1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA controller is also added. 14 * 15 * This driver instructs the DMA controller to issue the PCI Read Multiple 16 * command for PCI read operations, instead of using the default PCI Read Line 17 * command. Please be aware that this setting may result in read pre-fetching 18 * on some platforms. 19 * 20 * This is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 */ 26 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/slab.h> 31 #include <linux/interrupt.h> 32 #include <linux/dmaengine.h> 33 #include <linux/delay.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/dmapool.h> 36 #include <linux/of_address.h> 37 #include <linux/of_irq.h> 38 #include <linux/of_platform.h> 39 #include <linux/fsldma.h> 40 #include "dmaengine.h" 41 #include "fsldma.h" 42 43 #define chan_dbg(chan, fmt, arg...) \ 44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) 45 #define chan_err(chan, fmt, arg...) \ 46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) 47 48 static const char msg_ld_oom[] = "No free memory for link descriptor"; 49 50 /* 51 * Register Helpers 52 */ 53 54 static void set_sr(struct fsldma_chan *chan, u32 val) 55 { 56 DMA_OUT(chan, &chan->regs->sr, val, 32); 57 } 58 59 static u32 get_sr(struct fsldma_chan *chan) 60 { 61 return DMA_IN(chan, &chan->regs->sr, 32); 62 } 63 64 static void set_mr(struct fsldma_chan *chan, u32 val) 65 { 66 DMA_OUT(chan, &chan->regs->mr, val, 32); 67 } 68 69 static u32 get_mr(struct fsldma_chan *chan) 70 { 71 return DMA_IN(chan, &chan->regs->mr, 32); 72 } 73 74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) 75 { 76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); 77 } 78 79 static dma_addr_t get_cdar(struct fsldma_chan *chan) 80 { 81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; 82 } 83 84 static void set_bcr(struct fsldma_chan *chan, u32 val) 85 { 86 DMA_OUT(chan, &chan->regs->bcr, val, 32); 87 } 88 89 static u32 get_bcr(struct fsldma_chan *chan) 90 { 91 return DMA_IN(chan, &chan->regs->bcr, 32); 92 } 93 94 /* 95 * Descriptor Helpers 96 */ 97 98 static void set_desc_cnt(struct fsldma_chan *chan, 99 struct fsl_dma_ld_hw *hw, u32 count) 100 { 101 hw->count = CPU_TO_DMA(chan, count, 32); 102 } 103 104 static void set_desc_src(struct fsldma_chan *chan, 105 struct fsl_dma_ld_hw *hw, dma_addr_t src) 106 { 107 u64 snoop_bits; 108 109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64); 112 } 113 114 static void set_desc_dst(struct fsldma_chan *chan, 115 struct fsl_dma_ld_hw *hw, dma_addr_t dst) 116 { 117 u64 snoop_bits; 118 119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64); 122 } 123 124 static void set_desc_next(struct fsldma_chan *chan, 125 struct fsl_dma_ld_hw *hw, dma_addr_t next) 126 { 127 u64 snoop_bits; 128 129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 130 ? FSL_DMA_SNEN : 0; 131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64); 132 } 133 134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 135 { 136 u64 snoop_bits; 137 138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 139 ? FSL_DMA_SNEN : 0; 140 141 desc->hw.next_ln_addr = CPU_TO_DMA(chan, 142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL 143 | snoop_bits, 64); 144 } 145 146 /* 147 * DMA Engine Hardware Control Helpers 148 */ 149 150 static void dma_init(struct fsldma_chan *chan) 151 { 152 /* Reset the channel */ 153 set_mr(chan, 0); 154 155 switch (chan->feature & FSL_DMA_IP_MASK) { 156 case FSL_DMA_IP_85XX: 157 /* Set the channel to below modes: 158 * EIE - Error interrupt enable 159 * EOLNIE - End of links interrupt enable 160 * BWC - Bandwidth sharing among channels 161 */ 162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE 163 | FSL_DMA_MR_EOLNIE); 164 break; 165 case FSL_DMA_IP_83XX: 166 /* Set the channel to below modes: 167 * EOTIE - End-of-transfer interrupt enable 168 * PRC_RM - PCI read multiple 169 */ 170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM); 171 break; 172 } 173 } 174 175 static int dma_is_idle(struct fsldma_chan *chan) 176 { 177 u32 sr = get_sr(chan); 178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 179 } 180 181 /* 182 * Start the DMA controller 183 * 184 * Preconditions: 185 * - the CDAR register must point to the start descriptor 186 * - the MRn[CS] bit must be cleared 187 */ 188 static void dma_start(struct fsldma_chan *chan) 189 { 190 u32 mode; 191 192 mode = get_mr(chan); 193 194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 195 set_bcr(chan, 0); 196 mode |= FSL_DMA_MR_EMP_EN; 197 } else { 198 mode &= ~FSL_DMA_MR_EMP_EN; 199 } 200 201 if (chan->feature & FSL_DMA_CHAN_START_EXT) { 202 mode |= FSL_DMA_MR_EMS_EN; 203 } else { 204 mode &= ~FSL_DMA_MR_EMS_EN; 205 mode |= FSL_DMA_MR_CS; 206 } 207 208 set_mr(chan, mode); 209 } 210 211 static void dma_halt(struct fsldma_chan *chan) 212 { 213 u32 mode; 214 int i; 215 216 /* read the mode register */ 217 mode = get_mr(chan); 218 219 /* 220 * The 85xx controller supports channel abort, which will stop 221 * the current transfer. On 83xx, this bit is the transfer error 222 * mask bit, which should not be changed. 223 */ 224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 225 mode |= FSL_DMA_MR_CA; 226 set_mr(chan, mode); 227 228 mode &= ~FSL_DMA_MR_CA; 229 } 230 231 /* stop the DMA controller */ 232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN); 233 set_mr(chan, mode); 234 235 /* wait for the DMA controller to become idle */ 236 for (i = 0; i < 100; i++) { 237 if (dma_is_idle(chan)) 238 return; 239 240 udelay(10); 241 } 242 243 if (!dma_is_idle(chan)) 244 chan_err(chan, "DMA halt timeout!\n"); 245 } 246 247 /** 248 * fsl_chan_set_src_loop_size - Set source address hold transfer size 249 * @chan : Freescale DMA channel 250 * @size : Address loop size, 0 for disable loop 251 * 252 * The set source address hold transfer size. The source 253 * address hold or loop transfer size is when the DMA transfer 254 * data from source address (SA), if the loop size is 4, the DMA will 255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 256 * SA + 1 ... and so on. 257 */ 258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size) 259 { 260 u32 mode; 261 262 mode = get_mr(chan); 263 264 switch (size) { 265 case 0: 266 mode &= ~FSL_DMA_MR_SAHE; 267 break; 268 case 1: 269 case 2: 270 case 4: 271 case 8: 272 mode &= ~FSL_DMA_MR_SAHTS_MASK; 273 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14); 274 break; 275 } 276 277 set_mr(chan, mode); 278 } 279 280 /** 281 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size 282 * @chan : Freescale DMA channel 283 * @size : Address loop size, 0 for disable loop 284 * 285 * The set destination address hold transfer size. The destination 286 * address hold or loop transfer size is when the DMA transfer 287 * data to destination address (TA), if the loop size is 4, the DMA will 288 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 289 * TA + 1 ... and so on. 290 */ 291 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size) 292 { 293 u32 mode; 294 295 mode = get_mr(chan); 296 297 switch (size) { 298 case 0: 299 mode &= ~FSL_DMA_MR_DAHE; 300 break; 301 case 1: 302 case 2: 303 case 4: 304 case 8: 305 mode &= ~FSL_DMA_MR_DAHTS_MASK; 306 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16); 307 break; 308 } 309 310 set_mr(chan, mode); 311 } 312 313 /** 314 * fsl_chan_set_request_count - Set DMA Request Count for external control 315 * @chan : Freescale DMA channel 316 * @size : Number of bytes to transfer in a single request 317 * 318 * The Freescale DMA channel can be controlled by the external signal DREQ#. 319 * The DMA request count is how many bytes are allowed to transfer before 320 * pausing the channel, after which a new assertion of DREQ# resumes channel 321 * operation. 322 * 323 * A size of 0 disables external pause control. The maximum size is 1024. 324 */ 325 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size) 326 { 327 u32 mode; 328 329 BUG_ON(size > 1024); 330 331 mode = get_mr(chan); 332 mode &= ~FSL_DMA_MR_BWC_MASK; 333 mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK; 334 335 set_mr(chan, mode); 336 } 337 338 /** 339 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 340 * @chan : Freescale DMA channel 341 * @enable : 0 is disabled, 1 is enabled. 342 * 343 * The Freescale DMA channel can be controlled by the external signal DREQ#. 344 * The DMA Request Count feature should be used in addition to this feature 345 * to set the number of bytes to transfer before pausing the channel. 346 */ 347 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable) 348 { 349 if (enable) 350 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 351 else 352 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 353 } 354 355 /** 356 * fsl_chan_toggle_ext_start - Toggle channel external start status 357 * @chan : Freescale DMA channel 358 * @enable : 0 is disabled, 1 is enabled. 359 * 360 * If enable the external start, the channel can be started by an 361 * external DMA start pin. So the dma_start() does not start the 362 * transfer immediately. The DMA channel will wait for the 363 * control pin asserted. 364 */ 365 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable) 366 { 367 if (enable) 368 chan->feature |= FSL_DMA_CHAN_START_EXT; 369 else 370 chan->feature &= ~FSL_DMA_CHAN_START_EXT; 371 } 372 373 int fsl_dma_external_start(struct dma_chan *dchan, int enable) 374 { 375 struct fsldma_chan *chan; 376 377 if (!dchan) 378 return -EINVAL; 379 380 chan = to_fsl_chan(dchan); 381 382 fsl_chan_toggle_ext_start(chan, enable); 383 return 0; 384 } 385 EXPORT_SYMBOL_GPL(fsl_dma_external_start); 386 387 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc) 388 { 389 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev); 390 391 if (list_empty(&chan->ld_pending)) 392 goto out_splice; 393 394 /* 395 * Add the hardware descriptor to the chain of hardware descriptors 396 * that already exists in memory. 397 * 398 * This will un-set the EOL bit of the existing transaction, and the 399 * last link in this transaction will become the EOL descriptor. 400 */ 401 set_desc_next(chan, &tail->hw, desc->async_tx.phys); 402 403 /* 404 * Add the software descriptor and all children to the list 405 * of pending transactions 406 */ 407 out_splice: 408 list_splice_tail_init(&desc->tx_list, &chan->ld_pending); 409 } 410 411 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 412 { 413 struct fsldma_chan *chan = to_fsl_chan(tx->chan); 414 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); 415 struct fsl_desc_sw *child; 416 dma_cookie_t cookie = -EINVAL; 417 418 spin_lock_bh(&chan->desc_lock); 419 420 #ifdef CONFIG_PM 421 if (unlikely(chan->pm_state != RUNNING)) { 422 chan_dbg(chan, "cannot submit due to suspend\n"); 423 spin_unlock_bh(&chan->desc_lock); 424 return -1; 425 } 426 #endif 427 428 /* 429 * assign cookies to all of the software descriptors 430 * that make up this transaction 431 */ 432 list_for_each_entry(child, &desc->tx_list, node) { 433 cookie = dma_cookie_assign(&child->async_tx); 434 } 435 436 /* put this transaction onto the tail of the pending queue */ 437 append_ld_queue(chan, desc); 438 439 spin_unlock_bh(&chan->desc_lock); 440 441 return cookie; 442 } 443 444 /** 445 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool. 446 * @chan : Freescale DMA channel 447 * @desc: descriptor to be freed 448 */ 449 static void fsl_dma_free_descriptor(struct fsldma_chan *chan, 450 struct fsl_desc_sw *desc) 451 { 452 list_del(&desc->node); 453 chan_dbg(chan, "LD %p free\n", desc); 454 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 455 } 456 457 /** 458 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 459 * @chan : Freescale DMA channel 460 * 461 * Return - The descriptor allocated. NULL for failed. 462 */ 463 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan) 464 { 465 struct fsl_desc_sw *desc; 466 dma_addr_t pdesc; 467 468 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 469 if (!desc) { 470 chan_dbg(chan, "out of memory for link descriptor\n"); 471 return NULL; 472 } 473 474 INIT_LIST_HEAD(&desc->tx_list); 475 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 476 desc->async_tx.tx_submit = fsl_dma_tx_submit; 477 desc->async_tx.phys = pdesc; 478 479 chan_dbg(chan, "LD %p allocated\n", desc); 480 481 return desc; 482 } 483 484 /** 485 * fsldma_clean_completed_descriptor - free all descriptors which 486 * has been completed and acked 487 * @chan: Freescale DMA channel 488 * 489 * This function is used on all completed and acked descriptors. 490 * All descriptors should only be freed in this function. 491 */ 492 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan) 493 { 494 struct fsl_desc_sw *desc, *_desc; 495 496 /* Run the callback for each descriptor, in order */ 497 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) 498 if (async_tx_test_ack(&desc->async_tx)) 499 fsl_dma_free_descriptor(chan, desc); 500 } 501 502 /** 503 * fsldma_run_tx_complete_actions - cleanup a single link descriptor 504 * @chan: Freescale DMA channel 505 * @desc: descriptor to cleanup and free 506 * @cookie: Freescale DMA transaction identifier 507 * 508 * This function is used on a descriptor which has been executed by the DMA 509 * controller. It will run any callbacks, submit any dependencies. 510 */ 511 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan, 512 struct fsl_desc_sw *desc, dma_cookie_t cookie) 513 { 514 struct dma_async_tx_descriptor *txd = &desc->async_tx; 515 dma_cookie_t ret = cookie; 516 517 BUG_ON(txd->cookie < 0); 518 519 if (txd->cookie > 0) { 520 ret = txd->cookie; 521 522 dma_descriptor_unmap(txd); 523 /* Run the link descriptor callback function */ 524 dmaengine_desc_get_callback_invoke(txd, NULL); 525 } 526 527 /* Run any dependencies */ 528 dma_run_dependencies(txd); 529 530 return ret; 531 } 532 533 /** 534 * fsldma_clean_running_descriptor - move the completed descriptor from 535 * ld_running to ld_completed 536 * @chan: Freescale DMA channel 537 * @desc: the descriptor which is completed 538 * 539 * Free the descriptor directly if acked by async_tx api, or move it to 540 * queue ld_completed. 541 */ 542 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan, 543 struct fsl_desc_sw *desc) 544 { 545 /* Remove from the list of transactions */ 546 list_del(&desc->node); 547 548 /* 549 * the client is allowed to attach dependent operations 550 * until 'ack' is set 551 */ 552 if (!async_tx_test_ack(&desc->async_tx)) { 553 /* 554 * Move this descriptor to the list of descriptors which is 555 * completed, but still awaiting the 'ack' bit to be set. 556 */ 557 list_add_tail(&desc->node, &chan->ld_completed); 558 return; 559 } 560 561 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 562 } 563 564 /** 565 * fsl_chan_xfer_ld_queue - transfer any pending transactions 566 * @chan : Freescale DMA channel 567 * 568 * HARDWARE STATE: idle 569 * LOCKING: must hold chan->desc_lock 570 */ 571 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan) 572 { 573 struct fsl_desc_sw *desc; 574 575 /* 576 * If the list of pending descriptors is empty, then we 577 * don't need to do any work at all 578 */ 579 if (list_empty(&chan->ld_pending)) { 580 chan_dbg(chan, "no pending LDs\n"); 581 return; 582 } 583 584 /* 585 * The DMA controller is not idle, which means that the interrupt 586 * handler will start any queued transactions when it runs after 587 * this transaction finishes 588 */ 589 if (!chan->idle) { 590 chan_dbg(chan, "DMA controller still busy\n"); 591 return; 592 } 593 594 /* 595 * If there are some link descriptors which have not been 596 * transferred, we need to start the controller 597 */ 598 599 /* 600 * Move all elements from the queue of pending transactions 601 * onto the list of running transactions 602 */ 603 chan_dbg(chan, "idle, starting controller\n"); 604 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node); 605 list_splice_tail_init(&chan->ld_pending, &chan->ld_running); 606 607 /* 608 * The 85xx DMA controller doesn't clear the channel start bit 609 * automatically at the end of a transfer. Therefore we must clear 610 * it in software before starting the transfer. 611 */ 612 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { 613 u32 mode; 614 615 mode = get_mr(chan); 616 mode &= ~FSL_DMA_MR_CS; 617 set_mr(chan, mode); 618 } 619 620 /* 621 * Program the descriptor's address into the DMA controller, 622 * then start the DMA transaction 623 */ 624 set_cdar(chan, desc->async_tx.phys); 625 get_cdar(chan); 626 627 dma_start(chan); 628 chan->idle = false; 629 } 630 631 /** 632 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed 633 * and move them to ld_completed to free until flag 'ack' is set 634 * @chan: Freescale DMA channel 635 * 636 * This function is used on descriptors which have been executed by the DMA 637 * controller. It will run any callbacks, submit any dependencies, then 638 * free these descriptors if flag 'ack' is set. 639 */ 640 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan) 641 { 642 struct fsl_desc_sw *desc, *_desc; 643 dma_cookie_t cookie = 0; 644 dma_addr_t curr_phys = get_cdar(chan); 645 int seen_current = 0; 646 647 fsldma_clean_completed_descriptor(chan); 648 649 /* Run the callback for each descriptor, in order */ 650 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) { 651 /* 652 * do not advance past the current descriptor loaded into the 653 * hardware channel, subsequent descriptors are either in 654 * process or have not been submitted 655 */ 656 if (seen_current) 657 break; 658 659 /* 660 * stop the search if we reach the current descriptor and the 661 * channel is busy 662 */ 663 if (desc->async_tx.phys == curr_phys) { 664 seen_current = 1; 665 if (!dma_is_idle(chan)) 666 break; 667 } 668 669 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie); 670 671 fsldma_clean_running_descriptor(chan, desc); 672 } 673 674 /* 675 * Start any pending transactions automatically 676 * 677 * In the ideal case, we keep the DMA controller busy while we go 678 * ahead and free the descriptors below. 679 */ 680 fsl_chan_xfer_ld_queue(chan); 681 682 if (cookie > 0) 683 chan->common.completed_cookie = cookie; 684 } 685 686 /** 687 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 688 * @chan : Freescale DMA channel 689 * 690 * This function will create a dma pool for descriptor allocation. 691 * 692 * Return - The number of descriptors allocated. 693 */ 694 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan) 695 { 696 struct fsldma_chan *chan = to_fsl_chan(dchan); 697 698 /* Has this channel already been allocated? */ 699 if (chan->desc_pool) 700 return 1; 701 702 /* 703 * We need the descriptor to be aligned to 32bytes 704 * for meeting FSL DMA specification requirement. 705 */ 706 chan->desc_pool = dma_pool_create(chan->name, chan->dev, 707 sizeof(struct fsl_desc_sw), 708 __alignof__(struct fsl_desc_sw), 0); 709 if (!chan->desc_pool) { 710 chan_err(chan, "unable to allocate descriptor pool\n"); 711 return -ENOMEM; 712 } 713 714 /* there is at least one descriptor free to be allocated */ 715 return 1; 716 } 717 718 /** 719 * fsldma_free_desc_list - Free all descriptors in a queue 720 * @chan: Freescae DMA channel 721 * @list: the list to free 722 * 723 * LOCKING: must hold chan->desc_lock 724 */ 725 static void fsldma_free_desc_list(struct fsldma_chan *chan, 726 struct list_head *list) 727 { 728 struct fsl_desc_sw *desc, *_desc; 729 730 list_for_each_entry_safe(desc, _desc, list, node) 731 fsl_dma_free_descriptor(chan, desc); 732 } 733 734 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan, 735 struct list_head *list) 736 { 737 struct fsl_desc_sw *desc, *_desc; 738 739 list_for_each_entry_safe_reverse(desc, _desc, list, node) 740 fsl_dma_free_descriptor(chan, desc); 741 } 742 743 /** 744 * fsl_dma_free_chan_resources - Free all resources of the channel. 745 * @chan : Freescale DMA channel 746 */ 747 static void fsl_dma_free_chan_resources(struct dma_chan *dchan) 748 { 749 struct fsldma_chan *chan = to_fsl_chan(dchan); 750 751 chan_dbg(chan, "free all channel resources\n"); 752 spin_lock_bh(&chan->desc_lock); 753 fsldma_cleanup_descriptors(chan); 754 fsldma_free_desc_list(chan, &chan->ld_pending); 755 fsldma_free_desc_list(chan, &chan->ld_running); 756 fsldma_free_desc_list(chan, &chan->ld_completed); 757 spin_unlock_bh(&chan->desc_lock); 758 759 dma_pool_destroy(chan->desc_pool); 760 chan->desc_pool = NULL; 761 } 762 763 static struct dma_async_tx_descriptor * 764 fsl_dma_prep_memcpy(struct dma_chan *dchan, 765 dma_addr_t dma_dst, dma_addr_t dma_src, 766 size_t len, unsigned long flags) 767 { 768 struct fsldma_chan *chan; 769 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 770 size_t copy; 771 772 if (!dchan) 773 return NULL; 774 775 if (!len) 776 return NULL; 777 778 chan = to_fsl_chan(dchan); 779 780 do { 781 782 /* Allocate the link descriptor from DMA pool */ 783 new = fsl_dma_alloc_descriptor(chan); 784 if (!new) { 785 chan_err(chan, "%s\n", msg_ld_oom); 786 goto fail; 787 } 788 789 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 790 791 set_desc_cnt(chan, &new->hw, copy); 792 set_desc_src(chan, &new->hw, dma_src); 793 set_desc_dst(chan, &new->hw, dma_dst); 794 795 if (!first) 796 first = new; 797 else 798 set_desc_next(chan, &prev->hw, new->async_tx.phys); 799 800 new->async_tx.cookie = 0; 801 async_tx_ack(&new->async_tx); 802 803 prev = new; 804 len -= copy; 805 dma_src += copy; 806 dma_dst += copy; 807 808 /* Insert the link descriptor to the LD ring */ 809 list_add_tail(&new->node, &first->tx_list); 810 } while (len); 811 812 new->async_tx.flags = flags; /* client is in control of this ack */ 813 new->async_tx.cookie = -EBUSY; 814 815 /* Set End-of-link to the last link descriptor of new list */ 816 set_ld_eol(chan, new); 817 818 return &first->async_tx; 819 820 fail: 821 if (!first) 822 return NULL; 823 824 fsldma_free_desc_list_reverse(chan, &first->tx_list); 825 return NULL; 826 } 827 828 static int fsl_dma_device_terminate_all(struct dma_chan *dchan) 829 { 830 struct fsldma_chan *chan; 831 832 if (!dchan) 833 return -EINVAL; 834 835 chan = to_fsl_chan(dchan); 836 837 spin_lock_bh(&chan->desc_lock); 838 839 /* Halt the DMA engine */ 840 dma_halt(chan); 841 842 /* Remove and free all of the descriptors in the LD queue */ 843 fsldma_free_desc_list(chan, &chan->ld_pending); 844 fsldma_free_desc_list(chan, &chan->ld_running); 845 fsldma_free_desc_list(chan, &chan->ld_completed); 846 chan->idle = true; 847 848 spin_unlock_bh(&chan->desc_lock); 849 return 0; 850 } 851 852 static int fsl_dma_device_config(struct dma_chan *dchan, 853 struct dma_slave_config *config) 854 { 855 struct fsldma_chan *chan; 856 int size; 857 858 if (!dchan) 859 return -EINVAL; 860 861 chan = to_fsl_chan(dchan); 862 863 /* make sure the channel supports setting burst size */ 864 if (!chan->set_request_count) 865 return -ENXIO; 866 867 /* we set the controller burst size depending on direction */ 868 if (config->direction == DMA_MEM_TO_DEV) 869 size = config->dst_addr_width * config->dst_maxburst; 870 else 871 size = config->src_addr_width * config->src_maxburst; 872 873 chan->set_request_count(chan, size); 874 return 0; 875 } 876 877 878 /** 879 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 880 * @chan : Freescale DMA channel 881 */ 882 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan) 883 { 884 struct fsldma_chan *chan = to_fsl_chan(dchan); 885 886 spin_lock_bh(&chan->desc_lock); 887 fsl_chan_xfer_ld_queue(chan); 888 spin_unlock_bh(&chan->desc_lock); 889 } 890 891 /** 892 * fsl_tx_status - Determine the DMA status 893 * @chan : Freescale DMA channel 894 */ 895 static enum dma_status fsl_tx_status(struct dma_chan *dchan, 896 dma_cookie_t cookie, 897 struct dma_tx_state *txstate) 898 { 899 struct fsldma_chan *chan = to_fsl_chan(dchan); 900 enum dma_status ret; 901 902 ret = dma_cookie_status(dchan, cookie, txstate); 903 if (ret == DMA_COMPLETE) 904 return ret; 905 906 spin_lock_bh(&chan->desc_lock); 907 fsldma_cleanup_descriptors(chan); 908 spin_unlock_bh(&chan->desc_lock); 909 910 return dma_cookie_status(dchan, cookie, txstate); 911 } 912 913 /*----------------------------------------------------------------------------*/ 914 /* Interrupt Handling */ 915 /*----------------------------------------------------------------------------*/ 916 917 static irqreturn_t fsldma_chan_irq(int irq, void *data) 918 { 919 struct fsldma_chan *chan = data; 920 u32 stat; 921 922 /* save and clear the status register */ 923 stat = get_sr(chan); 924 set_sr(chan, stat); 925 chan_dbg(chan, "irq: stat = 0x%x\n", stat); 926 927 /* check that this was really our device */ 928 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 929 if (!stat) 930 return IRQ_NONE; 931 932 if (stat & FSL_DMA_SR_TE) 933 chan_err(chan, "Transfer Error!\n"); 934 935 /* 936 * Programming Error 937 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 938 * trigger a PE interrupt. 939 */ 940 if (stat & FSL_DMA_SR_PE) { 941 chan_dbg(chan, "irq: Programming Error INT\n"); 942 stat &= ~FSL_DMA_SR_PE; 943 if (get_bcr(chan) != 0) 944 chan_err(chan, "Programming Error!\n"); 945 } 946 947 /* 948 * For MPC8349, EOCDI event need to update cookie 949 * and start the next transfer if it exist. 950 */ 951 if (stat & FSL_DMA_SR_EOCDI) { 952 chan_dbg(chan, "irq: End-of-Chain link INT\n"); 953 stat &= ~FSL_DMA_SR_EOCDI; 954 } 955 956 /* 957 * If it current transfer is the end-of-transfer, 958 * we should clear the Channel Start bit for 959 * prepare next transfer. 960 */ 961 if (stat & FSL_DMA_SR_EOLNI) { 962 chan_dbg(chan, "irq: End-of-link INT\n"); 963 stat &= ~FSL_DMA_SR_EOLNI; 964 } 965 966 /* check that the DMA controller is really idle */ 967 if (!dma_is_idle(chan)) 968 chan_err(chan, "irq: controller not idle!\n"); 969 970 /* check that we handled all of the bits */ 971 if (stat) 972 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat); 973 974 /* 975 * Schedule the tasklet to handle all cleanup of the current 976 * transaction. It will start a new transaction if there is 977 * one pending. 978 */ 979 tasklet_schedule(&chan->tasklet); 980 chan_dbg(chan, "irq: Exit\n"); 981 return IRQ_HANDLED; 982 } 983 984 static void dma_do_tasklet(unsigned long data) 985 { 986 struct fsldma_chan *chan = (struct fsldma_chan *)data; 987 988 chan_dbg(chan, "tasklet entry\n"); 989 990 spin_lock_bh(&chan->desc_lock); 991 992 /* the hardware is now idle and ready for more */ 993 chan->idle = true; 994 995 /* Run all cleanup for descriptors which have been completed */ 996 fsldma_cleanup_descriptors(chan); 997 998 spin_unlock_bh(&chan->desc_lock); 999 1000 chan_dbg(chan, "tasklet exit\n"); 1001 } 1002 1003 static irqreturn_t fsldma_ctrl_irq(int irq, void *data) 1004 { 1005 struct fsldma_device *fdev = data; 1006 struct fsldma_chan *chan; 1007 unsigned int handled = 0; 1008 u32 gsr, mask; 1009 int i; 1010 1011 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs) 1012 : in_le32(fdev->regs); 1013 mask = 0xff000000; 1014 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr); 1015 1016 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1017 chan = fdev->chan[i]; 1018 if (!chan) 1019 continue; 1020 1021 if (gsr & mask) { 1022 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id); 1023 fsldma_chan_irq(irq, chan); 1024 handled++; 1025 } 1026 1027 gsr &= ~mask; 1028 mask >>= 8; 1029 } 1030 1031 return IRQ_RETVAL(handled); 1032 } 1033 1034 static void fsldma_free_irqs(struct fsldma_device *fdev) 1035 { 1036 struct fsldma_chan *chan; 1037 int i; 1038 1039 if (fdev->irq) { 1040 dev_dbg(fdev->dev, "free per-controller IRQ\n"); 1041 free_irq(fdev->irq, fdev); 1042 return; 1043 } 1044 1045 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1046 chan = fdev->chan[i]; 1047 if (chan && chan->irq) { 1048 chan_dbg(chan, "free per-channel IRQ\n"); 1049 free_irq(chan->irq, chan); 1050 } 1051 } 1052 } 1053 1054 static int fsldma_request_irqs(struct fsldma_device *fdev) 1055 { 1056 struct fsldma_chan *chan; 1057 int ret; 1058 int i; 1059 1060 /* if we have a per-controller IRQ, use that */ 1061 if (fdev->irq) { 1062 dev_dbg(fdev->dev, "request per-controller IRQ\n"); 1063 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED, 1064 "fsldma-controller", fdev); 1065 return ret; 1066 } 1067 1068 /* no per-controller IRQ, use the per-channel IRQs */ 1069 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1070 chan = fdev->chan[i]; 1071 if (!chan) 1072 continue; 1073 1074 if (!chan->irq) { 1075 chan_err(chan, "interrupts property missing in device tree\n"); 1076 ret = -ENODEV; 1077 goto out_unwind; 1078 } 1079 1080 chan_dbg(chan, "request per-channel IRQ\n"); 1081 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED, 1082 "fsldma-chan", chan); 1083 if (ret) { 1084 chan_err(chan, "unable to request per-channel IRQ\n"); 1085 goto out_unwind; 1086 } 1087 } 1088 1089 return 0; 1090 1091 out_unwind: 1092 for (/* none */; i >= 0; i--) { 1093 chan = fdev->chan[i]; 1094 if (!chan) 1095 continue; 1096 1097 if (!chan->irq) 1098 continue; 1099 1100 free_irq(chan->irq, chan); 1101 } 1102 1103 return ret; 1104 } 1105 1106 /*----------------------------------------------------------------------------*/ 1107 /* OpenFirmware Subsystem */ 1108 /*----------------------------------------------------------------------------*/ 1109 1110 static int fsl_dma_chan_probe(struct fsldma_device *fdev, 1111 struct device_node *node, u32 feature, const char *compatible) 1112 { 1113 struct fsldma_chan *chan; 1114 struct resource res; 1115 int err; 1116 1117 /* alloc channel */ 1118 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1119 if (!chan) { 1120 err = -ENOMEM; 1121 goto out_return; 1122 } 1123 1124 /* ioremap registers for use */ 1125 chan->regs = of_iomap(node, 0); 1126 if (!chan->regs) { 1127 dev_err(fdev->dev, "unable to ioremap registers\n"); 1128 err = -ENOMEM; 1129 goto out_free_chan; 1130 } 1131 1132 err = of_address_to_resource(node, 0, &res); 1133 if (err) { 1134 dev_err(fdev->dev, "unable to find 'reg' property\n"); 1135 goto out_iounmap_regs; 1136 } 1137 1138 chan->feature = feature; 1139 if (!fdev->feature) 1140 fdev->feature = chan->feature; 1141 1142 /* 1143 * If the DMA device's feature is different than the feature 1144 * of its channels, report the bug 1145 */ 1146 WARN_ON(fdev->feature != chan->feature); 1147 1148 chan->dev = fdev->dev; 1149 chan->id = (res.start & 0xfff) < 0x300 ? 1150 ((res.start - 0x100) & 0xfff) >> 7 : 1151 ((res.start - 0x200) & 0xfff) >> 7; 1152 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { 1153 dev_err(fdev->dev, "too many channels for device\n"); 1154 err = -EINVAL; 1155 goto out_iounmap_regs; 1156 } 1157 1158 fdev->chan[chan->id] = chan; 1159 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 1160 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id); 1161 1162 /* Initialize the channel */ 1163 dma_init(chan); 1164 1165 /* Clear cdar registers */ 1166 set_cdar(chan, 0); 1167 1168 switch (chan->feature & FSL_DMA_IP_MASK) { 1169 case FSL_DMA_IP_85XX: 1170 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 1171 case FSL_DMA_IP_83XX: 1172 chan->toggle_ext_start = fsl_chan_toggle_ext_start; 1173 chan->set_src_loop_size = fsl_chan_set_src_loop_size; 1174 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size; 1175 chan->set_request_count = fsl_chan_set_request_count; 1176 } 1177 1178 spin_lock_init(&chan->desc_lock); 1179 INIT_LIST_HEAD(&chan->ld_pending); 1180 INIT_LIST_HEAD(&chan->ld_running); 1181 INIT_LIST_HEAD(&chan->ld_completed); 1182 chan->idle = true; 1183 #ifdef CONFIG_PM 1184 chan->pm_state = RUNNING; 1185 #endif 1186 1187 chan->common.device = &fdev->common; 1188 dma_cookie_init(&chan->common); 1189 1190 /* find the IRQ line, if it exists in the device tree */ 1191 chan->irq = irq_of_parse_and_map(node, 0); 1192 1193 /* Add the channel to DMA device channel list */ 1194 list_add_tail(&chan->common.device_node, &fdev->common.channels); 1195 1196 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible, 1197 chan->irq ? chan->irq : fdev->irq); 1198 1199 return 0; 1200 1201 out_iounmap_regs: 1202 iounmap(chan->regs); 1203 out_free_chan: 1204 kfree(chan); 1205 out_return: 1206 return err; 1207 } 1208 1209 static void fsl_dma_chan_remove(struct fsldma_chan *chan) 1210 { 1211 irq_dispose_mapping(chan->irq); 1212 list_del(&chan->common.device_node); 1213 iounmap(chan->regs); 1214 kfree(chan); 1215 } 1216 1217 static int fsldma_of_probe(struct platform_device *op) 1218 { 1219 struct fsldma_device *fdev; 1220 struct device_node *child; 1221 int err; 1222 1223 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL); 1224 if (!fdev) { 1225 err = -ENOMEM; 1226 goto out_return; 1227 } 1228 1229 fdev->dev = &op->dev; 1230 INIT_LIST_HEAD(&fdev->common.channels); 1231 1232 /* ioremap the registers for use */ 1233 fdev->regs = of_iomap(op->dev.of_node, 0); 1234 if (!fdev->regs) { 1235 dev_err(&op->dev, "unable to ioremap registers\n"); 1236 err = -ENOMEM; 1237 goto out_free; 1238 } 1239 1240 /* map the channel IRQ if it exists, but don't hookup the handler yet */ 1241 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0); 1242 1243 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1244 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); 1245 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1246 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1247 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1248 fdev->common.device_tx_status = fsl_tx_status; 1249 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1250 fdev->common.device_config = fsl_dma_device_config; 1251 fdev->common.device_terminate_all = fsl_dma_device_terminate_all; 1252 fdev->common.dev = &op->dev; 1253 1254 fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS; 1255 fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS; 1256 fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1257 fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 1258 1259 dma_set_mask(&(op->dev), DMA_BIT_MASK(36)); 1260 1261 platform_set_drvdata(op, fdev); 1262 1263 /* 1264 * We cannot use of_platform_bus_probe() because there is no 1265 * of_platform_bus_remove(). Instead, we manually instantiate every DMA 1266 * channel object. 1267 */ 1268 for_each_child_of_node(op->dev.of_node, child) { 1269 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) { 1270 fsl_dma_chan_probe(fdev, child, 1271 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, 1272 "fsl,eloplus-dma-channel"); 1273 } 1274 1275 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) { 1276 fsl_dma_chan_probe(fdev, child, 1277 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, 1278 "fsl,elo-dma-channel"); 1279 } 1280 } 1281 1282 /* 1283 * Hookup the IRQ handler(s) 1284 * 1285 * If we have a per-controller interrupt, we prefer that to the 1286 * per-channel interrupts to reduce the number of shared interrupt 1287 * handlers on the same IRQ line 1288 */ 1289 err = fsldma_request_irqs(fdev); 1290 if (err) { 1291 dev_err(fdev->dev, "unable to request IRQs\n"); 1292 goto out_free_fdev; 1293 } 1294 1295 dma_async_device_register(&fdev->common); 1296 return 0; 1297 1298 out_free_fdev: 1299 irq_dispose_mapping(fdev->irq); 1300 iounmap(fdev->regs); 1301 out_free: 1302 kfree(fdev); 1303 out_return: 1304 return err; 1305 } 1306 1307 static int fsldma_of_remove(struct platform_device *op) 1308 { 1309 struct fsldma_device *fdev; 1310 unsigned int i; 1311 1312 fdev = platform_get_drvdata(op); 1313 dma_async_device_unregister(&fdev->common); 1314 1315 fsldma_free_irqs(fdev); 1316 1317 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1318 if (fdev->chan[i]) 1319 fsl_dma_chan_remove(fdev->chan[i]); 1320 } 1321 1322 iounmap(fdev->regs); 1323 kfree(fdev); 1324 1325 return 0; 1326 } 1327 1328 #ifdef CONFIG_PM 1329 static int fsldma_suspend_late(struct device *dev) 1330 { 1331 struct platform_device *pdev = to_platform_device(dev); 1332 struct fsldma_device *fdev = platform_get_drvdata(pdev); 1333 struct fsldma_chan *chan; 1334 int i; 1335 1336 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1337 chan = fdev->chan[i]; 1338 if (!chan) 1339 continue; 1340 1341 spin_lock_bh(&chan->desc_lock); 1342 if (unlikely(!chan->idle)) 1343 goto out; 1344 chan->regs_save.mr = get_mr(chan); 1345 chan->pm_state = SUSPENDED; 1346 spin_unlock_bh(&chan->desc_lock); 1347 } 1348 return 0; 1349 1350 out: 1351 for (; i >= 0; i--) { 1352 chan = fdev->chan[i]; 1353 if (!chan) 1354 continue; 1355 chan->pm_state = RUNNING; 1356 spin_unlock_bh(&chan->desc_lock); 1357 } 1358 return -EBUSY; 1359 } 1360 1361 static int fsldma_resume_early(struct device *dev) 1362 { 1363 struct platform_device *pdev = to_platform_device(dev); 1364 struct fsldma_device *fdev = platform_get_drvdata(pdev); 1365 struct fsldma_chan *chan; 1366 u32 mode; 1367 int i; 1368 1369 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { 1370 chan = fdev->chan[i]; 1371 if (!chan) 1372 continue; 1373 1374 spin_lock_bh(&chan->desc_lock); 1375 mode = chan->regs_save.mr 1376 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA; 1377 set_mr(chan, mode); 1378 chan->pm_state = RUNNING; 1379 spin_unlock_bh(&chan->desc_lock); 1380 } 1381 1382 return 0; 1383 } 1384 1385 static const struct dev_pm_ops fsldma_pm_ops = { 1386 .suspend_late = fsldma_suspend_late, 1387 .resume_early = fsldma_resume_early, 1388 }; 1389 #endif 1390 1391 static const struct of_device_id fsldma_of_ids[] = { 1392 { .compatible = "fsl,elo3-dma", }, 1393 { .compatible = "fsl,eloplus-dma", }, 1394 { .compatible = "fsl,elo-dma", }, 1395 {} 1396 }; 1397 MODULE_DEVICE_TABLE(of, fsldma_of_ids); 1398 1399 static struct platform_driver fsldma_of_driver = { 1400 .driver = { 1401 .name = "fsl-elo-dma", 1402 .of_match_table = fsldma_of_ids, 1403 #ifdef CONFIG_PM 1404 .pm = &fsldma_pm_ops, 1405 #endif 1406 }, 1407 .probe = fsldma_of_probe, 1408 .remove = fsldma_of_remove, 1409 }; 1410 1411 /*----------------------------------------------------------------------------*/ 1412 /* Module Init / Exit */ 1413 /*----------------------------------------------------------------------------*/ 1414 1415 static __init int fsldma_init(void) 1416 { 1417 pr_info("Freescale Elo series DMA driver\n"); 1418 return platform_driver_register(&fsldma_of_driver); 1419 } 1420 1421 static void __exit fsldma_exit(void) 1422 { 1423 platform_driver_unregister(&fsldma_of_driver); 1424 } 1425 1426 subsys_initcall(fsldma_init); 1427 module_exit(fsldma_exit); 1428 1429 MODULE_DESCRIPTION("Freescale Elo series DMA driver"); 1430 MODULE_LICENSE("GPL"); 1431