie; 351 list_for_each_entry(child, &desc->tx_list, node) { 352 cookie++; 353 if (cookie < 0) 354 cookie = 1; 355 356 desc->async_tx.cookie = cookie; 357 } 358 359 fsl_chan->common.cookie = cookie; 360 append_ld_queue(fsl_chan, desc); 361 list_splice_init(&desc->tx_list, fsl_chan->ld_queue.prev); 362 363 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 364 365 return cookie; 366 } 367 368 /** 369 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 370 * @fsl_chan : Freescale DMA channel 371 * 372 * Return - The descriptor allocated. NULL for failed. 373 */ 374 static struct fsl_desc_sw *fsl_dma_alloc_descriptor( 375 struct fsl_dma_chan *fsl_chan) 376 { 377 dma_addr_t pdesc; 378 struct fsl_desc_sw *desc_sw; 379 380 desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc); 381 if (desc_sw) { 382 memset(desc_sw, 0, sizeof(struct fsl_desc_sw)); 383 INIT_LIST_HEAD(&desc_sw->tx_list); 384 dma_async_tx_descriptor_init(&desc_sw->async_tx, 385 &fsl_chan->common); 386 desc_sw->async_tx.tx_submit = fsl_dma_tx_submit; 387 desc_sw->async_tx.phys = pdesc; 388 } 389 390 return desc_sw; 391 } 392 393 394 /** 395 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 396 * @fsl_chan : Freescale DMA channel 397 * 398 * This function will create a dma pool for descriptor allocation. 399 * 400 * Return - The number of descriptors allocated. 401 */ 402 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan) 403 { 404 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 405 406 /* Has this channel already been allocated? */ 407 if (fsl_chan->desc_pool) 408 return 1; 409 410 /* We need the descriptor to be aligned to 32bytes 411 * for meeting FSL DMA specification requirement. 412 */ 413 fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool", 414 fsl_chan->dev, sizeof(struct fsl_desc_sw), 415 32, 0); 416 if (!fsl_chan->desc_pool) { 417 dev_err(fsl_chan->dev, "No memory for channel %d " 418 "descriptor dma pool.\n", fsl_chan->id); 419 return 0; 420 } 421 422 return 1; 423 } 424 425 /** 426 * fsl_dma_free_chan_resources - Free all resources of the channel. 427 * @fsl_chan : Freescale DMA channel 428 */ 429 static void fsl_dma_free_chan_resources(struct dma_chan *chan) 430 { 431 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 432 struct fsl_desc_sw *desc, *_desc; 433 unsigned long flags; 434 435 dev_dbg(fsl_chan->dev, "Free all channel resources.\n"); 436 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 437 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { 438 #ifdef FSL_DMA_LD_DEBUG 439 dev_dbg(fsl_chan->dev, 440 "LD %p will be released.\n", desc); 441 #endif 442 list_del(&desc->node); 443 /* free link descriptor */ 444 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); 445 } 446 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 447 dma_pool_destroy(fsl_chan->desc_pool); 448 449 fsl_chan->desc_pool = NULL; 450 } 451 452 static struct dma_async_tx_descriptor * 453 fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags) 454 { 455 struct fsl_dma_chan *fsl_chan; 456 struct fsl_desc_sw *new; 457 458 if (!chan) 459 return NULL; 460 461 fsl_chan = to_fsl_chan(chan); 462 463 new = fsl_dma_alloc_descriptor(fsl_chan); 464 if (!new) { 465 dev_err(fsl_chan->dev, "No free memory for link descriptor\n"); 466 return NULL; 467 } 468 469 new->async_tx.cookie = -EBUSY; 470 new->async_tx.flags = flags; 471 472 /* Insert the link descriptor to the LD ring */ 473 list_add_tail(&new->node, &new->tx_list); 474 475 /* Set End-of-link to the last link descriptor of new list*/ 476 set_ld_eol(fsl_chan, new); 477 478 return &new->async_tx; 479 } 480 481 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( 482 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, 483 size_t len, unsigned long flags) 484 { 485 struct fsl_dma_chan *fsl_chan; 486 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 487 struct list_head *list; 488 size_t copy; 489 490 if (!chan) 491 return NULL; 492 493 if (!len) 494 return NULL; 495 496 fsl_chan = to_fsl_chan(chan); 497 498 do { 499 500 /* Allocate the link descriptor from DMA pool */ 501 new = fsl_dma_alloc_descriptor(fsl_chan); 502 if (!new) { 503 dev_err(fsl_chan->dev, 504 "No free memory for link descriptor\n"); 505 goto fail; 506 } 507 #ifdef FSL_DMA_LD_DEBUG 508 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new); 509 #endif 510 511 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 512 513 set_desc_cnt(fsl_chan, &new->hw, copy); 514 set_desc_src(fsl_chan, &new->hw, dma_src); 515 set_desc_dest(fsl_chan, &new->hw, dma_dest); 516 517 if (!first) 518 first = new; 519 else 520 set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys); 521 522 new->async_tx.cookie = 0; 523 async_tx_ack(&new->async_tx); 524 525 prev = new; 526 len -= copy; 527 dma_src += copy; 528 dma_dest += copy; 529 530 /* Insert the link descriptor to the LD ring */ 531 list_add_tail(&new->node, &first->tx_list); 532 } while (len); 533 534 new->async_tx.flags = flags; /* client is in control of this ack */ 535 new->async_tx.cookie = -EBUSY; 536 537 /* Set End-of-link to the last link descriptor of new list*/ 538 set_ld_eol(fsl_chan, new); 539 540 return &first->async_tx; 541 542 fail: 543 if (!first) 544 return NULL; 545 546 list = &first->tx_list; 547 list_for_each_entry_safe_reverse(new, prev, list, node) { 548 list_del(&new->node); 549 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys); 550 } 551 552 return NULL; 553 } 554 555 /** 556 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 557 * @chan: DMA channel 558 * @sgl: scatterlist to transfer to/from 559 * @sg_len: number of entries in @scatterlist 560 * @direction: DMA direction 561 * @flags: DMAEngine flags 562 * 563 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the 564 * DMA_SLAVE API, this gets the device-specific information from the 565 * chan->private variable. 566 */ 567 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg( 568 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 569 enum dma_data_direction direction, unsigned long flags) 570 { 571 struct fsl_dma_chan *fsl_chan; 572 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL; 573 struct fsl_dma_slave *slave; 574 struct list_head *tx_list; 575 size_t copy; 576 577 int i; 578 struct scatterlist *sg; 579 size_t sg_used; 580 size_t hw_used; 581 struct fsl_dma_hw_addr *hw; 582 dma_addr_t dma_dst, dma_src; 583 584 if (!chan) 585 return NULL; 586 587 if (!chan->private) 588 return NULL; 589 590 fsl_chan = to_fsl_chan(chan); 591 slave = chan->private; 592 593 if (list_empty(&slave->addresses)) 594 return NULL; 595 596 hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry); 597 hw_used = 0; 598 599 /* 600 * Build the hardware transaction to copy from the scatterlist to 601 * the hardware, or from the hardware to the scatterlist 602 * 603 * If you are copying from the hardware to the scatterlist and it 604 * takes two hardware entries to fill an entire page, then both 605 * hardware entries will be coalesced into the same page 606 * 607 * If you are copying from the scatterlist to the hardware and a 608 * single page can fill two hardware entries, then the data will 609 * be read out of the page into the first hardware entry, and so on 610 */ 611 for_each_sg(sgl, sg, sg_len, i) { 612 sg_used = 0; 613 614 /* Loop until the entire scatterlist entry is used */ 615 while (sg_used < sg_dma_len(sg)) { 616 617 /* 618 * If we've used up the current hardware address/length 619 * pair, we need to load a new one 620 * 621 * This is done in a while loop so that descriptors with 622 * length == 0 will be skipped 623 */ 624 while (hw_used >= hw->length) { 625 626 /* 627 * If the current hardware entry is the last 628 * entry in the list, we're finished 629 */ 630 if (list_is_last(&hw->entry, &slave->addresses)) 631 goto finished; 632 633 /* Get the next hardware address/length pair */ 634 hw = list_entry(hw->entry.next, 635 struct fsl_dma_hw_addr, entry); 636 hw_used = 0; 637 } 638 639 /* Allocate the link descriptor from DMA pool */ 640 new = fsl_dma_alloc_descriptor(fsl_chan); 641 if (!new) { 642 dev_err(fsl_chan->dev, "No free memory for " 643 "link descriptor\n"); 644 goto fail; 645 } 646 #ifdef FSL_DMA_LD_DEBUG 647 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new); 648 #endif 649 650 /* 651 * Calculate the maximum number of bytes to transfer, 652 * making sure it is less than the DMA controller limit 653 */ 654 copy = min_t(size_t, sg_dma_len(sg) - sg_used, 655 hw->length - hw_used); 656 copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT); 657 658 /* 659 * DMA_FROM_DEVICE 660 * from the hardware to the scatterlist 661 * 662 * DMA_TO_DEVICE 663 * from the scatterlist to the hardware 664 */ 665 if (direction == DMA_FROM_DEVICE) { 666 dma_src = hw->address + hw_used; 667 dma_dst = sg_dma_address(sg) + sg_used; 668 } else { 669 dma_src = sg_dma_address(sg) + sg_used; 670 dma_dst = hw->address + hw_used; 671 } 672 673 /* Fill in the descriptor */ 674 set_desc_cnt(fsl_chan, &new->hw, copy); 675 set_desc_src(fsl_chan, &new->hw, dma_src); 676 set_desc_dest(fsl_chan, &new->hw, dma_dst); 677 678 /* 679 * If this is not the first descriptor, chain the 680 * current descriptor after the previous descriptor 681 */ 682 if (!first) { 683 first = new; 684 } else { 685 set_desc_next(fsl_chan, &prev->hw, 686 new->async_tx.phys); 687 } 688 689 new->async_tx.cookie = 0; 690 async_tx_ack(&new->async_tx); 691 692 prev = new; 693 sg_used += copy; 694 hw_used += copy; 695 696 /* Insert the link descriptor into the LD ring */ 697 list_add_tail(&new->node, &first->tx_list); 698 } 699 } 700 701 finished: 702 703 /* All of the hardware address/length pairs had length == 0 */ 704 if (!first || !new) 705 return NULL; 706 707 new->async_tx.flags = flags; 708 new->async_tx.cookie = -EBUSY; 709 710 /* Set End-of-link to the last link descriptor of new list */ 711 set_ld_eol(fsl_chan, new); 712 713 /* Enable extra controller features */ 714 if (fsl_chan->set_src_loop_size) 715 fsl_chan->set_src_loop_size(fsl_chan, slave->src_loop_size); 716 717 if (fsl_chan->set_dest_loop_size) 718 fsl_chan->set_dest_loop_size(fsl_chan, slave->dst_loop_size); 719 720 if (fsl_chan->toggle_ext_start) 721 fsl_chan->toggle_ext_start(fsl_chan, slave->external_start); 722 723 if (fsl_chan->toggle_ext_pause) 724 fsl_chan->toggle_ext_pause(fsl_chan, slave->external_pause); 725 726 if (fsl_chan->set_request_count) 727 fsl_chan->set_request_count(fsl_chan, slave->request_count); 728 729 return &first->async_tx; 730 731 fail: 732 /* If first was not set, then we failed to allocate the very first 733 * descriptor, and we're done */ 734 if (!first) 735 return NULL; 736 737 /* 738 * First is set, so all of the descriptors we allocated have been added 739 * to first->tx_list, INCLUDING "first" itself. Therefore we 740 * must traverse the list backwards freeing each descriptor in turn 741 * 742 * We're re-using variables for the loop, oh well 743 */ 744 tx_list = &first->tx_list; 745 list_for_each_entry_safe_reverse(new, prev, tx_list, node) { 746 list_del_init(&new->node); 747 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys); 748 } 749 750 return NULL; 751 } 752 753 static void fsl_dma_device_terminate_all(struct dma_chan *chan) 754 { 755 struct fsl_dma_chan *fsl_chan; 756 struct fsl_desc_sw *desc, *tmp; 757 unsigned long flags; 758 759 if (!chan) 760 return; 761 762 fsl_chan = to_fsl_chan(chan); 763 764 /* Halt the DMA engine */ 765 dma_halt(fsl_chan); 766 767 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 768 769 /* Remove and free all of the descriptors in the LD queue */ 770 list_for_each_entry_safe(desc, tmp, &fsl_chan->ld_queue, node) { 771 list_del(&desc->node); 772 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); 773 } 774 775 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 776 } 777 778 /** 779 * fsl_dma_update_completed_cookie - Update the completed cookie. 780 * @fsl_chan : Freescale DMA channel 781 */ 782 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan) 783 { 784 struct fsl_desc_sw *cur_desc, *desc; 785 dma_addr_t ld_phy; 786 787 ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK; 788 789 if (ld_phy) { 790 cur_desc = NULL; 791 list_for_each_entry(desc, &fsl_chan->ld_queue, node) 792 if (desc->async_tx.phys == ld_phy) { 793 cur_desc = desc; 794 break; 795 } 796 797 if (cur_desc && cur_desc->async_tx.cookie) { 798 if (dma_is_idle(fsl_chan)) 799 fsl_chan->completed_cookie = 800 cur_desc->async_tx.cookie; 801 else 802 fsl_chan->completed_cookie = 803 cur_desc->async_tx.cookie - 1; 804 } 805 } 806 } 807 808 /** 809 * fsl_chan_ld_cleanup - Clean up link descriptors 810 * @fsl_chan : Freescale DMA channel 811 * 812 * This function clean up the ld_queue of DMA channel. 813 * If 'in_intr' is set, the function will move the link descriptor to 814 * the recycle list. Otherwise, free it directly. 815 */ 816 static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan) 817 { 818 struct fsl_desc_sw *desc, *_desc; 819 unsigned long flags; 820 821 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 822 823 dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n", 824 fsl_chan->completed_cookie); 825 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { 826 dma_async_tx_callback callback; 827 void *callback_param; 828 829 if (dma_async_is_complete(desc->async_tx.cookie, 830 fsl_chan->completed_cookie, fsl_chan->common.cookie) 831 == DMA_IN_PROGRESS) 832 break; 833 834 callback = desc->async_tx.callback; 835 callback_param = desc->async_tx.callback_param; 836 837 /* Remove from ld_queue list */ 838 list_del(&desc->node); 839 840 dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n", 841 desc); 842 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); 843 844 /* Run the link descriptor callback function */ 845 if (callback) { 846 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 847 dev_dbg(fsl_chan->dev, "link descriptor %p callback\n", 848 desc); 849 callback(callback_param); 850 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 851 } 852 } 853 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 854 } 855 856 /** 857 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue. 858 * @fsl_chan : Freescale DMA channel 859 */ 860 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan) 861 { 862 struct list_head *ld_node; 863 dma_addr_t next_dest_addr; 864 unsigned long flags; 865 866 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 867 868 if (!dma_is_idle(fsl_chan)) 869 goto out_unlock; 870 871 dma_halt(fsl_chan); 872 873 /* If there are some link descriptors 874 * not transfered in queue. We need to start it. 875 */ 876 877 /* Find the first un-transfer desciptor */ 878 for (ld_node = fsl_chan->ld_queue.next; 879 (ld_node != &fsl_chan->ld_queue) 880 && (dma_async_is_complete( 881 to_fsl_desc(ld_node)->async_tx.cookie, 882 fsl_chan->completed_cookie, 883 fsl_chan->common.cookie) == DMA_SUCCESS); 884 ld_node = ld_node->next); 885 886 if (ld_node != &fsl_chan->ld_queue) { 887 /* Get the ld start address from ld_queue */ 888 next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys; 889 dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n", 890 (unsigned long long)next_dest_addr); 891 set_cdar(fsl_chan, next_dest_addr); 892 dma_start(fsl_chan); 893 } else { 894 set_cdar(fsl_chan, 0); 895 set_ndar(fsl_chan, 0); 896 } 897 898 out_unlock: 899 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 900 } 901 902 /** 903 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 904 * @fsl_chan : Freescale DMA channel 905 */ 906 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan) 907 { 908 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 909 910 #ifdef FSL_DMA_LD_DEBUG 911 struct fsl_desc_sw *ld; 912 unsigned long flags; 913 914 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 915 if (list_empty(&fsl_chan->ld_queue)) { 916 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 917 return; 918 } 919 920 dev_dbg(fsl_chan->dev, "--memcpy issue--\n"); 921 list_for_each_entry(ld, &fsl_chan->ld_queue, node) { 922 int i; 923 dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n", 924 fsl_chan->id, ld->async_tx.phys); 925 for (i = 0; i < 8; i++) 926 dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n", 927 i, *(((u32 *)&ld->hw) + i)); 928 } 929 dev_dbg(fsl_chan->dev, "----------------\n"); 930 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 931 #endif 932 933 fsl_chan_xfer_ld_queue(fsl_chan); 934 } 935 936 /** 937 * fsl_dma_is_complete - Determine the DMA status 938 * @fsl_chan : Freescale DMA channel 939 */ 940 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan, 941 dma_cookie_t cookie, 942 dma_cookie_t *done, 943 dma_cookie_t *used) 944 { 945 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 946 dma_cookie_t last_used; 947 dma_cookie_t last_complete; 948 949 fsl_chan_ld_cleanup(fsl_chan); 950 951 last_used = chan->cookie; 952 last_complete = fsl_chan->completed_cookie; 953 954 if (done) 955 *done = last_complete; 956 957 if (used) 958 *used = last_used; 959 960 return dma_async_is_complete(cookie, last_complete, last_used); 961 } 962 963 static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data) 964 { 965 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; 966 u32 stat; 967 int update_cookie = 0; 968 int xfer_ld_q = 0; 969 970 stat = get_sr(fsl_chan); 971 dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n", 972 fsl_chan->id, stat); 973 set_sr(fsl_chan, stat); /* Clear the event register */ 974 975 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 976 if (!stat) 977 return IRQ_NONE; 978 979 if (stat & FSL_DMA_SR_TE) 980 dev_err(fsl_chan->dev, "Transfer Error!\n"); 981 982 /* Programming Error 983 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 984 * triger a PE interrupt. 985 */ 986 if (stat & FSL_DMA_SR_PE) { 987 dev_dbg(fsl_chan->dev, "event: Programming Error INT\n"); 988 if (get_bcr(fsl_chan) == 0) { 989 /* BCR register is 0, this is a DMA_INTERRUPT async_tx. 990 * Now, update the completed cookie, and continue the 991 * next uncompleted transfer. 992 */ 993 update_cookie = 1; 994 xfer_ld_q = 1; 995 } 996 stat &= ~FSL_DMA_SR_PE; 997 } 998 999 /* If the link descriptor segment transfer finishes, 1000 * we will recycle the used descriptor. 1001 */ 1002 if (stat & FSL_DMA_SR_EOSI) { 1003 dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n"); 1004 dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n", 1005 (unsigned long long)get_cdar(fsl_chan), 1006 (unsigned long long)get_ndar(fsl_chan)); 1007 stat &= ~FSL_DMA_SR_EOSI; 1008 update_cookie = 1; 1009 } 1010 1011 /* For MPC8349, EOCDI event need to update cookie 1012 * and start the next transfer if it exist. 1013 */ 1014 if (stat & FSL_DMA_SR_EOCDI) { 1015 dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n"); 1016 stat &= ~FSL_DMA_SR_EOCDI; 1017 update_cookie = 1; 1018 xfer_ld_q = 1; 1019 } 1020 1021 /* If it current transfer is the end-of-transfer, 1022 * we should clear the Channel Start bit for 1023 * prepare next transfer. 1024 */ 1025 if (stat & FSL_DMA_SR_EOLNI) { 1026 dev_dbg(fsl_chan->dev, "event: End-of-link INT\n"); 1027 stat &= ~FSL_DMA_SR_EOLNI; 1028 xfer_ld_q = 1; 1029 } 1030 1031 if (update_cookie) 1032 fsl_dma_update_completed_cookie(fsl_chan); 1033 if (xfer_ld_q) 1034 fsl_chan_xfer_ld_queue(fsl_chan); 1035 if (stat) 1036 dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n", 1037 stat); 1038 1039 dev_dbg(fsl_chan->dev, "event: Exit\n"); 1040 tasklet_schedule(&fsl_chan->tasklet); 1041 return IRQ_HANDLED; 1042 } 1043 1044 static irqreturn_t fsl_dma_do_interrupt(int irq, void *data) 1045 { 1046 struct fsl_dma_device *fdev = (struct fsl_dma_device *)data; 1047 u32 gsr; 1048 int ch_nr; 1049 1050 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base) 1051 : in_le32(fdev->reg_base); 1052 ch_nr = (32 - ffs(gsr)) / 8; 1053 1054 return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq, 1055 fdev->chan[ch_nr]) : IRQ_NONE; 1056 } 1057 1058 static void dma_do_tasklet(unsigned long data) 1059 { 1060 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; 1061 fsl_chan_ld_cleanup(fsl_chan); 1062 } 1063 1064 static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev, 1065 struct device_node *node, u32 feature, const char *compatible) 1066 { 1067 struct fsl_dma_chan *new_fsl_chan; 1068 int err; 1069 1070 /* alloc channel */ 1071 new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL); 1072 if (!new_fsl_chan) { 1073 dev_err(fdev->dev, "No free memory for allocating " 1074 "dma channels!\n"); 1075 return -ENOMEM; 1076 } 1077 1078 /* get dma channel register base */ 1079 err = of_address_to_resource(node, 0, &new_fsl_chan->reg); 1080 if (err) { 1081 dev_err(fdev->dev, "Can't get %s property 'reg'\n", 1082 node->full_name); 1083 goto err_no_reg; 1084 } 1085 1086 new_fsl_chan->feature = feature; 1087 1088 if (!fdev->feature) 1089 fdev->feature = new_fsl_chan->feature; 1090 1091 /* If the DMA device's feature is different than its channels', 1092 * report the bug. 1093 */ 1094 WARN_ON(fdev->feature != new_fsl_chan->feature); 1095 1096 new_fsl_chan->dev = fdev->dev; 1097 new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start, 1098 new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1); 1099 1100 new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7; 1101 if (new_fsl_chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { 1102 dev_err(fdev->dev, "There is no %d channel!\n", 1103 new_fsl_chan->id); 1104 err = -EINVAL; 1105 goto err_no_chan; 1106 } 1107 fdev->chan[new_fsl_chan->id] = new_fsl_chan; 1108 tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet, 1109 (unsigned long)new_fsl_chan); 1110 1111 /* Init the channel */ 1112 dma_init(new_fsl_chan); 1113 1114 /* Clear cdar registers */ 1115 set_cdar(new_fsl_chan, 0); 1116 1117 switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) { 1118 case FSL_DMA_IP_85XX: 1119 new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 1120 case FSL_DMA_IP_83XX: 1121 new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start; 1122 new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size; 1123 new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size; 1124 new_fsl_chan->set_request_count = fsl_chan_set_request_count; 1125 } 1126 1127 spin_lock_init(&new_fsl_chan->desc_lock); 1128 INIT_LIST_HEAD(&new_fsl_chan->ld_queue); 1129 1130 new_fsl_chan->common.device = &fdev->common; 1131 1132 /* Add the channel to DMA device channel list */ 1133 list_add_tail(&new_fsl_chan->common.device_node, 1134 &fdev->common.channels); 1135 fdev->common.chancnt++; 1136 1137 new_fsl_chan->irq = irq_of_parse_and_map(node, 0); 1138 if (new_fsl_chan->irq != NO_IRQ) { 1139 err = request_irq(new_fsl_chan->irq, 1140 &fsl_dma_chan_do_interrupt, IRQF_SHARED, 1141 "fsldma-channel", new_fsl_chan); 1142 if (err) { 1143 dev_err(fdev->dev, "DMA channel %s request_irq error " 1144 "with return %d\n", node->full_name, err); 1145 goto err_no_irq; 1146 } 1147 } 1148 1149 dev_info(fdev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id, 1150 compatible, 1151 new_fsl_chan->irq != NO_IRQ ? new_fsl_chan->irq : fdev->irq); 1152 1153 return 0; 1154 1155 err_no_irq: 1156 list_del(&new_fsl_chan->common.device_node); 1157 err_no_chan: 1158 iounmap(new_fsl_chan->reg_base); 1159 err_no_reg: 1160 kfree(new_fsl_chan); 1161 return err; 1162 } 1163 1164 static void fsl_dma_chan_remove(struct fsl_dma_chan *fchan) 1165 { 1166 if (fchan->irq != NO_IRQ) 1167 free_irq(fchan->irq, fchan); 1168 list_del(&fchan->common.device_node); 1169 iounmap(fchan->reg_base); 1170 kfree(fchan); 1171 } 1172 1173 static int __devinit of_fsl_dma_probe(struct of_device *dev, 1174 const struct of_device_id *match) 1175 { 1176 int err; 1177 struct fsl_dma_device *fdev; 1178 struct device_node *child; 1179 1180 fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL); 1181 if (!fdev) { 1182 dev_err(&dev->dev, "No enough memory for 'priv'\n"); 1183 return -ENOMEM; 1184 } 1185 fdev->dev = &dev->dev; 1186 INIT_LIST_HEAD(&fdev->common.channels); 1187 1188 /* get DMA controller register base */ 1189 err = of_address_to_resource(dev->node, 0, &fdev->reg); 1190 if (err) { 1191 dev_err(&dev->dev, "Can't get %s property 'reg'\n", 1192 dev->node->full_name); 1193 goto err_no_reg; 1194 } 1195 1196 dev_info(&dev->dev, "Probe the Freescale DMA driver for %s " 1197 "controller at 0x%llx...\n", 1198 match->compatible, (unsigned long long)fdev->reg.start); 1199 fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end 1200 - fdev->reg.start + 1); 1201 1202 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1203 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); 1204 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); 1205 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1206 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1207 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; 1208 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1209 fdev->common.device_is_tx_complete = fsl_dma_is_complete; 1210 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1211 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg; 1212 fdev->common.device_terminate_all = fsl_dma_device_terminate_all; 1213 fdev->common.dev = &dev->dev; 1214 1215 fdev->irq = irq_of_parse_and_map(dev->node, 0); 1216 if (fdev->irq != NO_IRQ) { 1217 err = request_irq(fdev->irq, &fsl_dma_do_interrupt, IRQF_SHARED, 1218 "fsldma-device", fdev); 1219 if (err) { 1220 dev_err(&dev->dev, "DMA device request_irq error " 1221 "with return %d\n", err); 1222 goto err; 1223 } 1224 } 1225 1226 dev_set_drvdata(&(dev->dev), fdev); 1227 1228 /* We cannot use of_platform_bus_probe() because there is no 1229 * of_platform_bus_remove. Instead, we manually instantiate every DMA 1230 * channel object. 1231 */ 1232 for_each_child_of_node(dev->node, child) { 1233 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) 1234 fsl_dma_chan_probe(fdev, child, 1235 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, 1236 "fsl,eloplus-dma-channel"); 1237 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) 1238 fsl_dma_chan_probe(fdev, child, 1239 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, 1240 "fsl,elo-dma-channel"); 1241 } 1242 1243 dma_async_device_register(&fdev->common); 1244 return 0; 1245 1246 err: 1247 iounmap(fdev->reg_base); 1248 err_no_reg: 1249 kfree(fdev); 1250 return err; 1251 } 1252 1253 static int of_fsl_dma_remove(struct of_device *of_dev) 1254 { 1255 struct fsl_dma_device *fdev; 1256 unsigned int i; 1257 1258 fdev = dev_get_drvdata(&of_dev->dev); 1259 1260 dma_async_device_unregister(&fdev->common); 1261 1262 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) 1263 if (fdev->chan[i]) 1264 fsl_dma_chan_remove(fdev->chan[i]); 1265 1266 if (fdev->irq != NO_IRQ) 1267 free_irq(fdev->irq, fdev); 1268 1269 iounmap(fdev->reg_base); 1270 1271 kfree(fdev); 1272 dev_set_drvdata(&of_dev->dev, NULL); 1273 1274 return 0; 1275 } 1276 1277 static struct of_device_id of_fsl_dma_ids[] = { 1278 { .compatible = "fsl,eloplus-dma", }, 1279 { .compatible = "fsl,elo-dma", }, 1280 {} 1281 }; 1282 1283 static struct of_platform_driver of_fsl_dma_driver = { 1284 .name = "fsl-elo-dma", 1285 .match_table = of_fsl_dma_ids, 1286 .probe = of_fsl_dma_probe, 1287 .remove = of_fsl_dma_remove, 1288 }; 1289 1290 static __init int of_fsl_dma_init(void) 1291 { 1292 int ret; 1293 1294 pr_info("Freescale Elo / Elo Plus DMA driver\n"); 1295 1296 ret = of_register_platform_driver(&of_fsl_dma_driver); 1297 if (ret) 1298 pr_err("fsldma: failed to register platform driver\n"); 1299 1300 return ret; 1301 } 1302 1303 static void __exit of_fsl_dma_exit(void) 1304 { 1305 of_unregister_platform_driver(&of_fsl_dma_driver); 1306 } 1307 1308 subsys_initcall(of_fsl_dma_init); 1309 module_exit(of_fsl_dma_exit); 1310 1311 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver"); 1312 MODULE_LICENSE("GPL"); 1313