xref: /openbmc/linux/drivers/dma/fsldma.c (revision a09d2831)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA contorller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/interrupt.h>
31 #include <linux/dmaengine.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmapool.h>
35 #include <linux/of_platform.h>
36 
37 #include <asm/fsldma.h>
38 #include "fsldma.h"
39 
40 static void dma_init(struct fsl_dma_chan *fsl_chan)
41 {
42 	/* Reset the channel */
43 	DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
44 
45 	switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
46 	case FSL_DMA_IP_85XX:
47 		/* Set the channel to below modes:
48 		 * EIE - Error interrupt enable
49 		 * EOSIE - End of segments interrupt enable (basic mode)
50 		 * EOLNIE - End of links interrupt enable
51 		 */
52 		DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
53 				| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
54 		break;
55 	case FSL_DMA_IP_83XX:
56 		/* Set the channel to below modes:
57 		 * EOTIE - End-of-transfer interrupt enable
58 		 * PRC_RM - PCI read multiple
59 		 */
60 		DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE
61 				| FSL_DMA_MR_PRC_RM, 32);
62 		break;
63 	}
64 
65 }
66 
67 static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val)
68 {
69 	DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
70 }
71 
72 static u32 get_sr(struct fsl_dma_chan *fsl_chan)
73 {
74 	return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
75 }
76 
77 static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
78 				struct fsl_dma_ld_hw *hw, u32 count)
79 {
80 	hw->count = CPU_TO_DMA(fsl_chan, count, 32);
81 }
82 
83 static void set_desc_src(struct fsl_dma_chan *fsl_chan,
84 				struct fsl_dma_ld_hw *hw, dma_addr_t src)
85 {
86 	u64 snoop_bits;
87 
88 	snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
89 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
90 	hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
91 }
92 
93 static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
94 				struct fsl_dma_ld_hw *hw, dma_addr_t dest)
95 {
96 	u64 snoop_bits;
97 
98 	snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
99 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
100 	hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
101 }
102 
103 static void set_desc_next(struct fsl_dma_chan *fsl_chan,
104 				struct fsl_dma_ld_hw *hw, dma_addr_t next)
105 {
106 	u64 snoop_bits;
107 
108 	snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
109 		? FSL_DMA_SNEN : 0;
110 	hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
111 }
112 
113 static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
114 {
115 	DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
116 }
117 
118 static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
119 {
120 	return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
121 }
122 
123 static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
124 {
125 	DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
126 }
127 
128 static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
129 {
130 	return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
131 }
132 
133 static u32 get_bcr(struct fsl_dma_chan *fsl_chan)
134 {
135 	return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32);
136 }
137 
138 static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
139 {
140 	u32 sr = get_sr(fsl_chan);
141 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
142 }
143 
144 static void dma_start(struct fsl_dma_chan *fsl_chan)
145 {
146 	u32 mr_set = 0;
147 
148 	if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
149 		DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
150 		mr_set |= FSL_DMA_MR_EMP_EN;
151 	} else if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
152 		DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
153 			DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
154 				& ~FSL_DMA_MR_EMP_EN, 32);
155 	}
156 
157 	if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
158 		mr_set |= FSL_DMA_MR_EMS_EN;
159 	else
160 		mr_set |= FSL_DMA_MR_CS;
161 
162 	DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
163 			DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
164 			| mr_set, 32);
165 }
166 
167 static void dma_halt(struct fsl_dma_chan *fsl_chan)
168 {
169 	int i;
170 
171 	DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
172 		DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA,
173 		32);
174 	DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
175 		DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS
176 		| FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32);
177 
178 	for (i = 0; i < 100; i++) {
179 		if (dma_is_idle(fsl_chan))
180 			break;
181 		udelay(10);
182 	}
183 	if (i >= 100 && !dma_is_idle(fsl_chan))
184 		dev_err(fsl_chan->dev, "DMA halt timeout!\n");
185 }
186 
187 static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
188 			struct fsl_desc_sw *desc)
189 {
190 	u64 snoop_bits;
191 
192 	snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
193 		? FSL_DMA_SNEN : 0;
194 
195 	desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
196 		DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
197 			| snoop_bits, 64);
198 }
199 
200 static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
201 		struct fsl_desc_sw *new_desc)
202 {
203 	struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
204 
205 	if (list_empty(&fsl_chan->ld_queue))
206 		return;
207 
208 	/* Link to the new descriptor physical address and
209 	 * Enable End-of-segment interrupt for
210 	 * the last link descriptor.
211 	 * (the previous node's next link descriptor)
212 	 *
213 	 * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
214 	 */
215 	queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
216 			new_desc->async_tx.phys | FSL_DMA_EOSIE |
217 			(((fsl_chan->feature & FSL_DMA_IP_MASK)
218 				== FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
219 }
220 
221 /**
222  * fsl_chan_set_src_loop_size - Set source address hold transfer size
223  * @fsl_chan : Freescale DMA channel
224  * @size     : Address loop size, 0 for disable loop
225  *
226  * The set source address hold transfer size. The source
227  * address hold or loop transfer size is when the DMA transfer
228  * data from source address (SA), if the loop size is 4, the DMA will
229  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
230  * SA + 1 ... and so on.
231  */
232 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
233 {
234 	switch (size) {
235 	case 0:
236 		DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
237 			DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
238 			(~FSL_DMA_MR_SAHE), 32);
239 		break;
240 	case 1:
241 	case 2:
242 	case 4:
243 	case 8:
244 		DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
245 			DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
246 			FSL_DMA_MR_SAHE | (__ilog2(size) << 14),
247 			32);
248 		break;
249 	}
250 }
251 
252 /**
253  * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
254  * @fsl_chan : Freescale DMA channel
255  * @size     : Address loop size, 0 for disable loop
256  *
257  * The set destination address hold transfer size. The destination
258  * address hold or loop transfer size is when the DMA transfer
259  * data to destination address (TA), if the loop size is 4, the DMA will
260  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
261  * TA + 1 ... and so on.
262  */
263 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
264 {
265 	switch (size) {
266 	case 0:
267 		DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
268 			DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
269 			(~FSL_DMA_MR_DAHE), 32);
270 		break;
271 	case 1:
272 	case 2:
273 	case 4:
274 	case 8:
275 		DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
276 			DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
277 			FSL_DMA_MR_DAHE | (__ilog2(size) << 16),
278 			32);
279 		break;
280 	}
281 }
282 
283 /**
284  * fsl_chan_set_request_count - Set DMA Request Count for external control
285  * @fsl_chan : Freescale DMA channel
286  * @size     : Number of bytes to transfer in a single request
287  *
288  * The Freescale DMA channel can be controlled by the external signal DREQ#.
289  * The DMA request count is how many bytes are allowed to transfer before
290  * pausing the channel, after which a new assertion of DREQ# resumes channel
291  * operation.
292  *
293  * A size of 0 disables external pause control. The maximum size is 1024.
294  */
295 static void fsl_chan_set_request_count(struct fsl_dma_chan *fsl_chan, int size)
296 {
297 	BUG_ON(size > 1024);
298 	DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
299 		DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
300 			| ((__ilog2(size) << 24) & 0x0f000000),
301 		32);
302 }
303 
304 /**
305  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
306  * @fsl_chan : Freescale DMA channel
307  * @enable   : 0 is disabled, 1 is enabled.
308  *
309  * The Freescale DMA channel can be controlled by the external signal DREQ#.
310  * The DMA Request Count feature should be used in addition to this feature
311  * to set the number of bytes to transfer before pausing the channel.
312  */
313 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int enable)
314 {
315 	if (enable)
316 		fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
317 	else
318 		fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
319 }
320 
321 /**
322  * fsl_chan_toggle_ext_start - Toggle channel external start status
323  * @fsl_chan : Freescale DMA channel
324  * @enable   : 0 is disabled, 1 is enabled.
325  *
326  * If enable the external start, the channel can be started by an
327  * external DMA start pin. So the dma_start() does not start the
328  * transfer immediately. The DMA channel will wait for the
329  * control pin asserted.
330  */
331 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
332 {
333 	if (enable)
334 		fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
335 	else
336 		fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
337 }
338 
339 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
340 {
341 	struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
342 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
343 	struct fsl_desc_sw *child;
344 	unsigned long flags;
345 	dma_cookie_t cookie;
346 
347 	/* cookie increment and adding to ld_queue must be atomic */
348 	spin_lock_irqsave(&fsl_chan->desc_lock, flags);
349 
350 	cookie = fsl_chan->common.cookie;
351 	list_for_each_entry(child, &desc->tx_list, node) {
352 		cookie++;
353 		if (cookie < 0)
354 			cookie = 1;
355 
356 		desc->async_tx.cookie = cookie;
357 	}
358 
359 	fsl_chan->common.cookie = cookie;
360 	append_ld_queue(fsl_chan, desc);
361 	list_splice_init(&desc->tx_list, fsl_chan->ld_queue.prev);
362 
363 	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
364 
365 	return cookie;
366 }
367 
368 /**
369  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
370  * @fsl_chan : Freescale DMA channel
371  *
372  * Return - The descriptor allocated. NULL for failed.
373  */
374 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
375 					struct fsl_dma_chan *fsl_chan)
376 {
377 	dma_addr_t pdesc;
378 	struct fsl_desc_sw *desc_sw;
379 
380 	desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
381 	if (desc_sw) {
382 		memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
383 		INIT_LIST_HEAD(&desc_sw->tx_list);
384 		dma_async_tx_descriptor_init(&desc_sw->async_tx,
385 						&fsl_chan->common);
386 		desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
387 		desc_sw->async_tx.phys = pdesc;
388 	}
389 
390 	return desc_sw;
391 }
392 
393 
394 /**
395  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
396  * @fsl_chan : Freescale DMA channel
397  *
398  * This function will create a dma pool for descriptor allocation.
399  *
400  * Return - The number of descriptors allocated.
401  */
402 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
403 {
404 	struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
405 
406 	/* Has this channel already been allocated? */
407 	if (fsl_chan->desc_pool)
408 		return 1;
409 
410 	/* We need the descriptor to be aligned to 32bytes
411 	 * for meeting FSL DMA specification requirement.
412 	 */
413 	fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
414 			fsl_chan->dev, sizeof(struct fsl_desc_sw),
415 			32, 0);
416 	if (!fsl_chan->desc_pool) {
417 		dev_err(fsl_chan->dev, "No memory for channel %d "
418 			"descriptor dma pool.\n", fsl_chan->id);
419 		return 0;
420 	}
421 
422 	return 1;
423 }
424 
425 /**
426  * fsl_dma_free_chan_resources - Free all resources of the channel.
427  * @fsl_chan : Freescale DMA channel
428  */
429 static void fsl_dma_free_chan_resources(struct dma_chan *chan)
430 {
431 	struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
432 	struct fsl_desc_sw *desc, *_desc;
433 	unsigned long flags;
434 
435 	dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
436 	spin_lock_irqsave(&fsl_chan->desc_lock, flags);
437 	list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
438 #ifdef FSL_DMA_LD_DEBUG
439 		dev_dbg(fsl_chan->dev,
440 				"LD %p will be released.\n", desc);
441 #endif
442 		list_del(&desc->node);
443 		/* free link descriptor */
444 		dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
445 	}
446 	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
447 	dma_pool_destroy(fsl_chan->desc_pool);
448 
449 	fsl_chan->desc_pool = NULL;
450 }
451 
452 static struct dma_async_tx_descriptor *
453 fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
454 {
455 	struct fsl_dma_chan *fsl_chan;
456 	struct fsl_desc_sw *new;
457 
458 	if (!chan)
459 		return NULL;
460 
461 	fsl_chan = to_fsl_chan(chan);
462 
463 	new = fsl_dma_alloc_descriptor(fsl_chan);
464 	if (!new) {
465 		dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
466 		return NULL;
467 	}
468 
469 	new->async_tx.cookie = -EBUSY;
470 	new->async_tx.flags = flags;
471 
472 	/* Insert the link descriptor to the LD ring */
473 	list_add_tail(&new->node, &new->tx_list);
474 
475 	/* Set End-of-link to the last link descriptor of new list*/
476 	set_ld_eol(fsl_chan, new);
477 
478 	return &new->async_tx;
479 }
480 
481 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
482 	struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
483 	size_t len, unsigned long flags)
484 {
485 	struct fsl_dma_chan *fsl_chan;
486 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
487 	struct list_head *list;
488 	size_t copy;
489 
490 	if (!chan)
491 		return NULL;
492 
493 	if (!len)
494 		return NULL;
495 
496 	fsl_chan = to_fsl_chan(chan);
497 
498 	do {
499 
500 		/* Allocate the link descriptor from DMA pool */
501 		new = fsl_dma_alloc_descriptor(fsl_chan);
502 		if (!new) {
503 			dev_err(fsl_chan->dev,
504 					"No free memory for link descriptor\n");
505 			goto fail;
506 		}
507 #ifdef FSL_DMA_LD_DEBUG
508 		dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
509 #endif
510 
511 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
512 
513 		set_desc_cnt(fsl_chan, &new->hw, copy);
514 		set_desc_src(fsl_chan, &new->hw, dma_src);
515 		set_desc_dest(fsl_chan, &new->hw, dma_dest);
516 
517 		if (!first)
518 			first = new;
519 		else
520 			set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
521 
522 		new->async_tx.cookie = 0;
523 		async_tx_ack(&new->async_tx);
524 
525 		prev = new;
526 		len -= copy;
527 		dma_src += copy;
528 		dma_dest += copy;
529 
530 		/* Insert the link descriptor to the LD ring */
531 		list_add_tail(&new->node, &first->tx_list);
532 	} while (len);
533 
534 	new->async_tx.flags = flags; /* client is in control of this ack */
535 	new->async_tx.cookie = -EBUSY;
536 
537 	/* Set End-of-link to the last link descriptor of new list*/
538 	set_ld_eol(fsl_chan, new);
539 
540 	return &first->async_tx;
541 
542 fail:
543 	if (!first)
544 		return NULL;
545 
546 	list = &first->tx_list;
547 	list_for_each_entry_safe_reverse(new, prev, list, node) {
548 		list_del(&new->node);
549 		dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
550 	}
551 
552 	return NULL;
553 }
554 
555 /**
556  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
557  * @chan: DMA channel
558  * @sgl: scatterlist to transfer to/from
559  * @sg_len: number of entries in @scatterlist
560  * @direction: DMA direction
561  * @flags: DMAEngine flags
562  *
563  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
564  * DMA_SLAVE API, this gets the device-specific information from the
565  * chan->private variable.
566  */
567 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
568 	struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
569 	enum dma_data_direction direction, unsigned long flags)
570 {
571 	struct fsl_dma_chan *fsl_chan;
572 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
573 	struct fsl_dma_slave *slave;
574 	struct list_head *tx_list;
575 	size_t copy;
576 
577 	int i;
578 	struct scatterlist *sg;
579 	size_t sg_used;
580 	size_t hw_used;
581 	struct fsl_dma_hw_addr *hw;
582 	dma_addr_t dma_dst, dma_src;
583 
584 	if (!chan)
585 		return NULL;
586 
587 	if (!chan->private)
588 		return NULL;
589 
590 	fsl_chan = to_fsl_chan(chan);
591 	slave = chan->private;
592 
593 	if (list_empty(&slave->addresses))
594 		return NULL;
595 
596 	hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
597 	hw_used = 0;
598 
599 	/*
600 	 * Build the hardware transaction to copy from the scatterlist to
601 	 * the hardware, or from the hardware to the scatterlist
602 	 *
603 	 * If you are copying from the hardware to the scatterlist and it
604 	 * takes two hardware entries to fill an entire page, then both
605 	 * hardware entries will be coalesced into the same page
606 	 *
607 	 * If you are copying from the scatterlist to the hardware and a
608 	 * single page can fill two hardware entries, then the data will
609 	 * be read out of the page into the first hardware entry, and so on
610 	 */
611 	for_each_sg(sgl, sg, sg_len, i) {
612 		sg_used = 0;
613 
614 		/* Loop until the entire scatterlist entry is used */
615 		while (sg_used < sg_dma_len(sg)) {
616 
617 			/*
618 			 * If we've used up the current hardware address/length
619 			 * pair, we need to load a new one
620 			 *
621 			 * This is done in a while loop so that descriptors with
622 			 * length == 0 will be skipped
623 			 */
624 			while (hw_used >= hw->length) {
625 
626 				/*
627 				 * If the current hardware entry is the last
628 				 * entry in the list, we're finished
629 				 */
630 				if (list_is_last(&hw->entry, &slave->addresses))
631 					goto finished;
632 
633 				/* Get the next hardware address/length pair */
634 				hw = list_entry(hw->entry.next,
635 						struct fsl_dma_hw_addr, entry);
636 				hw_used = 0;
637 			}
638 
639 			/* Allocate the link descriptor from DMA pool */
640 			new = fsl_dma_alloc_descriptor(fsl_chan);
641 			if (!new) {
642 				dev_err(fsl_chan->dev, "No free memory for "
643 						       "link descriptor\n");
644 				goto fail;
645 			}
646 #ifdef FSL_DMA_LD_DEBUG
647 			dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
648 #endif
649 
650 			/*
651 			 * Calculate the maximum number of bytes to transfer,
652 			 * making sure it is less than the DMA controller limit
653 			 */
654 			copy = min_t(size_t, sg_dma_len(sg) - sg_used,
655 					     hw->length - hw_used);
656 			copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
657 
658 			/*
659 			 * DMA_FROM_DEVICE
660 			 * from the hardware to the scatterlist
661 			 *
662 			 * DMA_TO_DEVICE
663 			 * from the scatterlist to the hardware
664 			 */
665 			if (direction == DMA_FROM_DEVICE) {
666 				dma_src = hw->address + hw_used;
667 				dma_dst = sg_dma_address(sg) + sg_used;
668 			} else {
669 				dma_src = sg_dma_address(sg) + sg_used;
670 				dma_dst = hw->address + hw_used;
671 			}
672 
673 			/* Fill in the descriptor */
674 			set_desc_cnt(fsl_chan, &new->hw, copy);
675 			set_desc_src(fsl_chan, &new->hw, dma_src);
676 			set_desc_dest(fsl_chan, &new->hw, dma_dst);
677 
678 			/*
679 			 * If this is not the first descriptor, chain the
680 			 * current descriptor after the previous descriptor
681 			 */
682 			if (!first) {
683 				first = new;
684 			} else {
685 				set_desc_next(fsl_chan, &prev->hw,
686 					      new->async_tx.phys);
687 			}
688 
689 			new->async_tx.cookie = 0;
690 			async_tx_ack(&new->async_tx);
691 
692 			prev = new;
693 			sg_used += copy;
694 			hw_used += copy;
695 
696 			/* Insert the link descriptor into the LD ring */
697 			list_add_tail(&new->node, &first->tx_list);
698 		}
699 	}
700 
701 finished:
702 
703 	/* All of the hardware address/length pairs had length == 0 */
704 	if (!first || !new)
705 		return NULL;
706 
707 	new->async_tx.flags = flags;
708 	new->async_tx.cookie = -EBUSY;
709 
710 	/* Set End-of-link to the last link descriptor of new list */
711 	set_ld_eol(fsl_chan, new);
712 
713 	/* Enable extra controller features */
714 	if (fsl_chan->set_src_loop_size)
715 		fsl_chan->set_src_loop_size(fsl_chan, slave->src_loop_size);
716 
717 	if (fsl_chan->set_dest_loop_size)
718 		fsl_chan->set_dest_loop_size(fsl_chan, slave->dst_loop_size);
719 
720 	if (fsl_chan->toggle_ext_start)
721 		fsl_chan->toggle_ext_start(fsl_chan, slave->external_start);
722 
723 	if (fsl_chan->toggle_ext_pause)
724 		fsl_chan->toggle_ext_pause(fsl_chan, slave->external_pause);
725 
726 	if (fsl_chan->set_request_count)
727 		fsl_chan->set_request_count(fsl_chan, slave->request_count);
728 
729 	return &first->async_tx;
730 
731 fail:
732 	/* If first was not set, then we failed to allocate the very first
733 	 * descriptor, and we're done */
734 	if (!first)
735 		return NULL;
736 
737 	/*
738 	 * First is set, so all of the descriptors we allocated have been added
739 	 * to first->tx_list, INCLUDING "first" itself. Therefore we
740 	 * must traverse the list backwards freeing each descriptor in turn
741 	 *
742 	 * We're re-using variables for the loop, oh well
743 	 */
744 	tx_list = &first->tx_list;
745 	list_for_each_entry_safe_reverse(new, prev, tx_list, node) {
746 		list_del_init(&new->node);
747 		dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
748 	}
749 
750 	return NULL;
751 }
752 
753 static void fsl_dma_device_terminate_all(struct dma_chan *chan)
754 {
755 	struct fsl_dma_chan *fsl_chan;
756 	struct fsl_desc_sw *desc, *tmp;
757 	unsigned long flags;
758 
759 	if (!chan)
760 		return;
761 
762 	fsl_chan = to_fsl_chan(chan);
763 
764 	/* Halt the DMA engine */
765 	dma_halt(fsl_chan);
766 
767 	spin_lock_irqsave(&fsl_chan->desc_lock, flags);
768 
769 	/* Remove and free all of the descriptors in the LD queue */
770 	list_for_each_entry_safe(desc, tmp, &fsl_chan->ld_queue, node) {
771 		list_del(&desc->node);
772 		dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
773 	}
774 
775 	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
776 }
777 
778 /**
779  * fsl_dma_update_completed_cookie - Update the completed cookie.
780  * @fsl_chan : Freescale DMA channel
781  */
782 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
783 {
784 	struct fsl_desc_sw *cur_desc, *desc;
785 	dma_addr_t ld_phy;
786 
787 	ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
788 
789 	if (ld_phy) {
790 		cur_desc = NULL;
791 		list_for_each_entry(desc, &fsl_chan->ld_queue, node)
792 			if (desc->async_tx.phys == ld_phy) {
793 				cur_desc = desc;
794 				break;
795 			}
796 
797 		if (cur_desc && cur_desc->async_tx.cookie) {
798 			if (dma_is_idle(fsl_chan))
799 				fsl_chan->completed_cookie =
800 					cur_desc->async_tx.cookie;
801 			else
802 				fsl_chan->completed_cookie =
803 					cur_desc->async_tx.cookie - 1;
804 		}
805 	}
806 }
807 
808 /**
809  * fsl_chan_ld_cleanup - Clean up link descriptors
810  * @fsl_chan : Freescale DMA channel
811  *
812  * This function clean up the ld_queue of DMA channel.
813  * If 'in_intr' is set, the function will move the link descriptor to
814  * the recycle list. Otherwise, free it directly.
815  */
816 static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
817 {
818 	struct fsl_desc_sw *desc, *_desc;
819 	unsigned long flags;
820 
821 	spin_lock_irqsave(&fsl_chan->desc_lock, flags);
822 
823 	dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
824 			fsl_chan->completed_cookie);
825 	list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
826 		dma_async_tx_callback callback;
827 		void *callback_param;
828 
829 		if (dma_async_is_complete(desc->async_tx.cookie,
830 			    fsl_chan->completed_cookie, fsl_chan->common.cookie)
831 				== DMA_IN_PROGRESS)
832 			break;
833 
834 		callback = desc->async_tx.callback;
835 		callback_param = desc->async_tx.callback_param;
836 
837 		/* Remove from ld_queue list */
838 		list_del(&desc->node);
839 
840 		dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
841 				desc);
842 		dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
843 
844 		/* Run the link descriptor callback function */
845 		if (callback) {
846 			spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
847 			dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
848 					desc);
849 			callback(callback_param);
850 			spin_lock_irqsave(&fsl_chan->desc_lock, flags);
851 		}
852 	}
853 	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
854 }
855 
856 /**
857  * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
858  * @fsl_chan : Freescale DMA channel
859  */
860 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
861 {
862 	struct list_head *ld_node;
863 	dma_addr_t next_dest_addr;
864 	unsigned long flags;
865 
866 	spin_lock_irqsave(&fsl_chan->desc_lock, flags);
867 
868 	if (!dma_is_idle(fsl_chan))
869 		goto out_unlock;
870 
871 	dma_halt(fsl_chan);
872 
873 	/* If there are some link descriptors
874 	 * not transfered in queue. We need to start it.
875 	 */
876 
877 	/* Find the first un-transfer desciptor */
878 	for (ld_node = fsl_chan->ld_queue.next;
879 		(ld_node != &fsl_chan->ld_queue)
880 			&& (dma_async_is_complete(
881 				to_fsl_desc(ld_node)->async_tx.cookie,
882 				fsl_chan->completed_cookie,
883 				fsl_chan->common.cookie) == DMA_SUCCESS);
884 		ld_node = ld_node->next);
885 
886 	if (ld_node != &fsl_chan->ld_queue) {
887 		/* Get the ld start address from ld_queue */
888 		next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
889 		dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n",
890 				(unsigned long long)next_dest_addr);
891 		set_cdar(fsl_chan, next_dest_addr);
892 		dma_start(fsl_chan);
893 	} else {
894 		set_cdar(fsl_chan, 0);
895 		set_ndar(fsl_chan, 0);
896 	}
897 
898 out_unlock:
899 	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
900 }
901 
902 /**
903  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
904  * @fsl_chan : Freescale DMA channel
905  */
906 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
907 {
908 	struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
909 
910 #ifdef FSL_DMA_LD_DEBUG
911 	struct fsl_desc_sw *ld;
912 	unsigned long flags;
913 
914 	spin_lock_irqsave(&fsl_chan->desc_lock, flags);
915 	if (list_empty(&fsl_chan->ld_queue)) {
916 		spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
917 		return;
918 	}
919 
920 	dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
921 	list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
922 		int i;
923 		dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
924 				fsl_chan->id, ld->async_tx.phys);
925 		for (i = 0; i < 8; i++)
926 			dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
927 					i, *(((u32 *)&ld->hw) + i));
928 	}
929 	dev_dbg(fsl_chan->dev, "----------------\n");
930 	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
931 #endif
932 
933 	fsl_chan_xfer_ld_queue(fsl_chan);
934 }
935 
936 /**
937  * fsl_dma_is_complete - Determine the DMA status
938  * @fsl_chan : Freescale DMA channel
939  */
940 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
941 					dma_cookie_t cookie,
942 					dma_cookie_t *done,
943 					dma_cookie_t *used)
944 {
945 	struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
946 	dma_cookie_t last_used;
947 	dma_cookie_t last_complete;
948 
949 	fsl_chan_ld_cleanup(fsl_chan);
950 
951 	last_used = chan->cookie;
952 	last_complete = fsl_chan->completed_cookie;
953 
954 	if (done)
955 		*done = last_complete;
956 
957 	if (used)
958 		*used = last_used;
959 
960 	return dma_async_is_complete(cookie, last_complete, last_used);
961 }
962 
963 static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
964 {
965 	struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
966 	u32 stat;
967 	int update_cookie = 0;
968 	int xfer_ld_q = 0;
969 
970 	stat = get_sr(fsl_chan);
971 	dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
972 						fsl_chan->id, stat);
973 	set_sr(fsl_chan, stat);		/* Clear the event register */
974 
975 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
976 	if (!stat)
977 		return IRQ_NONE;
978 
979 	if (stat & FSL_DMA_SR_TE)
980 		dev_err(fsl_chan->dev, "Transfer Error!\n");
981 
982 	/* Programming Error
983 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
984 	 * triger a PE interrupt.
985 	 */
986 	if (stat & FSL_DMA_SR_PE) {
987 		dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
988 		if (get_bcr(fsl_chan) == 0) {
989 			/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
990 			 * Now, update the completed cookie, and continue the
991 			 * next uncompleted transfer.
992 			 */
993 			update_cookie = 1;
994 			xfer_ld_q = 1;
995 		}
996 		stat &= ~FSL_DMA_SR_PE;
997 	}
998 
999 	/* If the link descriptor segment transfer finishes,
1000 	 * we will recycle the used descriptor.
1001 	 */
1002 	if (stat & FSL_DMA_SR_EOSI) {
1003 		dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
1004 		dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n",
1005 			(unsigned long long)get_cdar(fsl_chan),
1006 			(unsigned long long)get_ndar(fsl_chan));
1007 		stat &= ~FSL_DMA_SR_EOSI;
1008 		update_cookie = 1;
1009 	}
1010 
1011 	/* For MPC8349, EOCDI event need to update cookie
1012 	 * and start the next transfer if it exist.
1013 	 */
1014 	if (stat & FSL_DMA_SR_EOCDI) {
1015 		dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n");
1016 		stat &= ~FSL_DMA_SR_EOCDI;
1017 		update_cookie = 1;
1018 		xfer_ld_q = 1;
1019 	}
1020 
1021 	/* If it current transfer is the end-of-transfer,
1022 	 * we should clear the Channel Start bit for
1023 	 * prepare next transfer.
1024 	 */
1025 	if (stat & FSL_DMA_SR_EOLNI) {
1026 		dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
1027 		stat &= ~FSL_DMA_SR_EOLNI;
1028 		xfer_ld_q = 1;
1029 	}
1030 
1031 	if (update_cookie)
1032 		fsl_dma_update_completed_cookie(fsl_chan);
1033 	if (xfer_ld_q)
1034 		fsl_chan_xfer_ld_queue(fsl_chan);
1035 	if (stat)
1036 		dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
1037 					stat);
1038 
1039 	dev_dbg(fsl_chan->dev, "event: Exit\n");
1040 	tasklet_schedule(&fsl_chan->tasklet);
1041 	return IRQ_HANDLED;
1042 }
1043 
1044 static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
1045 {
1046 	struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
1047 	u32 gsr;
1048 	int ch_nr;
1049 
1050 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
1051 			: in_le32(fdev->reg_base);
1052 	ch_nr = (32 - ffs(gsr)) / 8;
1053 
1054 	return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
1055 			fdev->chan[ch_nr]) : IRQ_NONE;
1056 }
1057 
1058 static void dma_do_tasklet(unsigned long data)
1059 {
1060 	struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
1061 	fsl_chan_ld_cleanup(fsl_chan);
1062 }
1063 
1064 static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev,
1065 	struct device_node *node, u32 feature, const char *compatible)
1066 {
1067 	struct fsl_dma_chan *new_fsl_chan;
1068 	int err;
1069 
1070 	/* alloc channel */
1071 	new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
1072 	if (!new_fsl_chan) {
1073 		dev_err(fdev->dev, "No free memory for allocating "
1074 				"dma channels!\n");
1075 		return -ENOMEM;
1076 	}
1077 
1078 	/* get dma channel register base */
1079 	err = of_address_to_resource(node, 0, &new_fsl_chan->reg);
1080 	if (err) {
1081 		dev_err(fdev->dev, "Can't get %s property 'reg'\n",
1082 				node->full_name);
1083 		goto err_no_reg;
1084 	}
1085 
1086 	new_fsl_chan->feature = feature;
1087 
1088 	if (!fdev->feature)
1089 		fdev->feature = new_fsl_chan->feature;
1090 
1091 	/* If the DMA device's feature is different than its channels',
1092 	 * report the bug.
1093 	 */
1094 	WARN_ON(fdev->feature != new_fsl_chan->feature);
1095 
1096 	new_fsl_chan->dev = fdev->dev;
1097 	new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
1098 			new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
1099 
1100 	new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
1101 	if (new_fsl_chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1102 		dev_err(fdev->dev, "There is no %d channel!\n",
1103 				new_fsl_chan->id);
1104 		err = -EINVAL;
1105 		goto err_no_chan;
1106 	}
1107 	fdev->chan[new_fsl_chan->id] = new_fsl_chan;
1108 	tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
1109 			(unsigned long)new_fsl_chan);
1110 
1111 	/* Init the channel */
1112 	dma_init(new_fsl_chan);
1113 
1114 	/* Clear cdar registers */
1115 	set_cdar(new_fsl_chan, 0);
1116 
1117 	switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
1118 	case FSL_DMA_IP_85XX:
1119 		new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1120 	case FSL_DMA_IP_83XX:
1121 		new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1122 		new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1123 		new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
1124 		new_fsl_chan->set_request_count = fsl_chan_set_request_count;
1125 	}
1126 
1127 	spin_lock_init(&new_fsl_chan->desc_lock);
1128 	INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
1129 
1130 	new_fsl_chan->common.device = &fdev->common;
1131 
1132 	/* Add the channel to DMA device channel list */
1133 	list_add_tail(&new_fsl_chan->common.device_node,
1134 			&fdev->common.channels);
1135 	fdev->common.chancnt++;
1136 
1137 	new_fsl_chan->irq = irq_of_parse_and_map(node, 0);
1138 	if (new_fsl_chan->irq != NO_IRQ) {
1139 		err = request_irq(new_fsl_chan->irq,
1140 					&fsl_dma_chan_do_interrupt, IRQF_SHARED,
1141 					"fsldma-channel", new_fsl_chan);
1142 		if (err) {
1143 			dev_err(fdev->dev, "DMA channel %s request_irq error "
1144 				"with return %d\n", node->full_name, err);
1145 			goto err_no_irq;
1146 		}
1147 	}
1148 
1149 	dev_info(fdev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
1150 		 compatible,
1151 		 new_fsl_chan->irq != NO_IRQ ? new_fsl_chan->irq : fdev->irq);
1152 
1153 	return 0;
1154 
1155 err_no_irq:
1156 	list_del(&new_fsl_chan->common.device_node);
1157 err_no_chan:
1158 	iounmap(new_fsl_chan->reg_base);
1159 err_no_reg:
1160 	kfree(new_fsl_chan);
1161 	return err;
1162 }
1163 
1164 static void fsl_dma_chan_remove(struct fsl_dma_chan *fchan)
1165 {
1166 	if (fchan->irq != NO_IRQ)
1167 		free_irq(fchan->irq, fchan);
1168 	list_del(&fchan->common.device_node);
1169 	iounmap(fchan->reg_base);
1170 	kfree(fchan);
1171 }
1172 
1173 static int __devinit of_fsl_dma_probe(struct of_device *dev,
1174 			const struct of_device_id *match)
1175 {
1176 	int err;
1177 	struct fsl_dma_device *fdev;
1178 	struct device_node *child;
1179 
1180 	fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
1181 	if (!fdev) {
1182 		dev_err(&dev->dev, "No enough memory for 'priv'\n");
1183 		return -ENOMEM;
1184 	}
1185 	fdev->dev = &dev->dev;
1186 	INIT_LIST_HEAD(&fdev->common.channels);
1187 
1188 	/* get DMA controller register base */
1189 	err = of_address_to_resource(dev->node, 0, &fdev->reg);
1190 	if (err) {
1191 		dev_err(&dev->dev, "Can't get %s property 'reg'\n",
1192 				dev->node->full_name);
1193 		goto err_no_reg;
1194 	}
1195 
1196 	dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
1197 			"controller at 0x%llx...\n",
1198 			match->compatible, (unsigned long long)fdev->reg.start);
1199 	fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
1200 						- fdev->reg.start + 1);
1201 
1202 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1203 	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1204 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1205 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1206 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1207 	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1208 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1209 	fdev->common.device_is_tx_complete = fsl_dma_is_complete;
1210 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1211 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1212 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1213 	fdev->common.dev = &dev->dev;
1214 
1215 	fdev->irq = irq_of_parse_and_map(dev->node, 0);
1216 	if (fdev->irq != NO_IRQ) {
1217 		err = request_irq(fdev->irq, &fsl_dma_do_interrupt, IRQF_SHARED,
1218 					"fsldma-device", fdev);
1219 		if (err) {
1220 			dev_err(&dev->dev, "DMA device request_irq error "
1221 				"with return %d\n", err);
1222 			goto err;
1223 		}
1224 	}
1225 
1226 	dev_set_drvdata(&(dev->dev), fdev);
1227 
1228 	/* We cannot use of_platform_bus_probe() because there is no
1229 	 * of_platform_bus_remove.  Instead, we manually instantiate every DMA
1230 	 * channel object.
1231 	 */
1232 	for_each_child_of_node(dev->node, child) {
1233 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel"))
1234 			fsl_dma_chan_probe(fdev, child,
1235 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1236 				"fsl,eloplus-dma-channel");
1237 		if (of_device_is_compatible(child, "fsl,elo-dma-channel"))
1238 			fsl_dma_chan_probe(fdev, child,
1239 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1240 				"fsl,elo-dma-channel");
1241 	}
1242 
1243 	dma_async_device_register(&fdev->common);
1244 	return 0;
1245 
1246 err:
1247 	iounmap(fdev->reg_base);
1248 err_no_reg:
1249 	kfree(fdev);
1250 	return err;
1251 }
1252 
1253 static int of_fsl_dma_remove(struct of_device *of_dev)
1254 {
1255 	struct fsl_dma_device *fdev;
1256 	unsigned int i;
1257 
1258 	fdev = dev_get_drvdata(&of_dev->dev);
1259 
1260 	dma_async_device_unregister(&fdev->common);
1261 
1262 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++)
1263 		if (fdev->chan[i])
1264 			fsl_dma_chan_remove(fdev->chan[i]);
1265 
1266 	if (fdev->irq != NO_IRQ)
1267 		free_irq(fdev->irq, fdev);
1268 
1269 	iounmap(fdev->reg_base);
1270 
1271 	kfree(fdev);
1272 	dev_set_drvdata(&of_dev->dev, NULL);
1273 
1274 	return 0;
1275 }
1276 
1277 static struct of_device_id of_fsl_dma_ids[] = {
1278 	{ .compatible = "fsl,eloplus-dma", },
1279 	{ .compatible = "fsl,elo-dma", },
1280 	{}
1281 };
1282 
1283 static struct of_platform_driver of_fsl_dma_driver = {
1284 	.name = "fsl-elo-dma",
1285 	.match_table = of_fsl_dma_ids,
1286 	.probe = of_fsl_dma_probe,
1287 	.remove = of_fsl_dma_remove,
1288 };
1289 
1290 static __init int of_fsl_dma_init(void)
1291 {
1292 	int ret;
1293 
1294 	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1295 
1296 	ret = of_register_platform_driver(&of_fsl_dma_driver);
1297 	if (ret)
1298 		pr_err("fsldma: failed to register platform driver\n");
1299 
1300 	return ret;
1301 }
1302 
1303 static void __exit of_fsl_dma_exit(void)
1304 {
1305 	of_unregister_platform_driver(&of_fsl_dma_driver);
1306 }
1307 
1308 subsys_initcall(of_fsl_dma_init);
1309 module_exit(of_fsl_dma_exit);
1310 
1311 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1312 MODULE_LICENSE("GPL");
1313