xref: /openbmc/linux/drivers/dma/fsldma.c (revision 968f19ae)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
37 
38 #include "fsldma.h"
39 
40 static const char msg_ld_oom[] = "No free memory for link descriptor\n";
41 
42 static void dma_init(struct fsldma_chan *chan)
43 {
44 	/* Reset the channel */
45 	DMA_OUT(chan, &chan->regs->mr, 0, 32);
46 
47 	switch (chan->feature & FSL_DMA_IP_MASK) {
48 	case FSL_DMA_IP_85XX:
49 		/* Set the channel to below modes:
50 		 * EIE - Error interrupt enable
51 		 * EOSIE - End of segments interrupt enable (basic mode)
52 		 * EOLNIE - End of links interrupt enable
53 		 */
54 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EIE
55 				| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
56 		break;
57 	case FSL_DMA_IP_83XX:
58 		/* Set the channel to below modes:
59 		 * EOTIE - End-of-transfer interrupt enable
60 		 * PRC_RM - PCI read multiple
61 		 */
62 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
63 				| FSL_DMA_MR_PRC_RM, 32);
64 		break;
65 	}
66 }
67 
68 static void set_sr(struct fsldma_chan *chan, u32 val)
69 {
70 	DMA_OUT(chan, &chan->regs->sr, val, 32);
71 }
72 
73 static u32 get_sr(struct fsldma_chan *chan)
74 {
75 	return DMA_IN(chan, &chan->regs->sr, 32);
76 }
77 
78 static void set_desc_cnt(struct fsldma_chan *chan,
79 				struct fsl_dma_ld_hw *hw, u32 count)
80 {
81 	hw->count = CPU_TO_DMA(chan, count, 32);
82 }
83 
84 static void set_desc_src(struct fsldma_chan *chan,
85 				struct fsl_dma_ld_hw *hw, dma_addr_t src)
86 {
87 	u64 snoop_bits;
88 
89 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
90 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
91 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
92 }
93 
94 static void set_desc_dst(struct fsldma_chan *chan,
95 				struct fsl_dma_ld_hw *hw, dma_addr_t dst)
96 {
97 	u64 snoop_bits;
98 
99 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
100 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
101 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
102 }
103 
104 static void set_desc_next(struct fsldma_chan *chan,
105 				struct fsl_dma_ld_hw *hw, dma_addr_t next)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
110 		? FSL_DMA_SNEN : 0;
111 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
112 }
113 
114 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
115 {
116 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
117 }
118 
119 static dma_addr_t get_cdar(struct fsldma_chan *chan)
120 {
121 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
122 }
123 
124 static dma_addr_t get_ndar(struct fsldma_chan *chan)
125 {
126 	return DMA_IN(chan, &chan->regs->ndar, 64);
127 }
128 
129 static u32 get_bcr(struct fsldma_chan *chan)
130 {
131 	return DMA_IN(chan, &chan->regs->bcr, 32);
132 }
133 
134 static int dma_is_idle(struct fsldma_chan *chan)
135 {
136 	u32 sr = get_sr(chan);
137 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
138 }
139 
140 static void dma_start(struct fsldma_chan *chan)
141 {
142 	u32 mode;
143 
144 	mode = DMA_IN(chan, &chan->regs->mr, 32);
145 
146 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
147 		if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
148 			DMA_OUT(chan, &chan->regs->bcr, 0, 32);
149 			mode |= FSL_DMA_MR_EMP_EN;
150 		} else {
151 			mode &= ~FSL_DMA_MR_EMP_EN;
152 		}
153 	}
154 
155 	if (chan->feature & FSL_DMA_CHAN_START_EXT)
156 		mode |= FSL_DMA_MR_EMS_EN;
157 	else
158 		mode |= FSL_DMA_MR_CS;
159 
160 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
161 }
162 
163 static void dma_halt(struct fsldma_chan *chan)
164 {
165 	u32 mode;
166 	int i;
167 
168 	mode = DMA_IN(chan, &chan->regs->mr, 32);
169 	mode |= FSL_DMA_MR_CA;
170 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
171 
172 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
173 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
174 
175 	for (i = 0; i < 100; i++) {
176 		if (dma_is_idle(chan))
177 			return;
178 
179 		udelay(10);
180 	}
181 
182 	if (!dma_is_idle(chan))
183 		dev_err(chan->dev, "DMA halt timeout!\n");
184 }
185 
186 static void set_ld_eol(struct fsldma_chan *chan,
187 			struct fsl_desc_sw *desc)
188 {
189 	u64 snoop_bits;
190 
191 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
192 		? FSL_DMA_SNEN : 0;
193 
194 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
195 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
196 			| snoop_bits, 64);
197 }
198 
199 /**
200  * fsl_chan_set_src_loop_size - Set source address hold transfer size
201  * @chan : Freescale DMA channel
202  * @size     : Address loop size, 0 for disable loop
203  *
204  * The set source address hold transfer size. The source
205  * address hold or loop transfer size is when the DMA transfer
206  * data from source address (SA), if the loop size is 4, the DMA will
207  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
208  * SA + 1 ... and so on.
209  */
210 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
211 {
212 	u32 mode;
213 
214 	mode = DMA_IN(chan, &chan->regs->mr, 32);
215 
216 	switch (size) {
217 	case 0:
218 		mode &= ~FSL_DMA_MR_SAHE;
219 		break;
220 	case 1:
221 	case 2:
222 	case 4:
223 	case 8:
224 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
225 		break;
226 	}
227 
228 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
229 }
230 
231 /**
232  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
233  * @chan : Freescale DMA channel
234  * @size     : Address loop size, 0 for disable loop
235  *
236  * The set destination address hold transfer size. The destination
237  * address hold or loop transfer size is when the DMA transfer
238  * data to destination address (TA), if the loop size is 4, the DMA will
239  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
240  * TA + 1 ... and so on.
241  */
242 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
243 {
244 	u32 mode;
245 
246 	mode = DMA_IN(chan, &chan->regs->mr, 32);
247 
248 	switch (size) {
249 	case 0:
250 		mode &= ~FSL_DMA_MR_DAHE;
251 		break;
252 	case 1:
253 	case 2:
254 	case 4:
255 	case 8:
256 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
257 		break;
258 	}
259 
260 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
261 }
262 
263 /**
264  * fsl_chan_set_request_count - Set DMA Request Count for external control
265  * @chan : Freescale DMA channel
266  * @size     : Number of bytes to transfer in a single request
267  *
268  * The Freescale DMA channel can be controlled by the external signal DREQ#.
269  * The DMA request count is how many bytes are allowed to transfer before
270  * pausing the channel, after which a new assertion of DREQ# resumes channel
271  * operation.
272  *
273  * A size of 0 disables external pause control. The maximum size is 1024.
274  */
275 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
276 {
277 	u32 mode;
278 
279 	BUG_ON(size > 1024);
280 
281 	mode = DMA_IN(chan, &chan->regs->mr, 32);
282 	mode |= (__ilog2(size) << 24) & 0x0f000000;
283 
284 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
285 }
286 
287 /**
288  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
289  * @chan : Freescale DMA channel
290  * @enable   : 0 is disabled, 1 is enabled.
291  *
292  * The Freescale DMA channel can be controlled by the external signal DREQ#.
293  * The DMA Request Count feature should be used in addition to this feature
294  * to set the number of bytes to transfer before pausing the channel.
295  */
296 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
297 {
298 	if (enable)
299 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
300 	else
301 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
302 }
303 
304 /**
305  * fsl_chan_toggle_ext_start - Toggle channel external start status
306  * @chan : Freescale DMA channel
307  * @enable   : 0 is disabled, 1 is enabled.
308  *
309  * If enable the external start, the channel can be started by an
310  * external DMA start pin. So the dma_start() does not start the
311  * transfer immediately. The DMA channel will wait for the
312  * control pin asserted.
313  */
314 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
315 {
316 	if (enable)
317 		chan->feature |= FSL_DMA_CHAN_START_EXT;
318 	else
319 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
320 }
321 
322 static void append_ld_queue(struct fsldma_chan *chan,
323 			    struct fsl_desc_sw *desc)
324 {
325 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
326 
327 	if (list_empty(&chan->ld_pending))
328 		goto out_splice;
329 
330 	/*
331 	 * Add the hardware descriptor to the chain of hardware descriptors
332 	 * that already exists in memory.
333 	 *
334 	 * This will un-set the EOL bit of the existing transaction, and the
335 	 * last link in this transaction will become the EOL descriptor.
336 	 */
337 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
338 
339 	/*
340 	 * Add the software descriptor and all children to the list
341 	 * of pending transactions
342 	 */
343 out_splice:
344 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
345 }
346 
347 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
348 {
349 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
350 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
351 	struct fsl_desc_sw *child;
352 	unsigned long flags;
353 	dma_cookie_t cookie;
354 
355 	spin_lock_irqsave(&chan->desc_lock, flags);
356 
357 	/*
358 	 * assign cookies to all of the software descriptors
359 	 * that make up this transaction
360 	 */
361 	cookie = chan->common.cookie;
362 	list_for_each_entry(child, &desc->tx_list, node) {
363 		cookie++;
364 		if (cookie < 0)
365 			cookie = 1;
366 
367 		child->async_tx.cookie = cookie;
368 	}
369 
370 	chan->common.cookie = cookie;
371 
372 	/* put this transaction onto the tail of the pending queue */
373 	append_ld_queue(chan, desc);
374 
375 	spin_unlock_irqrestore(&chan->desc_lock, flags);
376 
377 	return cookie;
378 }
379 
380 /**
381  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
382  * @chan : Freescale DMA channel
383  *
384  * Return - The descriptor allocated. NULL for failed.
385  */
386 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
387 					struct fsldma_chan *chan)
388 {
389 	struct fsl_desc_sw *desc;
390 	dma_addr_t pdesc;
391 
392 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
393 	if (!desc) {
394 		dev_dbg(chan->dev, "out of memory for link desc\n");
395 		return NULL;
396 	}
397 
398 	memset(desc, 0, sizeof(*desc));
399 	INIT_LIST_HEAD(&desc->tx_list);
400 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
401 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
402 	desc->async_tx.phys = pdesc;
403 
404 	return desc;
405 }
406 
407 
408 /**
409  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
410  * @chan : Freescale DMA channel
411  *
412  * This function will create a dma pool for descriptor allocation.
413  *
414  * Return - The number of descriptors allocated.
415  */
416 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
417 {
418 	struct fsldma_chan *chan = to_fsl_chan(dchan);
419 
420 	/* Has this channel already been allocated? */
421 	if (chan->desc_pool)
422 		return 1;
423 
424 	/*
425 	 * We need the descriptor to be aligned to 32bytes
426 	 * for meeting FSL DMA specification requirement.
427 	 */
428 	chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
429 					  chan->dev,
430 					  sizeof(struct fsl_desc_sw),
431 					  __alignof__(struct fsl_desc_sw), 0);
432 	if (!chan->desc_pool) {
433 		dev_err(chan->dev, "unable to allocate channel %d "
434 				   "descriptor pool\n", chan->id);
435 		return -ENOMEM;
436 	}
437 
438 	/* there is at least one descriptor free to be allocated */
439 	return 1;
440 }
441 
442 /**
443  * fsldma_free_desc_list - Free all descriptors in a queue
444  * @chan: Freescae DMA channel
445  * @list: the list to free
446  *
447  * LOCKING: must hold chan->desc_lock
448  */
449 static void fsldma_free_desc_list(struct fsldma_chan *chan,
450 				  struct list_head *list)
451 {
452 	struct fsl_desc_sw *desc, *_desc;
453 
454 	list_for_each_entry_safe(desc, _desc, list, node) {
455 		list_del(&desc->node);
456 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
457 	}
458 }
459 
460 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
461 					  struct list_head *list)
462 {
463 	struct fsl_desc_sw *desc, *_desc;
464 
465 	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
466 		list_del(&desc->node);
467 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
468 	}
469 }
470 
471 /**
472  * fsl_dma_free_chan_resources - Free all resources of the channel.
473  * @chan : Freescale DMA channel
474  */
475 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
476 {
477 	struct fsldma_chan *chan = to_fsl_chan(dchan);
478 	unsigned long flags;
479 
480 	dev_dbg(chan->dev, "Free all channel resources.\n");
481 	spin_lock_irqsave(&chan->desc_lock, flags);
482 	fsldma_free_desc_list(chan, &chan->ld_pending);
483 	fsldma_free_desc_list(chan, &chan->ld_running);
484 	spin_unlock_irqrestore(&chan->desc_lock, flags);
485 
486 	dma_pool_destroy(chan->desc_pool);
487 	chan->desc_pool = NULL;
488 }
489 
490 static struct dma_async_tx_descriptor *
491 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
492 {
493 	struct fsldma_chan *chan;
494 	struct fsl_desc_sw *new;
495 
496 	if (!dchan)
497 		return NULL;
498 
499 	chan = to_fsl_chan(dchan);
500 
501 	new = fsl_dma_alloc_descriptor(chan);
502 	if (!new) {
503 		dev_err(chan->dev, msg_ld_oom);
504 		return NULL;
505 	}
506 
507 	new->async_tx.cookie = -EBUSY;
508 	new->async_tx.flags = flags;
509 
510 	/* Insert the link descriptor to the LD ring */
511 	list_add_tail(&new->node, &new->tx_list);
512 
513 	/* Set End-of-link to the last link descriptor of new list*/
514 	set_ld_eol(chan, new);
515 
516 	return &new->async_tx;
517 }
518 
519 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
520 	struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src,
521 	size_t len, unsigned long flags)
522 {
523 	struct fsldma_chan *chan;
524 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
525 	size_t copy;
526 
527 	if (!dchan)
528 		return NULL;
529 
530 	if (!len)
531 		return NULL;
532 
533 	chan = to_fsl_chan(dchan);
534 
535 	do {
536 
537 		/* Allocate the link descriptor from DMA pool */
538 		new = fsl_dma_alloc_descriptor(chan);
539 		if (!new) {
540 			dev_err(chan->dev, msg_ld_oom);
541 			goto fail;
542 		}
543 #ifdef FSL_DMA_LD_DEBUG
544 		dev_dbg(chan->dev, "new link desc alloc %p\n", new);
545 #endif
546 
547 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
548 
549 		set_desc_cnt(chan, &new->hw, copy);
550 		set_desc_src(chan, &new->hw, dma_src);
551 		set_desc_dst(chan, &new->hw, dma_dst);
552 
553 		if (!first)
554 			first = new;
555 		else
556 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
557 
558 		new->async_tx.cookie = 0;
559 		async_tx_ack(&new->async_tx);
560 
561 		prev = new;
562 		len -= copy;
563 		dma_src += copy;
564 		dma_dst += copy;
565 
566 		/* Insert the link descriptor to the LD ring */
567 		list_add_tail(&new->node, &first->tx_list);
568 	} while (len);
569 
570 	new->async_tx.flags = flags; /* client is in control of this ack */
571 	new->async_tx.cookie = -EBUSY;
572 
573 	/* Set End-of-link to the last link descriptor of new list*/
574 	set_ld_eol(chan, new);
575 
576 	return &first->async_tx;
577 
578 fail:
579 	if (!first)
580 		return NULL;
581 
582 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
583 	return NULL;
584 }
585 
586 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
587 	struct scatterlist *dst_sg, unsigned int dst_nents,
588 	struct scatterlist *src_sg, unsigned int src_nents,
589 	unsigned long flags)
590 {
591 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
592 	struct fsldma_chan *chan = to_fsl_chan(dchan);
593 	size_t dst_avail, src_avail;
594 	dma_addr_t dst, src;
595 	size_t len;
596 
597 	/* basic sanity checks */
598 	if (dst_nents == 0 || src_nents == 0)
599 		return NULL;
600 
601 	if (dst_sg == NULL || src_sg == NULL)
602 		return NULL;
603 
604 	/*
605 	 * TODO: should we check that both scatterlists have the same
606 	 * TODO: number of bytes in total? Is that really an error?
607 	 */
608 
609 	/* get prepared for the loop */
610 	dst_avail = sg_dma_len(dst_sg);
611 	src_avail = sg_dma_len(src_sg);
612 
613 	/* run until we are out of scatterlist entries */
614 	while (true) {
615 
616 		/* create the largest transaction possible */
617 		len = min_t(size_t, src_avail, dst_avail);
618 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
619 		if (len == 0)
620 			goto fetch;
621 
622 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
623 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
624 
625 		/* allocate and populate the descriptor */
626 		new = fsl_dma_alloc_descriptor(chan);
627 		if (!new) {
628 			dev_err(chan->dev, msg_ld_oom);
629 			goto fail;
630 		}
631 #ifdef FSL_DMA_LD_DEBUG
632 		dev_dbg(chan->dev, "new link desc alloc %p\n", new);
633 #endif
634 
635 		set_desc_cnt(chan, &new->hw, len);
636 		set_desc_src(chan, &new->hw, src);
637 		set_desc_dst(chan, &new->hw, dst);
638 
639 		if (!first)
640 			first = new;
641 		else
642 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
643 
644 		new->async_tx.cookie = 0;
645 		async_tx_ack(&new->async_tx);
646 		prev = new;
647 
648 		/* Insert the link descriptor to the LD ring */
649 		list_add_tail(&new->node, &first->tx_list);
650 
651 		/* update metadata */
652 		dst_avail -= len;
653 		src_avail -= len;
654 
655 fetch:
656 		/* fetch the next dst scatterlist entry */
657 		if (dst_avail == 0) {
658 
659 			/* no more entries: we're done */
660 			if (dst_nents == 0)
661 				break;
662 
663 			/* fetch the next entry: if there are no more: done */
664 			dst_sg = sg_next(dst_sg);
665 			if (dst_sg == NULL)
666 				break;
667 
668 			dst_nents--;
669 			dst_avail = sg_dma_len(dst_sg);
670 		}
671 
672 		/* fetch the next src scatterlist entry */
673 		if (src_avail == 0) {
674 
675 			/* no more entries: we're done */
676 			if (src_nents == 0)
677 				break;
678 
679 			/* fetch the next entry: if there are no more: done */
680 			src_sg = sg_next(src_sg);
681 			if (src_sg == NULL)
682 				break;
683 
684 			src_nents--;
685 			src_avail = sg_dma_len(src_sg);
686 		}
687 	}
688 
689 	new->async_tx.flags = flags; /* client is in control of this ack */
690 	new->async_tx.cookie = -EBUSY;
691 
692 	/* Set End-of-link to the last link descriptor of new list */
693 	set_ld_eol(chan, new);
694 
695 	return &first->async_tx;
696 
697 fail:
698 	if (!first)
699 		return NULL;
700 
701 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
702 	return NULL;
703 }
704 
705 /**
706  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
707  * @chan: DMA channel
708  * @sgl: scatterlist to transfer to/from
709  * @sg_len: number of entries in @scatterlist
710  * @direction: DMA direction
711  * @flags: DMAEngine flags
712  *
713  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
714  * DMA_SLAVE API, this gets the device-specific information from the
715  * chan->private variable.
716  */
717 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
718 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
719 	enum dma_data_direction direction, unsigned long flags)
720 {
721 	/*
722 	 * This operation is not supported on the Freescale DMA controller
723 	 *
724 	 * However, we need to provide the function pointer to allow the
725 	 * device_control() method to work.
726 	 */
727 	return NULL;
728 }
729 
730 static int fsl_dma_device_control(struct dma_chan *dchan,
731 				  enum dma_ctrl_cmd cmd, unsigned long arg)
732 {
733 	struct dma_slave_config *config;
734 	struct fsldma_chan *chan;
735 	unsigned long flags;
736 	int size;
737 
738 	if (!dchan)
739 		return -EINVAL;
740 
741 	chan = to_fsl_chan(dchan);
742 
743 	switch (cmd) {
744 	case DMA_TERMINATE_ALL:
745 		/* Halt the DMA engine */
746 		dma_halt(chan);
747 
748 		spin_lock_irqsave(&chan->desc_lock, flags);
749 
750 		/* Remove and free all of the descriptors in the LD queue */
751 		fsldma_free_desc_list(chan, &chan->ld_pending);
752 		fsldma_free_desc_list(chan, &chan->ld_running);
753 
754 		spin_unlock_irqrestore(&chan->desc_lock, flags);
755 		return 0;
756 
757 	case DMA_SLAVE_CONFIG:
758 		config = (struct dma_slave_config *)arg;
759 
760 		/* make sure the channel supports setting burst size */
761 		if (!chan->set_request_count)
762 			return -ENXIO;
763 
764 		/* we set the controller burst size depending on direction */
765 		if (config->direction == DMA_TO_DEVICE)
766 			size = config->dst_addr_width * config->dst_maxburst;
767 		else
768 			size = config->src_addr_width * config->src_maxburst;
769 
770 		chan->set_request_count(chan, size);
771 		return 0;
772 
773 	case FSLDMA_EXTERNAL_START:
774 
775 		/* make sure the channel supports external start */
776 		if (!chan->toggle_ext_start)
777 			return -ENXIO;
778 
779 		chan->toggle_ext_start(chan, arg);
780 		return 0;
781 
782 	default:
783 		return -ENXIO;
784 	}
785 
786 	return 0;
787 }
788 
789 /**
790  * fsl_dma_update_completed_cookie - Update the completed cookie.
791  * @chan : Freescale DMA channel
792  *
793  * CONTEXT: hardirq
794  */
795 static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
796 {
797 	struct fsl_desc_sw *desc;
798 	unsigned long flags;
799 	dma_cookie_t cookie;
800 
801 	spin_lock_irqsave(&chan->desc_lock, flags);
802 
803 	if (list_empty(&chan->ld_running)) {
804 		dev_dbg(chan->dev, "no running descriptors\n");
805 		goto out_unlock;
806 	}
807 
808 	/* Get the last descriptor, update the cookie to that */
809 	desc = to_fsl_desc(chan->ld_running.prev);
810 	if (dma_is_idle(chan))
811 		cookie = desc->async_tx.cookie;
812 	else {
813 		cookie = desc->async_tx.cookie - 1;
814 		if (unlikely(cookie < DMA_MIN_COOKIE))
815 			cookie = DMA_MAX_COOKIE;
816 	}
817 
818 	chan->completed_cookie = cookie;
819 
820 out_unlock:
821 	spin_unlock_irqrestore(&chan->desc_lock, flags);
822 }
823 
824 /**
825  * fsldma_desc_status - Check the status of a descriptor
826  * @chan: Freescale DMA channel
827  * @desc: DMA SW descriptor
828  *
829  * This function will return the status of the given descriptor
830  */
831 static enum dma_status fsldma_desc_status(struct fsldma_chan *chan,
832 					  struct fsl_desc_sw *desc)
833 {
834 	return dma_async_is_complete(desc->async_tx.cookie,
835 				     chan->completed_cookie,
836 				     chan->common.cookie);
837 }
838 
839 /**
840  * fsl_chan_ld_cleanup - Clean up link descriptors
841  * @chan : Freescale DMA channel
842  *
843  * This function clean up the ld_queue of DMA channel.
844  */
845 static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
846 {
847 	struct fsl_desc_sw *desc, *_desc;
848 	unsigned long flags;
849 
850 	spin_lock_irqsave(&chan->desc_lock, flags);
851 
852 	dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie);
853 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
854 		dma_async_tx_callback callback;
855 		void *callback_param;
856 
857 		if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS)
858 			break;
859 
860 		/* Remove from the list of running transactions */
861 		list_del(&desc->node);
862 
863 		/* Run the link descriptor callback function */
864 		callback = desc->async_tx.callback;
865 		callback_param = desc->async_tx.callback_param;
866 		if (callback) {
867 			spin_unlock_irqrestore(&chan->desc_lock, flags);
868 			dev_dbg(chan->dev, "LD %p callback\n", desc);
869 			callback(callback_param);
870 			spin_lock_irqsave(&chan->desc_lock, flags);
871 		}
872 
873 		/* Run any dependencies, then free the descriptor */
874 		dma_run_dependencies(&desc->async_tx);
875 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
876 	}
877 
878 	spin_unlock_irqrestore(&chan->desc_lock, flags);
879 }
880 
881 /**
882  * fsl_chan_xfer_ld_queue - transfer any pending transactions
883  * @chan : Freescale DMA channel
884  *
885  * This will make sure that any pending transactions will be run.
886  * If the DMA controller is idle, it will be started. Otherwise,
887  * the DMA controller's interrupt handler will start any pending
888  * transactions when it becomes idle.
889  */
890 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
891 {
892 	struct fsl_desc_sw *desc;
893 	unsigned long flags;
894 
895 	spin_lock_irqsave(&chan->desc_lock, flags);
896 
897 	/*
898 	 * If the list of pending descriptors is empty, then we
899 	 * don't need to do any work at all
900 	 */
901 	if (list_empty(&chan->ld_pending)) {
902 		dev_dbg(chan->dev, "no pending LDs\n");
903 		goto out_unlock;
904 	}
905 
906 	/*
907 	 * The DMA controller is not idle, which means the interrupt
908 	 * handler will start any queued transactions when it runs
909 	 * at the end of the current transaction
910 	 */
911 	if (!dma_is_idle(chan)) {
912 		dev_dbg(chan->dev, "DMA controller still busy\n");
913 		goto out_unlock;
914 	}
915 
916 	/*
917 	 * TODO:
918 	 * make sure the dma_halt() function really un-wedges the
919 	 * controller as much as possible
920 	 */
921 	dma_halt(chan);
922 
923 	/*
924 	 * If there are some link descriptors which have not been
925 	 * transferred, we need to start the controller
926 	 */
927 
928 	/*
929 	 * Move all elements from the queue of pending transactions
930 	 * onto the list of running transactions
931 	 */
932 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
933 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
934 
935 	/*
936 	 * Program the descriptor's address into the DMA controller,
937 	 * then start the DMA transaction
938 	 */
939 	set_cdar(chan, desc->async_tx.phys);
940 	dma_start(chan);
941 
942 out_unlock:
943 	spin_unlock_irqrestore(&chan->desc_lock, flags);
944 }
945 
946 /**
947  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
948  * @chan : Freescale DMA channel
949  */
950 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
951 {
952 	struct fsldma_chan *chan = to_fsl_chan(dchan);
953 	fsl_chan_xfer_ld_queue(chan);
954 }
955 
956 /**
957  * fsl_tx_status - Determine the DMA status
958  * @chan : Freescale DMA channel
959  */
960 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
961 					dma_cookie_t cookie,
962 					struct dma_tx_state *txstate)
963 {
964 	struct fsldma_chan *chan = to_fsl_chan(dchan);
965 	dma_cookie_t last_used;
966 	dma_cookie_t last_complete;
967 
968 	fsl_chan_ld_cleanup(chan);
969 
970 	last_used = dchan->cookie;
971 	last_complete = chan->completed_cookie;
972 
973 	dma_set_tx_state(txstate, last_complete, last_used, 0);
974 
975 	return dma_async_is_complete(cookie, last_complete, last_used);
976 }
977 
978 /*----------------------------------------------------------------------------*/
979 /* Interrupt Handling                                                         */
980 /*----------------------------------------------------------------------------*/
981 
982 static irqreturn_t fsldma_chan_irq(int irq, void *data)
983 {
984 	struct fsldma_chan *chan = data;
985 	int update_cookie = 0;
986 	int xfer_ld_q = 0;
987 	u32 stat;
988 
989 	/* save and clear the status register */
990 	stat = get_sr(chan);
991 	set_sr(chan, stat);
992 	dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat);
993 
994 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
995 	if (!stat)
996 		return IRQ_NONE;
997 
998 	if (stat & FSL_DMA_SR_TE)
999 		dev_err(chan->dev, "Transfer Error!\n");
1000 
1001 	/*
1002 	 * Programming Error
1003 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1004 	 * triger a PE interrupt.
1005 	 */
1006 	if (stat & FSL_DMA_SR_PE) {
1007 		dev_dbg(chan->dev, "irq: Programming Error INT\n");
1008 		if (get_bcr(chan) == 0) {
1009 			/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1010 			 * Now, update the completed cookie, and continue the
1011 			 * next uncompleted transfer.
1012 			 */
1013 			update_cookie = 1;
1014 			xfer_ld_q = 1;
1015 		}
1016 		stat &= ~FSL_DMA_SR_PE;
1017 	}
1018 
1019 	/*
1020 	 * If the link descriptor segment transfer finishes,
1021 	 * we will recycle the used descriptor.
1022 	 */
1023 	if (stat & FSL_DMA_SR_EOSI) {
1024 		dev_dbg(chan->dev, "irq: End-of-segments INT\n");
1025 		dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1026 			(unsigned long long)get_cdar(chan),
1027 			(unsigned long long)get_ndar(chan));
1028 		stat &= ~FSL_DMA_SR_EOSI;
1029 		update_cookie = 1;
1030 	}
1031 
1032 	/*
1033 	 * For MPC8349, EOCDI event need to update cookie
1034 	 * and start the next transfer if it exist.
1035 	 */
1036 	if (stat & FSL_DMA_SR_EOCDI) {
1037 		dev_dbg(chan->dev, "irq: End-of-Chain link INT\n");
1038 		stat &= ~FSL_DMA_SR_EOCDI;
1039 		update_cookie = 1;
1040 		xfer_ld_q = 1;
1041 	}
1042 
1043 	/*
1044 	 * If it current transfer is the end-of-transfer,
1045 	 * we should clear the Channel Start bit for
1046 	 * prepare next transfer.
1047 	 */
1048 	if (stat & FSL_DMA_SR_EOLNI) {
1049 		dev_dbg(chan->dev, "irq: End-of-link INT\n");
1050 		stat &= ~FSL_DMA_SR_EOLNI;
1051 		xfer_ld_q = 1;
1052 	}
1053 
1054 	if (update_cookie)
1055 		fsl_dma_update_completed_cookie(chan);
1056 	if (xfer_ld_q)
1057 		fsl_chan_xfer_ld_queue(chan);
1058 	if (stat)
1059 		dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat);
1060 
1061 	dev_dbg(chan->dev, "irq: Exit\n");
1062 	tasklet_schedule(&chan->tasklet);
1063 	return IRQ_HANDLED;
1064 }
1065 
1066 static void dma_do_tasklet(unsigned long data)
1067 {
1068 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1069 	fsl_chan_ld_cleanup(chan);
1070 }
1071 
1072 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1073 {
1074 	struct fsldma_device *fdev = data;
1075 	struct fsldma_chan *chan;
1076 	unsigned int handled = 0;
1077 	u32 gsr, mask;
1078 	int i;
1079 
1080 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1081 						   : in_le32(fdev->regs);
1082 	mask = 0xff000000;
1083 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1084 
1085 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1086 		chan = fdev->chan[i];
1087 		if (!chan)
1088 			continue;
1089 
1090 		if (gsr & mask) {
1091 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1092 			fsldma_chan_irq(irq, chan);
1093 			handled++;
1094 		}
1095 
1096 		gsr &= ~mask;
1097 		mask >>= 8;
1098 	}
1099 
1100 	return IRQ_RETVAL(handled);
1101 }
1102 
1103 static void fsldma_free_irqs(struct fsldma_device *fdev)
1104 {
1105 	struct fsldma_chan *chan;
1106 	int i;
1107 
1108 	if (fdev->irq != NO_IRQ) {
1109 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1110 		free_irq(fdev->irq, fdev);
1111 		return;
1112 	}
1113 
1114 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1115 		chan = fdev->chan[i];
1116 		if (chan && chan->irq != NO_IRQ) {
1117 			dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id);
1118 			free_irq(chan->irq, chan);
1119 		}
1120 	}
1121 }
1122 
1123 static int fsldma_request_irqs(struct fsldma_device *fdev)
1124 {
1125 	struct fsldma_chan *chan;
1126 	int ret;
1127 	int i;
1128 
1129 	/* if we have a per-controller IRQ, use that */
1130 	if (fdev->irq != NO_IRQ) {
1131 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1132 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1133 				  "fsldma-controller", fdev);
1134 		return ret;
1135 	}
1136 
1137 	/* no per-controller IRQ, use the per-channel IRQs */
1138 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1139 		chan = fdev->chan[i];
1140 		if (!chan)
1141 			continue;
1142 
1143 		if (chan->irq == NO_IRQ) {
1144 			dev_err(fdev->dev, "no interrupts property defined for "
1145 					   "DMA channel %d. Please fix your "
1146 					   "device tree\n", chan->id);
1147 			ret = -ENODEV;
1148 			goto out_unwind;
1149 		}
1150 
1151 		dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id);
1152 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1153 				  "fsldma-chan", chan);
1154 		if (ret) {
1155 			dev_err(fdev->dev, "unable to request IRQ for DMA "
1156 					   "channel %d\n", chan->id);
1157 			goto out_unwind;
1158 		}
1159 	}
1160 
1161 	return 0;
1162 
1163 out_unwind:
1164 	for (/* none */; i >= 0; i--) {
1165 		chan = fdev->chan[i];
1166 		if (!chan)
1167 			continue;
1168 
1169 		if (chan->irq == NO_IRQ)
1170 			continue;
1171 
1172 		free_irq(chan->irq, chan);
1173 	}
1174 
1175 	return ret;
1176 }
1177 
1178 /*----------------------------------------------------------------------------*/
1179 /* OpenFirmware Subsystem                                                     */
1180 /*----------------------------------------------------------------------------*/
1181 
1182 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1183 	struct device_node *node, u32 feature, const char *compatible)
1184 {
1185 	struct fsldma_chan *chan;
1186 	struct resource res;
1187 	int err;
1188 
1189 	/* alloc channel */
1190 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1191 	if (!chan) {
1192 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1193 		err = -ENOMEM;
1194 		goto out_return;
1195 	}
1196 
1197 	/* ioremap registers for use */
1198 	chan->regs = of_iomap(node, 0);
1199 	if (!chan->regs) {
1200 		dev_err(fdev->dev, "unable to ioremap registers\n");
1201 		err = -ENOMEM;
1202 		goto out_free_chan;
1203 	}
1204 
1205 	err = of_address_to_resource(node, 0, &res);
1206 	if (err) {
1207 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1208 		goto out_iounmap_regs;
1209 	}
1210 
1211 	chan->feature = feature;
1212 	if (!fdev->feature)
1213 		fdev->feature = chan->feature;
1214 
1215 	/*
1216 	 * If the DMA device's feature is different than the feature
1217 	 * of its channels, report the bug
1218 	 */
1219 	WARN_ON(fdev->feature != chan->feature);
1220 
1221 	chan->dev = fdev->dev;
1222 	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1223 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1224 		dev_err(fdev->dev, "too many channels for device\n");
1225 		err = -EINVAL;
1226 		goto out_iounmap_regs;
1227 	}
1228 
1229 	fdev->chan[chan->id] = chan;
1230 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1231 
1232 	/* Initialize the channel */
1233 	dma_init(chan);
1234 
1235 	/* Clear cdar registers */
1236 	set_cdar(chan, 0);
1237 
1238 	switch (chan->feature & FSL_DMA_IP_MASK) {
1239 	case FSL_DMA_IP_85XX:
1240 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1241 	case FSL_DMA_IP_83XX:
1242 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1243 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1244 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1245 		chan->set_request_count = fsl_chan_set_request_count;
1246 	}
1247 
1248 	spin_lock_init(&chan->desc_lock);
1249 	INIT_LIST_HEAD(&chan->ld_pending);
1250 	INIT_LIST_HEAD(&chan->ld_running);
1251 
1252 	chan->common.device = &fdev->common;
1253 
1254 	/* find the IRQ line, if it exists in the device tree */
1255 	chan->irq = irq_of_parse_and_map(node, 0);
1256 
1257 	/* Add the channel to DMA device channel list */
1258 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1259 	fdev->common.chancnt++;
1260 
1261 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1262 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1263 
1264 	return 0;
1265 
1266 out_iounmap_regs:
1267 	iounmap(chan->regs);
1268 out_free_chan:
1269 	kfree(chan);
1270 out_return:
1271 	return err;
1272 }
1273 
1274 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1275 {
1276 	irq_dispose_mapping(chan->irq);
1277 	list_del(&chan->common.device_node);
1278 	iounmap(chan->regs);
1279 	kfree(chan);
1280 }
1281 
1282 static int __devinit fsldma_of_probe(struct platform_device *op,
1283 			const struct of_device_id *match)
1284 {
1285 	struct fsldma_device *fdev;
1286 	struct device_node *child;
1287 	int err;
1288 
1289 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1290 	if (!fdev) {
1291 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1292 		err = -ENOMEM;
1293 		goto out_return;
1294 	}
1295 
1296 	fdev->dev = &op->dev;
1297 	INIT_LIST_HEAD(&fdev->common.channels);
1298 
1299 	/* ioremap the registers for use */
1300 	fdev->regs = of_iomap(op->dev.of_node, 0);
1301 	if (!fdev->regs) {
1302 		dev_err(&op->dev, "unable to ioremap registers\n");
1303 		err = -ENOMEM;
1304 		goto out_free_fdev;
1305 	}
1306 
1307 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1308 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1309 
1310 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1311 	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1312 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1313 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1314 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1315 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1316 	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1317 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1318 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1319 	fdev->common.device_tx_status = fsl_tx_status;
1320 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1321 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1322 	fdev->common.device_control = fsl_dma_device_control;
1323 	fdev->common.dev = &op->dev;
1324 
1325 	dev_set_drvdata(&op->dev, fdev);
1326 
1327 	/*
1328 	 * We cannot use of_platform_bus_probe() because there is no
1329 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1330 	 * channel object.
1331 	 */
1332 	for_each_child_of_node(op->dev.of_node, child) {
1333 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1334 			fsl_dma_chan_probe(fdev, child,
1335 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1336 				"fsl,eloplus-dma-channel");
1337 		}
1338 
1339 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1340 			fsl_dma_chan_probe(fdev, child,
1341 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1342 				"fsl,elo-dma-channel");
1343 		}
1344 	}
1345 
1346 	/*
1347 	 * Hookup the IRQ handler(s)
1348 	 *
1349 	 * If we have a per-controller interrupt, we prefer that to the
1350 	 * per-channel interrupts to reduce the number of shared interrupt
1351 	 * handlers on the same IRQ line
1352 	 */
1353 	err = fsldma_request_irqs(fdev);
1354 	if (err) {
1355 		dev_err(fdev->dev, "unable to request IRQs\n");
1356 		goto out_free_fdev;
1357 	}
1358 
1359 	dma_async_device_register(&fdev->common);
1360 	return 0;
1361 
1362 out_free_fdev:
1363 	irq_dispose_mapping(fdev->irq);
1364 	kfree(fdev);
1365 out_return:
1366 	return err;
1367 }
1368 
1369 static int fsldma_of_remove(struct platform_device *op)
1370 {
1371 	struct fsldma_device *fdev;
1372 	unsigned int i;
1373 
1374 	fdev = dev_get_drvdata(&op->dev);
1375 	dma_async_device_unregister(&fdev->common);
1376 
1377 	fsldma_free_irqs(fdev);
1378 
1379 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1380 		if (fdev->chan[i])
1381 			fsl_dma_chan_remove(fdev->chan[i]);
1382 	}
1383 
1384 	iounmap(fdev->regs);
1385 	dev_set_drvdata(&op->dev, NULL);
1386 	kfree(fdev);
1387 
1388 	return 0;
1389 }
1390 
1391 static const struct of_device_id fsldma_of_ids[] = {
1392 	{ .compatible = "fsl,eloplus-dma", },
1393 	{ .compatible = "fsl,elo-dma", },
1394 	{}
1395 };
1396 
1397 static struct of_platform_driver fsldma_of_driver = {
1398 	.driver = {
1399 		.name = "fsl-elo-dma",
1400 		.owner = THIS_MODULE,
1401 		.of_match_table = fsldma_of_ids,
1402 	},
1403 	.probe = fsldma_of_probe,
1404 	.remove = fsldma_of_remove,
1405 };
1406 
1407 /*----------------------------------------------------------------------------*/
1408 /* Module Init / Exit                                                         */
1409 /*----------------------------------------------------------------------------*/
1410 
1411 static __init int fsldma_init(void)
1412 {
1413 	int ret;
1414 
1415 	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1416 
1417 	ret = of_register_platform_driver(&fsldma_of_driver);
1418 	if (ret)
1419 		pr_err("fsldma: failed to register platform driver\n");
1420 
1421 	return ret;
1422 }
1423 
1424 static void __exit fsldma_exit(void)
1425 {
1426 	of_unregister_platform_driver(&fsldma_of_driver);
1427 }
1428 
1429 subsys_initcall(fsldma_init);
1430 module_exit(fsldma_exit);
1431 
1432 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1433 MODULE_LICENSE("GPL");
1434