xref: /openbmc/linux/drivers/dma/fsldma.c (revision 9cdb81c7)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
37 
38 #include "fsldma.h"
39 
40 #define chan_dbg(chan, fmt, arg...)					\
41 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
42 #define chan_err(chan, fmt, arg...)					\
43 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
44 
45 static const char msg_ld_oom[] = "No free memory for link descriptor";
46 
47 /*
48  * Register Helpers
49  */
50 
51 static void set_sr(struct fsldma_chan *chan, u32 val)
52 {
53 	DMA_OUT(chan, &chan->regs->sr, val, 32);
54 }
55 
56 static u32 get_sr(struct fsldma_chan *chan)
57 {
58 	return DMA_IN(chan, &chan->regs->sr, 32);
59 }
60 
61 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
62 {
63 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
64 }
65 
66 static dma_addr_t get_cdar(struct fsldma_chan *chan)
67 {
68 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
69 }
70 
71 static u32 get_bcr(struct fsldma_chan *chan)
72 {
73 	return DMA_IN(chan, &chan->regs->bcr, 32);
74 }
75 
76 /*
77  * Descriptor Helpers
78  */
79 
80 static void set_desc_cnt(struct fsldma_chan *chan,
81 				struct fsl_dma_ld_hw *hw, u32 count)
82 {
83 	hw->count = CPU_TO_DMA(chan, count, 32);
84 }
85 
86 static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
87 {
88 	return DMA_TO_CPU(chan, desc->hw.count, 32);
89 }
90 
91 static void set_desc_src(struct fsldma_chan *chan,
92 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
93 {
94 	u64 snoop_bits;
95 
96 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
97 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
98 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
99 }
100 
101 static dma_addr_t get_desc_src(struct fsldma_chan *chan,
102 			       struct fsl_desc_sw *desc)
103 {
104 	u64 snoop_bits;
105 
106 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
107 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
108 	return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
109 }
110 
111 static void set_desc_dst(struct fsldma_chan *chan,
112 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
113 {
114 	u64 snoop_bits;
115 
116 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
117 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
118 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
119 }
120 
121 static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
122 			       struct fsl_desc_sw *desc)
123 {
124 	u64 snoop_bits;
125 
126 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
127 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
128 	return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
129 }
130 
131 static void set_desc_next(struct fsldma_chan *chan,
132 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
133 {
134 	u64 snoop_bits;
135 
136 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
137 		? FSL_DMA_SNEN : 0;
138 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
139 }
140 
141 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
142 {
143 	u64 snoop_bits;
144 
145 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
146 		? FSL_DMA_SNEN : 0;
147 
148 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
149 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
150 			| snoop_bits, 64);
151 }
152 
153 /*
154  * DMA Engine Hardware Control Helpers
155  */
156 
157 static void dma_init(struct fsldma_chan *chan)
158 {
159 	/* Reset the channel */
160 	DMA_OUT(chan, &chan->regs->mr, 0, 32);
161 
162 	switch (chan->feature & FSL_DMA_IP_MASK) {
163 	case FSL_DMA_IP_85XX:
164 		/* Set the channel to below modes:
165 		 * EIE - Error interrupt enable
166 		 * EOLNIE - End of links interrupt enable
167 		 * BWC - Bandwidth sharing among channels
168 		 */
169 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
170 				| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
171 		break;
172 	case FSL_DMA_IP_83XX:
173 		/* Set the channel to below modes:
174 		 * EOTIE - End-of-transfer interrupt enable
175 		 * PRC_RM - PCI read multiple
176 		 */
177 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
178 				| FSL_DMA_MR_PRC_RM, 32);
179 		break;
180 	}
181 }
182 
183 static int dma_is_idle(struct fsldma_chan *chan)
184 {
185 	u32 sr = get_sr(chan);
186 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
187 }
188 
189 /*
190  * Start the DMA controller
191  *
192  * Preconditions:
193  * - the CDAR register must point to the start descriptor
194  * - the MRn[CS] bit must be cleared
195  */
196 static void dma_start(struct fsldma_chan *chan)
197 {
198 	u32 mode;
199 
200 	mode = DMA_IN(chan, &chan->regs->mr, 32);
201 
202 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
203 		DMA_OUT(chan, &chan->regs->bcr, 0, 32);
204 		mode |= FSL_DMA_MR_EMP_EN;
205 	} else {
206 		mode &= ~FSL_DMA_MR_EMP_EN;
207 	}
208 
209 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
210 		mode |= FSL_DMA_MR_EMS_EN;
211 	} else {
212 		mode &= ~FSL_DMA_MR_EMS_EN;
213 		mode |= FSL_DMA_MR_CS;
214 	}
215 
216 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
217 }
218 
219 static void dma_halt(struct fsldma_chan *chan)
220 {
221 	u32 mode;
222 	int i;
223 
224 	/* read the mode register */
225 	mode = DMA_IN(chan, &chan->regs->mr, 32);
226 
227 	/*
228 	 * The 85xx controller supports channel abort, which will stop
229 	 * the current transfer. On 83xx, this bit is the transfer error
230 	 * mask bit, which should not be changed.
231 	 */
232 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
233 		mode |= FSL_DMA_MR_CA;
234 		DMA_OUT(chan, &chan->regs->mr, mode, 32);
235 
236 		mode &= ~FSL_DMA_MR_CA;
237 	}
238 
239 	/* stop the DMA controller */
240 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
241 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
242 
243 	/* wait for the DMA controller to become idle */
244 	for (i = 0; i < 100; i++) {
245 		if (dma_is_idle(chan))
246 			return;
247 
248 		udelay(10);
249 	}
250 
251 	if (!dma_is_idle(chan))
252 		chan_err(chan, "DMA halt timeout!\n");
253 }
254 
255 /**
256  * fsl_chan_set_src_loop_size - Set source address hold transfer size
257  * @chan : Freescale DMA channel
258  * @size     : Address loop size, 0 for disable loop
259  *
260  * The set source address hold transfer size. The source
261  * address hold or loop transfer size is when the DMA transfer
262  * data from source address (SA), if the loop size is 4, the DMA will
263  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
264  * SA + 1 ... and so on.
265  */
266 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
267 {
268 	u32 mode;
269 
270 	mode = DMA_IN(chan, &chan->regs->mr, 32);
271 
272 	switch (size) {
273 	case 0:
274 		mode &= ~FSL_DMA_MR_SAHE;
275 		break;
276 	case 1:
277 	case 2:
278 	case 4:
279 	case 8:
280 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
281 		break;
282 	}
283 
284 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
285 }
286 
287 /**
288  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
289  * @chan : Freescale DMA channel
290  * @size     : Address loop size, 0 for disable loop
291  *
292  * The set destination address hold transfer size. The destination
293  * address hold or loop transfer size is when the DMA transfer
294  * data to destination address (TA), if the loop size is 4, the DMA will
295  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
296  * TA + 1 ... and so on.
297  */
298 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
299 {
300 	u32 mode;
301 
302 	mode = DMA_IN(chan, &chan->regs->mr, 32);
303 
304 	switch (size) {
305 	case 0:
306 		mode &= ~FSL_DMA_MR_DAHE;
307 		break;
308 	case 1:
309 	case 2:
310 	case 4:
311 	case 8:
312 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
313 		break;
314 	}
315 
316 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
317 }
318 
319 /**
320  * fsl_chan_set_request_count - Set DMA Request Count for external control
321  * @chan : Freescale DMA channel
322  * @size     : Number of bytes to transfer in a single request
323  *
324  * The Freescale DMA channel can be controlled by the external signal DREQ#.
325  * The DMA request count is how many bytes are allowed to transfer before
326  * pausing the channel, after which a new assertion of DREQ# resumes channel
327  * operation.
328  *
329  * A size of 0 disables external pause control. The maximum size is 1024.
330  */
331 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
332 {
333 	u32 mode;
334 
335 	BUG_ON(size > 1024);
336 
337 	mode = DMA_IN(chan, &chan->regs->mr, 32);
338 	mode |= (__ilog2(size) << 24) & 0x0f000000;
339 
340 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
341 }
342 
343 /**
344  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
345  * @chan : Freescale DMA channel
346  * @enable   : 0 is disabled, 1 is enabled.
347  *
348  * The Freescale DMA channel can be controlled by the external signal DREQ#.
349  * The DMA Request Count feature should be used in addition to this feature
350  * to set the number of bytes to transfer before pausing the channel.
351  */
352 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
353 {
354 	if (enable)
355 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
356 	else
357 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
358 }
359 
360 /**
361  * fsl_chan_toggle_ext_start - Toggle channel external start status
362  * @chan : Freescale DMA channel
363  * @enable   : 0 is disabled, 1 is enabled.
364  *
365  * If enable the external start, the channel can be started by an
366  * external DMA start pin. So the dma_start() does not start the
367  * transfer immediately. The DMA channel will wait for the
368  * control pin asserted.
369  */
370 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
371 {
372 	if (enable)
373 		chan->feature |= FSL_DMA_CHAN_START_EXT;
374 	else
375 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
376 }
377 
378 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
379 {
380 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
381 
382 	if (list_empty(&chan->ld_pending))
383 		goto out_splice;
384 
385 	/*
386 	 * Add the hardware descriptor to the chain of hardware descriptors
387 	 * that already exists in memory.
388 	 *
389 	 * This will un-set the EOL bit of the existing transaction, and the
390 	 * last link in this transaction will become the EOL descriptor.
391 	 */
392 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
393 
394 	/*
395 	 * Add the software descriptor and all children to the list
396 	 * of pending transactions
397 	 */
398 out_splice:
399 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
400 }
401 
402 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
403 {
404 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
405 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
406 	struct fsl_desc_sw *child;
407 	unsigned long flags;
408 	dma_cookie_t cookie;
409 
410 	spin_lock_irqsave(&chan->desc_lock, flags);
411 
412 	/*
413 	 * assign cookies to all of the software descriptors
414 	 * that make up this transaction
415 	 */
416 	cookie = chan->common.cookie;
417 	list_for_each_entry(child, &desc->tx_list, node) {
418 		cookie++;
419 		if (cookie < DMA_MIN_COOKIE)
420 			cookie = DMA_MIN_COOKIE;
421 
422 		child->async_tx.cookie = cookie;
423 	}
424 
425 	chan->common.cookie = cookie;
426 
427 	/* put this transaction onto the tail of the pending queue */
428 	append_ld_queue(chan, desc);
429 
430 	spin_unlock_irqrestore(&chan->desc_lock, flags);
431 
432 	return cookie;
433 }
434 
435 /**
436  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
437  * @chan : Freescale DMA channel
438  *
439  * Return - The descriptor allocated. NULL for failed.
440  */
441 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
442 {
443 	struct fsl_desc_sw *desc;
444 	dma_addr_t pdesc;
445 
446 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
447 	if (!desc) {
448 		chan_dbg(chan, "out of memory for link descriptor\n");
449 		return NULL;
450 	}
451 
452 	memset(desc, 0, sizeof(*desc));
453 	INIT_LIST_HEAD(&desc->tx_list);
454 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
455 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
456 	desc->async_tx.phys = pdesc;
457 
458 #ifdef FSL_DMA_LD_DEBUG
459 	chan_dbg(chan, "LD %p allocated\n", desc);
460 #endif
461 
462 	return desc;
463 }
464 
465 /**
466  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
467  * @chan : Freescale DMA channel
468  *
469  * This function will create a dma pool for descriptor allocation.
470  *
471  * Return - The number of descriptors allocated.
472  */
473 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
474 {
475 	struct fsldma_chan *chan = to_fsl_chan(dchan);
476 
477 	/* Has this channel already been allocated? */
478 	if (chan->desc_pool)
479 		return 1;
480 
481 	/*
482 	 * We need the descriptor to be aligned to 32bytes
483 	 * for meeting FSL DMA specification requirement.
484 	 */
485 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
486 					  sizeof(struct fsl_desc_sw),
487 					  __alignof__(struct fsl_desc_sw), 0);
488 	if (!chan->desc_pool) {
489 		chan_err(chan, "unable to allocate descriptor pool\n");
490 		return -ENOMEM;
491 	}
492 
493 	/* there is at least one descriptor free to be allocated */
494 	return 1;
495 }
496 
497 /**
498  * fsldma_free_desc_list - Free all descriptors in a queue
499  * @chan: Freescae DMA channel
500  * @list: the list to free
501  *
502  * LOCKING: must hold chan->desc_lock
503  */
504 static void fsldma_free_desc_list(struct fsldma_chan *chan,
505 				  struct list_head *list)
506 {
507 	struct fsl_desc_sw *desc, *_desc;
508 
509 	list_for_each_entry_safe(desc, _desc, list, node) {
510 		list_del(&desc->node);
511 #ifdef FSL_DMA_LD_DEBUG
512 		chan_dbg(chan, "LD %p free\n", desc);
513 #endif
514 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
515 	}
516 }
517 
518 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
519 					  struct list_head *list)
520 {
521 	struct fsl_desc_sw *desc, *_desc;
522 
523 	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
524 		list_del(&desc->node);
525 #ifdef FSL_DMA_LD_DEBUG
526 		chan_dbg(chan, "LD %p free\n", desc);
527 #endif
528 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
529 	}
530 }
531 
532 /**
533  * fsl_dma_free_chan_resources - Free all resources of the channel.
534  * @chan : Freescale DMA channel
535  */
536 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
537 {
538 	struct fsldma_chan *chan = to_fsl_chan(dchan);
539 	unsigned long flags;
540 
541 	chan_dbg(chan, "free all channel resources\n");
542 	spin_lock_irqsave(&chan->desc_lock, flags);
543 	fsldma_free_desc_list(chan, &chan->ld_pending);
544 	fsldma_free_desc_list(chan, &chan->ld_running);
545 	spin_unlock_irqrestore(&chan->desc_lock, flags);
546 
547 	dma_pool_destroy(chan->desc_pool);
548 	chan->desc_pool = NULL;
549 }
550 
551 static struct dma_async_tx_descriptor *
552 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
553 {
554 	struct fsldma_chan *chan;
555 	struct fsl_desc_sw *new;
556 
557 	if (!dchan)
558 		return NULL;
559 
560 	chan = to_fsl_chan(dchan);
561 
562 	new = fsl_dma_alloc_descriptor(chan);
563 	if (!new) {
564 		chan_err(chan, "%s\n", msg_ld_oom);
565 		return NULL;
566 	}
567 
568 	new->async_tx.cookie = -EBUSY;
569 	new->async_tx.flags = flags;
570 
571 	/* Insert the link descriptor to the LD ring */
572 	list_add_tail(&new->node, &new->tx_list);
573 
574 	/* Set End-of-link to the last link descriptor of new list */
575 	set_ld_eol(chan, new);
576 
577 	return &new->async_tx;
578 }
579 
580 static struct dma_async_tx_descriptor *
581 fsl_dma_prep_memcpy(struct dma_chan *dchan,
582 	dma_addr_t dma_dst, dma_addr_t dma_src,
583 	size_t len, unsigned long flags)
584 {
585 	struct fsldma_chan *chan;
586 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
587 	size_t copy;
588 
589 	if (!dchan)
590 		return NULL;
591 
592 	if (!len)
593 		return NULL;
594 
595 	chan = to_fsl_chan(dchan);
596 
597 	do {
598 
599 		/* Allocate the link descriptor from DMA pool */
600 		new = fsl_dma_alloc_descriptor(chan);
601 		if (!new) {
602 			chan_err(chan, "%s\n", msg_ld_oom);
603 			goto fail;
604 		}
605 
606 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
607 
608 		set_desc_cnt(chan, &new->hw, copy);
609 		set_desc_src(chan, &new->hw, dma_src);
610 		set_desc_dst(chan, &new->hw, dma_dst);
611 
612 		if (!first)
613 			first = new;
614 		else
615 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
616 
617 		new->async_tx.cookie = 0;
618 		async_tx_ack(&new->async_tx);
619 
620 		prev = new;
621 		len -= copy;
622 		dma_src += copy;
623 		dma_dst += copy;
624 
625 		/* Insert the link descriptor to the LD ring */
626 		list_add_tail(&new->node, &first->tx_list);
627 	} while (len);
628 
629 	new->async_tx.flags = flags; /* client is in control of this ack */
630 	new->async_tx.cookie = -EBUSY;
631 
632 	/* Set End-of-link to the last link descriptor of new list */
633 	set_ld_eol(chan, new);
634 
635 	return &first->async_tx;
636 
637 fail:
638 	if (!first)
639 		return NULL;
640 
641 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
642 	return NULL;
643 }
644 
645 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
646 	struct scatterlist *dst_sg, unsigned int dst_nents,
647 	struct scatterlist *src_sg, unsigned int src_nents,
648 	unsigned long flags)
649 {
650 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
651 	struct fsldma_chan *chan = to_fsl_chan(dchan);
652 	size_t dst_avail, src_avail;
653 	dma_addr_t dst, src;
654 	size_t len;
655 
656 	/* basic sanity checks */
657 	if (dst_nents == 0 || src_nents == 0)
658 		return NULL;
659 
660 	if (dst_sg == NULL || src_sg == NULL)
661 		return NULL;
662 
663 	/*
664 	 * TODO: should we check that both scatterlists have the same
665 	 * TODO: number of bytes in total? Is that really an error?
666 	 */
667 
668 	/* get prepared for the loop */
669 	dst_avail = sg_dma_len(dst_sg);
670 	src_avail = sg_dma_len(src_sg);
671 
672 	/* run until we are out of scatterlist entries */
673 	while (true) {
674 
675 		/* create the largest transaction possible */
676 		len = min_t(size_t, src_avail, dst_avail);
677 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
678 		if (len == 0)
679 			goto fetch;
680 
681 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
682 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
683 
684 		/* allocate and populate the descriptor */
685 		new = fsl_dma_alloc_descriptor(chan);
686 		if (!new) {
687 			chan_err(chan, "%s\n", msg_ld_oom);
688 			goto fail;
689 		}
690 
691 		set_desc_cnt(chan, &new->hw, len);
692 		set_desc_src(chan, &new->hw, src);
693 		set_desc_dst(chan, &new->hw, dst);
694 
695 		if (!first)
696 			first = new;
697 		else
698 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
699 
700 		new->async_tx.cookie = 0;
701 		async_tx_ack(&new->async_tx);
702 		prev = new;
703 
704 		/* Insert the link descriptor to the LD ring */
705 		list_add_tail(&new->node, &first->tx_list);
706 
707 		/* update metadata */
708 		dst_avail -= len;
709 		src_avail -= len;
710 
711 fetch:
712 		/* fetch the next dst scatterlist entry */
713 		if (dst_avail == 0) {
714 
715 			/* no more entries: we're done */
716 			if (dst_nents == 0)
717 				break;
718 
719 			/* fetch the next entry: if there are no more: done */
720 			dst_sg = sg_next(dst_sg);
721 			if (dst_sg == NULL)
722 				break;
723 
724 			dst_nents--;
725 			dst_avail = sg_dma_len(dst_sg);
726 		}
727 
728 		/* fetch the next src scatterlist entry */
729 		if (src_avail == 0) {
730 
731 			/* no more entries: we're done */
732 			if (src_nents == 0)
733 				break;
734 
735 			/* fetch the next entry: if there are no more: done */
736 			src_sg = sg_next(src_sg);
737 			if (src_sg == NULL)
738 				break;
739 
740 			src_nents--;
741 			src_avail = sg_dma_len(src_sg);
742 		}
743 	}
744 
745 	new->async_tx.flags = flags; /* client is in control of this ack */
746 	new->async_tx.cookie = -EBUSY;
747 
748 	/* Set End-of-link to the last link descriptor of new list */
749 	set_ld_eol(chan, new);
750 
751 	return &first->async_tx;
752 
753 fail:
754 	if (!first)
755 		return NULL;
756 
757 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
758 	return NULL;
759 }
760 
761 /**
762  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
763  * @chan: DMA channel
764  * @sgl: scatterlist to transfer to/from
765  * @sg_len: number of entries in @scatterlist
766  * @direction: DMA direction
767  * @flags: DMAEngine flags
768  *
769  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
770  * DMA_SLAVE API, this gets the device-specific information from the
771  * chan->private variable.
772  */
773 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
774 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
775 	enum dma_transfer_direction direction, unsigned long flags)
776 {
777 	/*
778 	 * This operation is not supported on the Freescale DMA controller
779 	 *
780 	 * However, we need to provide the function pointer to allow the
781 	 * device_control() method to work.
782 	 */
783 	return NULL;
784 }
785 
786 static int fsl_dma_device_control(struct dma_chan *dchan,
787 				  enum dma_ctrl_cmd cmd, unsigned long arg)
788 {
789 	struct dma_slave_config *config;
790 	struct fsldma_chan *chan;
791 	unsigned long flags;
792 	int size;
793 
794 	if (!dchan)
795 		return -EINVAL;
796 
797 	chan = to_fsl_chan(dchan);
798 
799 	switch (cmd) {
800 	case DMA_TERMINATE_ALL:
801 		spin_lock_irqsave(&chan->desc_lock, flags);
802 
803 		/* Halt the DMA engine */
804 		dma_halt(chan);
805 
806 		/* Remove and free all of the descriptors in the LD queue */
807 		fsldma_free_desc_list(chan, &chan->ld_pending);
808 		fsldma_free_desc_list(chan, &chan->ld_running);
809 		chan->idle = true;
810 
811 		spin_unlock_irqrestore(&chan->desc_lock, flags);
812 		return 0;
813 
814 	case DMA_SLAVE_CONFIG:
815 		config = (struct dma_slave_config *)arg;
816 
817 		/* make sure the channel supports setting burst size */
818 		if (!chan->set_request_count)
819 			return -ENXIO;
820 
821 		/* we set the controller burst size depending on direction */
822 		if (config->direction == DMA_MEM_TO_DEV)
823 			size = config->dst_addr_width * config->dst_maxburst;
824 		else
825 			size = config->src_addr_width * config->src_maxburst;
826 
827 		chan->set_request_count(chan, size);
828 		return 0;
829 
830 	case FSLDMA_EXTERNAL_START:
831 
832 		/* make sure the channel supports external start */
833 		if (!chan->toggle_ext_start)
834 			return -ENXIO;
835 
836 		chan->toggle_ext_start(chan, arg);
837 		return 0;
838 
839 	default:
840 		return -ENXIO;
841 	}
842 
843 	return 0;
844 }
845 
846 /**
847  * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
848  * @chan: Freescale DMA channel
849  * @desc: descriptor to cleanup and free
850  *
851  * This function is used on a descriptor which has been executed by the DMA
852  * controller. It will run any callbacks, submit any dependencies, and then
853  * free the descriptor.
854  */
855 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
856 				      struct fsl_desc_sw *desc)
857 {
858 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
859 	struct device *dev = chan->common.device->dev;
860 	dma_addr_t src = get_desc_src(chan, desc);
861 	dma_addr_t dst = get_desc_dst(chan, desc);
862 	u32 len = get_desc_cnt(chan, desc);
863 
864 	/* Run the link descriptor callback function */
865 	if (txd->callback) {
866 #ifdef FSL_DMA_LD_DEBUG
867 		chan_dbg(chan, "LD %p callback\n", desc);
868 #endif
869 		txd->callback(txd->callback_param);
870 	}
871 
872 	/* Run any dependencies */
873 	dma_run_dependencies(txd);
874 
875 	/* Unmap the dst buffer, if requested */
876 	if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
877 		if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
878 			dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
879 		else
880 			dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
881 	}
882 
883 	/* Unmap the src buffer, if requested */
884 	if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
885 		if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
886 			dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
887 		else
888 			dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
889 	}
890 
891 #ifdef FSL_DMA_LD_DEBUG
892 	chan_dbg(chan, "LD %p free\n", desc);
893 #endif
894 	dma_pool_free(chan->desc_pool, desc, txd->phys);
895 }
896 
897 /**
898  * fsl_chan_xfer_ld_queue - transfer any pending transactions
899  * @chan : Freescale DMA channel
900  *
901  * HARDWARE STATE: idle
902  * LOCKING: must hold chan->desc_lock
903  */
904 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
905 {
906 	struct fsl_desc_sw *desc;
907 
908 	/*
909 	 * If the list of pending descriptors is empty, then we
910 	 * don't need to do any work at all
911 	 */
912 	if (list_empty(&chan->ld_pending)) {
913 		chan_dbg(chan, "no pending LDs\n");
914 		return;
915 	}
916 
917 	/*
918 	 * The DMA controller is not idle, which means that the interrupt
919 	 * handler will start any queued transactions when it runs after
920 	 * this transaction finishes
921 	 */
922 	if (!chan->idle) {
923 		chan_dbg(chan, "DMA controller still busy\n");
924 		return;
925 	}
926 
927 	/*
928 	 * If there are some link descriptors which have not been
929 	 * transferred, we need to start the controller
930 	 */
931 
932 	/*
933 	 * Move all elements from the queue of pending transactions
934 	 * onto the list of running transactions
935 	 */
936 	chan_dbg(chan, "idle, starting controller\n");
937 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
938 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
939 
940 	/*
941 	 * The 85xx DMA controller doesn't clear the channel start bit
942 	 * automatically at the end of a transfer. Therefore we must clear
943 	 * it in software before starting the transfer.
944 	 */
945 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
946 		u32 mode;
947 
948 		mode = DMA_IN(chan, &chan->regs->mr, 32);
949 		mode &= ~FSL_DMA_MR_CS;
950 		DMA_OUT(chan, &chan->regs->mr, mode, 32);
951 	}
952 
953 	/*
954 	 * Program the descriptor's address into the DMA controller,
955 	 * then start the DMA transaction
956 	 */
957 	set_cdar(chan, desc->async_tx.phys);
958 	get_cdar(chan);
959 
960 	dma_start(chan);
961 	chan->idle = false;
962 }
963 
964 /**
965  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
966  * @chan : Freescale DMA channel
967  */
968 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
969 {
970 	struct fsldma_chan *chan = to_fsl_chan(dchan);
971 	unsigned long flags;
972 
973 	spin_lock_irqsave(&chan->desc_lock, flags);
974 	fsl_chan_xfer_ld_queue(chan);
975 	spin_unlock_irqrestore(&chan->desc_lock, flags);
976 }
977 
978 /**
979  * fsl_tx_status - Determine the DMA status
980  * @chan : Freescale DMA channel
981  */
982 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
983 					dma_cookie_t cookie,
984 					struct dma_tx_state *txstate)
985 {
986 	struct fsldma_chan *chan = to_fsl_chan(dchan);
987 	dma_cookie_t last_complete;
988 	dma_cookie_t last_used;
989 	unsigned long flags;
990 
991 	spin_lock_irqsave(&chan->desc_lock, flags);
992 
993 	last_complete = chan->completed_cookie;
994 	last_used = dchan->cookie;
995 
996 	spin_unlock_irqrestore(&chan->desc_lock, flags);
997 
998 	dma_set_tx_state(txstate, last_complete, last_used, 0);
999 	return dma_async_is_complete(cookie, last_complete, last_used);
1000 }
1001 
1002 /*----------------------------------------------------------------------------*/
1003 /* Interrupt Handling                                                         */
1004 /*----------------------------------------------------------------------------*/
1005 
1006 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1007 {
1008 	struct fsldma_chan *chan = data;
1009 	u32 stat;
1010 
1011 	/* save and clear the status register */
1012 	stat = get_sr(chan);
1013 	set_sr(chan, stat);
1014 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1015 
1016 	/* check that this was really our device */
1017 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1018 	if (!stat)
1019 		return IRQ_NONE;
1020 
1021 	if (stat & FSL_DMA_SR_TE)
1022 		chan_err(chan, "Transfer Error!\n");
1023 
1024 	/*
1025 	 * Programming Error
1026 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1027 	 * triger a PE interrupt.
1028 	 */
1029 	if (stat & FSL_DMA_SR_PE) {
1030 		chan_dbg(chan, "irq: Programming Error INT\n");
1031 		stat &= ~FSL_DMA_SR_PE;
1032 		if (get_bcr(chan) != 0)
1033 			chan_err(chan, "Programming Error!\n");
1034 	}
1035 
1036 	/*
1037 	 * For MPC8349, EOCDI event need to update cookie
1038 	 * and start the next transfer if it exist.
1039 	 */
1040 	if (stat & FSL_DMA_SR_EOCDI) {
1041 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1042 		stat &= ~FSL_DMA_SR_EOCDI;
1043 	}
1044 
1045 	/*
1046 	 * If it current transfer is the end-of-transfer,
1047 	 * we should clear the Channel Start bit for
1048 	 * prepare next transfer.
1049 	 */
1050 	if (stat & FSL_DMA_SR_EOLNI) {
1051 		chan_dbg(chan, "irq: End-of-link INT\n");
1052 		stat &= ~FSL_DMA_SR_EOLNI;
1053 	}
1054 
1055 	/* check that the DMA controller is really idle */
1056 	if (!dma_is_idle(chan))
1057 		chan_err(chan, "irq: controller not idle!\n");
1058 
1059 	/* check that we handled all of the bits */
1060 	if (stat)
1061 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1062 
1063 	/*
1064 	 * Schedule the tasklet to handle all cleanup of the current
1065 	 * transaction. It will start a new transaction if there is
1066 	 * one pending.
1067 	 */
1068 	tasklet_schedule(&chan->tasklet);
1069 	chan_dbg(chan, "irq: Exit\n");
1070 	return IRQ_HANDLED;
1071 }
1072 
1073 static void dma_do_tasklet(unsigned long data)
1074 {
1075 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1076 	struct fsl_desc_sw *desc, *_desc;
1077 	LIST_HEAD(ld_cleanup);
1078 	unsigned long flags;
1079 
1080 	chan_dbg(chan, "tasklet entry\n");
1081 
1082 	spin_lock_irqsave(&chan->desc_lock, flags);
1083 
1084 	/* update the cookie if we have some descriptors to cleanup */
1085 	if (!list_empty(&chan->ld_running)) {
1086 		dma_cookie_t cookie;
1087 
1088 		desc = to_fsl_desc(chan->ld_running.prev);
1089 		cookie = desc->async_tx.cookie;
1090 
1091 		chan->completed_cookie = cookie;
1092 		chan_dbg(chan, "completed_cookie=%d\n", cookie);
1093 	}
1094 
1095 	/*
1096 	 * move the descriptors to a temporary list so we can drop the lock
1097 	 * during the entire cleanup operation
1098 	 */
1099 	list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1100 
1101 	/* the hardware is now idle and ready for more */
1102 	chan->idle = true;
1103 
1104 	/*
1105 	 * Start any pending transactions automatically
1106 	 *
1107 	 * In the ideal case, we keep the DMA controller busy while we go
1108 	 * ahead and free the descriptors below.
1109 	 */
1110 	fsl_chan_xfer_ld_queue(chan);
1111 	spin_unlock_irqrestore(&chan->desc_lock, flags);
1112 
1113 	/* Run the callback for each descriptor, in order */
1114 	list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1115 
1116 		/* Remove from the list of transactions */
1117 		list_del(&desc->node);
1118 
1119 		/* Run all cleanup for this descriptor */
1120 		fsldma_cleanup_descriptor(chan, desc);
1121 	}
1122 
1123 	chan_dbg(chan, "tasklet exit\n");
1124 }
1125 
1126 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1127 {
1128 	struct fsldma_device *fdev = data;
1129 	struct fsldma_chan *chan;
1130 	unsigned int handled = 0;
1131 	u32 gsr, mask;
1132 	int i;
1133 
1134 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1135 						   : in_le32(fdev->regs);
1136 	mask = 0xff000000;
1137 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1138 
1139 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1140 		chan = fdev->chan[i];
1141 		if (!chan)
1142 			continue;
1143 
1144 		if (gsr & mask) {
1145 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1146 			fsldma_chan_irq(irq, chan);
1147 			handled++;
1148 		}
1149 
1150 		gsr &= ~mask;
1151 		mask >>= 8;
1152 	}
1153 
1154 	return IRQ_RETVAL(handled);
1155 }
1156 
1157 static void fsldma_free_irqs(struct fsldma_device *fdev)
1158 {
1159 	struct fsldma_chan *chan;
1160 	int i;
1161 
1162 	if (fdev->irq != NO_IRQ) {
1163 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1164 		free_irq(fdev->irq, fdev);
1165 		return;
1166 	}
1167 
1168 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1169 		chan = fdev->chan[i];
1170 		if (chan && chan->irq != NO_IRQ) {
1171 			chan_dbg(chan, "free per-channel IRQ\n");
1172 			free_irq(chan->irq, chan);
1173 		}
1174 	}
1175 }
1176 
1177 static int fsldma_request_irqs(struct fsldma_device *fdev)
1178 {
1179 	struct fsldma_chan *chan;
1180 	int ret;
1181 	int i;
1182 
1183 	/* if we have a per-controller IRQ, use that */
1184 	if (fdev->irq != NO_IRQ) {
1185 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1186 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1187 				  "fsldma-controller", fdev);
1188 		return ret;
1189 	}
1190 
1191 	/* no per-controller IRQ, use the per-channel IRQs */
1192 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1193 		chan = fdev->chan[i];
1194 		if (!chan)
1195 			continue;
1196 
1197 		if (chan->irq == NO_IRQ) {
1198 			chan_err(chan, "interrupts property missing in device tree\n");
1199 			ret = -ENODEV;
1200 			goto out_unwind;
1201 		}
1202 
1203 		chan_dbg(chan, "request per-channel IRQ\n");
1204 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1205 				  "fsldma-chan", chan);
1206 		if (ret) {
1207 			chan_err(chan, "unable to request per-channel IRQ\n");
1208 			goto out_unwind;
1209 		}
1210 	}
1211 
1212 	return 0;
1213 
1214 out_unwind:
1215 	for (/* none */; i >= 0; i--) {
1216 		chan = fdev->chan[i];
1217 		if (!chan)
1218 			continue;
1219 
1220 		if (chan->irq == NO_IRQ)
1221 			continue;
1222 
1223 		free_irq(chan->irq, chan);
1224 	}
1225 
1226 	return ret;
1227 }
1228 
1229 /*----------------------------------------------------------------------------*/
1230 /* OpenFirmware Subsystem                                                     */
1231 /*----------------------------------------------------------------------------*/
1232 
1233 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1234 	struct device_node *node, u32 feature, const char *compatible)
1235 {
1236 	struct fsldma_chan *chan;
1237 	struct resource res;
1238 	int err;
1239 
1240 	/* alloc channel */
1241 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1242 	if (!chan) {
1243 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1244 		err = -ENOMEM;
1245 		goto out_return;
1246 	}
1247 
1248 	/* ioremap registers for use */
1249 	chan->regs = of_iomap(node, 0);
1250 	if (!chan->regs) {
1251 		dev_err(fdev->dev, "unable to ioremap registers\n");
1252 		err = -ENOMEM;
1253 		goto out_free_chan;
1254 	}
1255 
1256 	err = of_address_to_resource(node, 0, &res);
1257 	if (err) {
1258 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1259 		goto out_iounmap_regs;
1260 	}
1261 
1262 	chan->feature = feature;
1263 	if (!fdev->feature)
1264 		fdev->feature = chan->feature;
1265 
1266 	/*
1267 	 * If the DMA device's feature is different than the feature
1268 	 * of its channels, report the bug
1269 	 */
1270 	WARN_ON(fdev->feature != chan->feature);
1271 
1272 	chan->dev = fdev->dev;
1273 	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1274 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1275 		dev_err(fdev->dev, "too many channels for device\n");
1276 		err = -EINVAL;
1277 		goto out_iounmap_regs;
1278 	}
1279 
1280 	fdev->chan[chan->id] = chan;
1281 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1282 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1283 
1284 	/* Initialize the channel */
1285 	dma_init(chan);
1286 
1287 	/* Clear cdar registers */
1288 	set_cdar(chan, 0);
1289 
1290 	switch (chan->feature & FSL_DMA_IP_MASK) {
1291 	case FSL_DMA_IP_85XX:
1292 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1293 	case FSL_DMA_IP_83XX:
1294 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1295 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1296 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1297 		chan->set_request_count = fsl_chan_set_request_count;
1298 	}
1299 
1300 	spin_lock_init(&chan->desc_lock);
1301 	INIT_LIST_HEAD(&chan->ld_pending);
1302 	INIT_LIST_HEAD(&chan->ld_running);
1303 	chan->idle = true;
1304 
1305 	chan->common.device = &fdev->common;
1306 
1307 	/* find the IRQ line, if it exists in the device tree */
1308 	chan->irq = irq_of_parse_and_map(node, 0);
1309 
1310 	/* Add the channel to DMA device channel list */
1311 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1312 	fdev->common.chancnt++;
1313 
1314 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1315 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1316 
1317 	return 0;
1318 
1319 out_iounmap_regs:
1320 	iounmap(chan->regs);
1321 out_free_chan:
1322 	kfree(chan);
1323 out_return:
1324 	return err;
1325 }
1326 
1327 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1328 {
1329 	irq_dispose_mapping(chan->irq);
1330 	list_del(&chan->common.device_node);
1331 	iounmap(chan->regs);
1332 	kfree(chan);
1333 }
1334 
1335 static int __devinit fsldma_of_probe(struct platform_device *op)
1336 {
1337 	struct fsldma_device *fdev;
1338 	struct device_node *child;
1339 	int err;
1340 
1341 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1342 	if (!fdev) {
1343 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1344 		err = -ENOMEM;
1345 		goto out_return;
1346 	}
1347 
1348 	fdev->dev = &op->dev;
1349 	INIT_LIST_HEAD(&fdev->common.channels);
1350 
1351 	/* ioremap the registers for use */
1352 	fdev->regs = of_iomap(op->dev.of_node, 0);
1353 	if (!fdev->regs) {
1354 		dev_err(&op->dev, "unable to ioremap registers\n");
1355 		err = -ENOMEM;
1356 		goto out_free_fdev;
1357 	}
1358 
1359 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1360 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1361 
1362 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1363 	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1364 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1365 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1366 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1367 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1368 	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1369 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1370 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1371 	fdev->common.device_tx_status = fsl_tx_status;
1372 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1373 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1374 	fdev->common.device_control = fsl_dma_device_control;
1375 	fdev->common.dev = &op->dev;
1376 
1377 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1378 
1379 	dev_set_drvdata(&op->dev, fdev);
1380 
1381 	/*
1382 	 * We cannot use of_platform_bus_probe() because there is no
1383 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1384 	 * channel object.
1385 	 */
1386 	for_each_child_of_node(op->dev.of_node, child) {
1387 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1388 			fsl_dma_chan_probe(fdev, child,
1389 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1390 				"fsl,eloplus-dma-channel");
1391 		}
1392 
1393 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1394 			fsl_dma_chan_probe(fdev, child,
1395 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1396 				"fsl,elo-dma-channel");
1397 		}
1398 	}
1399 
1400 	/*
1401 	 * Hookup the IRQ handler(s)
1402 	 *
1403 	 * If we have a per-controller interrupt, we prefer that to the
1404 	 * per-channel interrupts to reduce the number of shared interrupt
1405 	 * handlers on the same IRQ line
1406 	 */
1407 	err = fsldma_request_irqs(fdev);
1408 	if (err) {
1409 		dev_err(fdev->dev, "unable to request IRQs\n");
1410 		goto out_free_fdev;
1411 	}
1412 
1413 	dma_async_device_register(&fdev->common);
1414 	return 0;
1415 
1416 out_free_fdev:
1417 	irq_dispose_mapping(fdev->irq);
1418 	kfree(fdev);
1419 out_return:
1420 	return err;
1421 }
1422 
1423 static int fsldma_of_remove(struct platform_device *op)
1424 {
1425 	struct fsldma_device *fdev;
1426 	unsigned int i;
1427 
1428 	fdev = dev_get_drvdata(&op->dev);
1429 	dma_async_device_unregister(&fdev->common);
1430 
1431 	fsldma_free_irqs(fdev);
1432 
1433 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1434 		if (fdev->chan[i])
1435 			fsl_dma_chan_remove(fdev->chan[i]);
1436 	}
1437 
1438 	iounmap(fdev->regs);
1439 	dev_set_drvdata(&op->dev, NULL);
1440 	kfree(fdev);
1441 
1442 	return 0;
1443 }
1444 
1445 static const struct of_device_id fsldma_of_ids[] = {
1446 	{ .compatible = "fsl,eloplus-dma", },
1447 	{ .compatible = "fsl,elo-dma", },
1448 	{}
1449 };
1450 
1451 static struct platform_driver fsldma_of_driver = {
1452 	.driver = {
1453 		.name = "fsl-elo-dma",
1454 		.owner = THIS_MODULE,
1455 		.of_match_table = fsldma_of_ids,
1456 	},
1457 	.probe = fsldma_of_probe,
1458 	.remove = fsldma_of_remove,
1459 };
1460 
1461 /*----------------------------------------------------------------------------*/
1462 /* Module Init / Exit                                                         */
1463 /*----------------------------------------------------------------------------*/
1464 
1465 static __init int fsldma_init(void)
1466 {
1467 	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1468 	return platform_driver_register(&fsldma_of_driver);
1469 }
1470 
1471 static void __exit fsldma_exit(void)
1472 {
1473 	platform_driver_unregister(&fsldma_of_driver);
1474 }
1475 
1476 subsys_initcall(fsldma_init);
1477 module_exit(fsldma_exit);
1478 
1479 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1480 MODULE_LICENSE("GPL");
1481