xref: /openbmc/linux/drivers/dma/fsldma.c (revision 6dfcd296)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
42 
43 #define chan_dbg(chan, fmt, arg...)					\
44 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)					\
46 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47 
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 
50 /*
51  * Register Helpers
52  */
53 
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 	DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58 
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 	return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63 
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 	DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68 
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 	return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73 
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78 
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83 
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 	DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88 
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 	return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93 
94 /*
95  * Descriptor Helpers
96  */
97 
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 				struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 	hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103 
104 static void set_desc_src(struct fsldma_chan *chan,
105 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113 
114 static void set_desc_dst(struct fsldma_chan *chan,
115 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 	u64 snoop_bits;
118 
119 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123 
124 static void set_desc_next(struct fsldma_chan *chan,
125 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 	u64 snoop_bits;
128 
129 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 		? FSL_DMA_SNEN : 0;
131 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133 
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 	u64 snoop_bits;
137 
138 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 		? FSL_DMA_SNEN : 0;
140 
141 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 			| snoop_bits, 64);
144 }
145 
146 /*
147  * DMA Engine Hardware Control Helpers
148  */
149 
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 	/* Reset the channel */
153 	set_mr(chan, 0);
154 
155 	switch (chan->feature & FSL_DMA_IP_MASK) {
156 	case FSL_DMA_IP_85XX:
157 		/* Set the channel to below modes:
158 		 * EIE - Error interrupt enable
159 		 * EOLNIE - End of links interrupt enable
160 		 * BWC - Bandwidth sharing among channels
161 		 */
162 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 			| FSL_DMA_MR_EOLNIE);
164 		break;
165 	case FSL_DMA_IP_83XX:
166 		/* Set the channel to below modes:
167 		 * EOTIE - End-of-transfer interrupt enable
168 		 * PRC_RM - PCI read multiple
169 		 */
170 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 		break;
172 	}
173 }
174 
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 	u32 sr = get_sr(chan);
178 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180 
181 /*
182  * Start the DMA controller
183  *
184  * Preconditions:
185  * - the CDAR register must point to the start descriptor
186  * - the MRn[CS] bit must be cleared
187  */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 	u32 mode;
191 
192 	mode = get_mr(chan);
193 
194 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 		set_bcr(chan, 0);
196 		mode |= FSL_DMA_MR_EMP_EN;
197 	} else {
198 		mode &= ~FSL_DMA_MR_EMP_EN;
199 	}
200 
201 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 		mode |= FSL_DMA_MR_EMS_EN;
203 	} else {
204 		mode &= ~FSL_DMA_MR_EMS_EN;
205 		mode |= FSL_DMA_MR_CS;
206 	}
207 
208 	set_mr(chan, mode);
209 }
210 
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 	u32 mode;
214 	int i;
215 
216 	/* read the mode register */
217 	mode = get_mr(chan);
218 
219 	/*
220 	 * The 85xx controller supports channel abort, which will stop
221 	 * the current transfer. On 83xx, this bit is the transfer error
222 	 * mask bit, which should not be changed.
223 	 */
224 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 		mode |= FSL_DMA_MR_CA;
226 		set_mr(chan, mode);
227 
228 		mode &= ~FSL_DMA_MR_CA;
229 	}
230 
231 	/* stop the DMA controller */
232 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 	set_mr(chan, mode);
234 
235 	/* wait for the DMA controller to become idle */
236 	for (i = 0; i < 100; i++) {
237 		if (dma_is_idle(chan))
238 			return;
239 
240 		udelay(10);
241 	}
242 
243 	if (!dma_is_idle(chan))
244 		chan_err(chan, "DMA halt timeout!\n");
245 }
246 
247 /**
248  * fsl_chan_set_src_loop_size - Set source address hold transfer size
249  * @chan : Freescale DMA channel
250  * @size     : Address loop size, 0 for disable loop
251  *
252  * The set source address hold transfer size. The source
253  * address hold or loop transfer size is when the DMA transfer
254  * data from source address (SA), if the loop size is 4, the DMA will
255  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256  * SA + 1 ... and so on.
257  */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 	u32 mode;
261 
262 	mode = get_mr(chan);
263 
264 	switch (size) {
265 	case 0:
266 		mode &= ~FSL_DMA_MR_SAHE;
267 		break;
268 	case 1:
269 	case 2:
270 	case 4:
271 	case 8:
272 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 		break;
274 	}
275 
276 	set_mr(chan, mode);
277 }
278 
279 /**
280  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281  * @chan : Freescale DMA channel
282  * @size     : Address loop size, 0 for disable loop
283  *
284  * The set destination address hold transfer size. The destination
285  * address hold or loop transfer size is when the DMA transfer
286  * data to destination address (TA), if the loop size is 4, the DMA will
287  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288  * TA + 1 ... and so on.
289  */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292 	u32 mode;
293 
294 	mode = get_mr(chan);
295 
296 	switch (size) {
297 	case 0:
298 		mode &= ~FSL_DMA_MR_DAHE;
299 		break;
300 	case 1:
301 	case 2:
302 	case 4:
303 	case 8:
304 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 		break;
306 	}
307 
308 	set_mr(chan, mode);
309 }
310 
311 /**
312  * fsl_chan_set_request_count - Set DMA Request Count for external control
313  * @chan : Freescale DMA channel
314  * @size     : Number of bytes to transfer in a single request
315  *
316  * The Freescale DMA channel can be controlled by the external signal DREQ#.
317  * The DMA request count is how many bytes are allowed to transfer before
318  * pausing the channel, after which a new assertion of DREQ# resumes channel
319  * operation.
320  *
321  * A size of 0 disables external pause control. The maximum size is 1024.
322  */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325 	u32 mode;
326 
327 	BUG_ON(size > 1024);
328 
329 	mode = get_mr(chan);
330 	mode |= (__ilog2(size) << 24) & 0x0f000000;
331 
332 	set_mr(chan, mode);
333 }
334 
335 /**
336  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337  * @chan : Freescale DMA channel
338  * @enable   : 0 is disabled, 1 is enabled.
339  *
340  * The Freescale DMA channel can be controlled by the external signal DREQ#.
341  * The DMA Request Count feature should be used in addition to this feature
342  * to set the number of bytes to transfer before pausing the channel.
343  */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346 	if (enable)
347 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 	else
349 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351 
352 /**
353  * fsl_chan_toggle_ext_start - Toggle channel external start status
354  * @chan : Freescale DMA channel
355  * @enable   : 0 is disabled, 1 is enabled.
356  *
357  * If enable the external start, the channel can be started by an
358  * external DMA start pin. So the dma_start() does not start the
359  * transfer immediately. The DMA channel will wait for the
360  * control pin asserted.
361  */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364 	if (enable)
365 		chan->feature |= FSL_DMA_CHAN_START_EXT;
366 	else
367 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369 
370 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
371 {
372 	struct fsldma_chan *chan;
373 
374 	if (!dchan)
375 		return -EINVAL;
376 
377 	chan = to_fsl_chan(dchan);
378 
379 	fsl_chan_toggle_ext_start(chan, enable);
380 	return 0;
381 }
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
383 
384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
385 {
386 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
387 
388 	if (list_empty(&chan->ld_pending))
389 		goto out_splice;
390 
391 	/*
392 	 * Add the hardware descriptor to the chain of hardware descriptors
393 	 * that already exists in memory.
394 	 *
395 	 * This will un-set the EOL bit of the existing transaction, and the
396 	 * last link in this transaction will become the EOL descriptor.
397 	 */
398 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
399 
400 	/*
401 	 * Add the software descriptor and all children to the list
402 	 * of pending transactions
403 	 */
404 out_splice:
405 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
406 }
407 
408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
409 {
410 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
411 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
412 	struct fsl_desc_sw *child;
413 	dma_cookie_t cookie = -EINVAL;
414 
415 	spin_lock_bh(&chan->desc_lock);
416 
417 #ifdef CONFIG_PM
418 	if (unlikely(chan->pm_state != RUNNING)) {
419 		chan_dbg(chan, "cannot submit due to suspend\n");
420 		spin_unlock_bh(&chan->desc_lock);
421 		return -1;
422 	}
423 #endif
424 
425 	/*
426 	 * assign cookies to all of the software descriptors
427 	 * that make up this transaction
428 	 */
429 	list_for_each_entry(child, &desc->tx_list, node) {
430 		cookie = dma_cookie_assign(&child->async_tx);
431 	}
432 
433 	/* put this transaction onto the tail of the pending queue */
434 	append_ld_queue(chan, desc);
435 
436 	spin_unlock_bh(&chan->desc_lock);
437 
438 	return cookie;
439 }
440 
441 /**
442  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443  * @chan : Freescale DMA channel
444  * @desc: descriptor to be freed
445  */
446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
447 		struct fsl_desc_sw *desc)
448 {
449 	list_del(&desc->node);
450 	chan_dbg(chan, "LD %p free\n", desc);
451 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
452 }
453 
454 /**
455  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456  * @chan : Freescale DMA channel
457  *
458  * Return - The descriptor allocated. NULL for failed.
459  */
460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
461 {
462 	struct fsl_desc_sw *desc;
463 	dma_addr_t pdesc;
464 
465 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
466 	if (!desc) {
467 		chan_dbg(chan, "out of memory for link descriptor\n");
468 		return NULL;
469 	}
470 
471 	INIT_LIST_HEAD(&desc->tx_list);
472 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
473 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
474 	desc->async_tx.phys = pdesc;
475 
476 	chan_dbg(chan, "LD %p allocated\n", desc);
477 
478 	return desc;
479 }
480 
481 /**
482  * fsldma_clean_completed_descriptor - free all descriptors which
483  * has been completed and acked
484  * @chan: Freescale DMA channel
485  *
486  * This function is used on all completed and acked descriptors.
487  * All descriptors should only be freed in this function.
488  */
489 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
490 {
491 	struct fsl_desc_sw *desc, *_desc;
492 
493 	/* Run the callback for each descriptor, in order */
494 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
495 		if (async_tx_test_ack(&desc->async_tx))
496 			fsl_dma_free_descriptor(chan, desc);
497 }
498 
499 /**
500  * fsldma_run_tx_complete_actions - cleanup a single link descriptor
501  * @chan: Freescale DMA channel
502  * @desc: descriptor to cleanup and free
503  * @cookie: Freescale DMA transaction identifier
504  *
505  * This function is used on a descriptor which has been executed by the DMA
506  * controller. It will run any callbacks, submit any dependencies.
507  */
508 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
509 		struct fsl_desc_sw *desc, dma_cookie_t cookie)
510 {
511 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
512 	dma_cookie_t ret = cookie;
513 
514 	BUG_ON(txd->cookie < 0);
515 
516 	if (txd->cookie > 0) {
517 		ret = txd->cookie;
518 
519 		dma_descriptor_unmap(txd);
520 		/* Run the link descriptor callback function */
521 		dmaengine_desc_get_callback_invoke(txd, NULL);
522 	}
523 
524 	/* Run any dependencies */
525 	dma_run_dependencies(txd);
526 
527 	return ret;
528 }
529 
530 /**
531  * fsldma_clean_running_descriptor - move the completed descriptor from
532  * ld_running to ld_completed
533  * @chan: Freescale DMA channel
534  * @desc: the descriptor which is completed
535  *
536  * Free the descriptor directly if acked by async_tx api, or move it to
537  * queue ld_completed.
538  */
539 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
540 		struct fsl_desc_sw *desc)
541 {
542 	/* Remove from the list of transactions */
543 	list_del(&desc->node);
544 
545 	/*
546 	 * the client is allowed to attach dependent operations
547 	 * until 'ack' is set
548 	 */
549 	if (!async_tx_test_ack(&desc->async_tx)) {
550 		/*
551 		 * Move this descriptor to the list of descriptors which is
552 		 * completed, but still awaiting the 'ack' bit to be set.
553 		 */
554 		list_add_tail(&desc->node, &chan->ld_completed);
555 		return;
556 	}
557 
558 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
559 }
560 
561 /**
562  * fsl_chan_xfer_ld_queue - transfer any pending transactions
563  * @chan : Freescale DMA channel
564  *
565  * HARDWARE STATE: idle
566  * LOCKING: must hold chan->desc_lock
567  */
568 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
569 {
570 	struct fsl_desc_sw *desc;
571 
572 	/*
573 	 * If the list of pending descriptors is empty, then we
574 	 * don't need to do any work at all
575 	 */
576 	if (list_empty(&chan->ld_pending)) {
577 		chan_dbg(chan, "no pending LDs\n");
578 		return;
579 	}
580 
581 	/*
582 	 * The DMA controller is not idle, which means that the interrupt
583 	 * handler will start any queued transactions when it runs after
584 	 * this transaction finishes
585 	 */
586 	if (!chan->idle) {
587 		chan_dbg(chan, "DMA controller still busy\n");
588 		return;
589 	}
590 
591 	/*
592 	 * If there are some link descriptors which have not been
593 	 * transferred, we need to start the controller
594 	 */
595 
596 	/*
597 	 * Move all elements from the queue of pending transactions
598 	 * onto the list of running transactions
599 	 */
600 	chan_dbg(chan, "idle, starting controller\n");
601 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
602 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
603 
604 	/*
605 	 * The 85xx DMA controller doesn't clear the channel start bit
606 	 * automatically at the end of a transfer. Therefore we must clear
607 	 * it in software before starting the transfer.
608 	 */
609 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
610 		u32 mode;
611 
612 		mode = get_mr(chan);
613 		mode &= ~FSL_DMA_MR_CS;
614 		set_mr(chan, mode);
615 	}
616 
617 	/*
618 	 * Program the descriptor's address into the DMA controller,
619 	 * then start the DMA transaction
620 	 */
621 	set_cdar(chan, desc->async_tx.phys);
622 	get_cdar(chan);
623 
624 	dma_start(chan);
625 	chan->idle = false;
626 }
627 
628 /**
629  * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
630  * and move them to ld_completed to free until flag 'ack' is set
631  * @chan: Freescale DMA channel
632  *
633  * This function is used on descriptors which have been executed by the DMA
634  * controller. It will run any callbacks, submit any dependencies, then
635  * free these descriptors if flag 'ack' is set.
636  */
637 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
638 {
639 	struct fsl_desc_sw *desc, *_desc;
640 	dma_cookie_t cookie = 0;
641 	dma_addr_t curr_phys = get_cdar(chan);
642 	int seen_current = 0;
643 
644 	fsldma_clean_completed_descriptor(chan);
645 
646 	/* Run the callback for each descriptor, in order */
647 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
648 		/*
649 		 * do not advance past the current descriptor loaded into the
650 		 * hardware channel, subsequent descriptors are either in
651 		 * process or have not been submitted
652 		 */
653 		if (seen_current)
654 			break;
655 
656 		/*
657 		 * stop the search if we reach the current descriptor and the
658 		 * channel is busy
659 		 */
660 		if (desc->async_tx.phys == curr_phys) {
661 			seen_current = 1;
662 			if (!dma_is_idle(chan))
663 				break;
664 		}
665 
666 		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
667 
668 		fsldma_clean_running_descriptor(chan, desc);
669 	}
670 
671 	/*
672 	 * Start any pending transactions automatically
673 	 *
674 	 * In the ideal case, we keep the DMA controller busy while we go
675 	 * ahead and free the descriptors below.
676 	 */
677 	fsl_chan_xfer_ld_queue(chan);
678 
679 	if (cookie > 0)
680 		chan->common.completed_cookie = cookie;
681 }
682 
683 /**
684  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
685  * @chan : Freescale DMA channel
686  *
687  * This function will create a dma pool for descriptor allocation.
688  *
689  * Return - The number of descriptors allocated.
690  */
691 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
692 {
693 	struct fsldma_chan *chan = to_fsl_chan(dchan);
694 
695 	/* Has this channel already been allocated? */
696 	if (chan->desc_pool)
697 		return 1;
698 
699 	/*
700 	 * We need the descriptor to be aligned to 32bytes
701 	 * for meeting FSL DMA specification requirement.
702 	 */
703 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
704 					  sizeof(struct fsl_desc_sw),
705 					  __alignof__(struct fsl_desc_sw), 0);
706 	if (!chan->desc_pool) {
707 		chan_err(chan, "unable to allocate descriptor pool\n");
708 		return -ENOMEM;
709 	}
710 
711 	/* there is at least one descriptor free to be allocated */
712 	return 1;
713 }
714 
715 /**
716  * fsldma_free_desc_list - Free all descriptors in a queue
717  * @chan: Freescae DMA channel
718  * @list: the list to free
719  *
720  * LOCKING: must hold chan->desc_lock
721  */
722 static void fsldma_free_desc_list(struct fsldma_chan *chan,
723 				  struct list_head *list)
724 {
725 	struct fsl_desc_sw *desc, *_desc;
726 
727 	list_for_each_entry_safe(desc, _desc, list, node)
728 		fsl_dma_free_descriptor(chan, desc);
729 }
730 
731 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
732 					  struct list_head *list)
733 {
734 	struct fsl_desc_sw *desc, *_desc;
735 
736 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
737 		fsl_dma_free_descriptor(chan, desc);
738 }
739 
740 /**
741  * fsl_dma_free_chan_resources - Free all resources of the channel.
742  * @chan : Freescale DMA channel
743  */
744 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
745 {
746 	struct fsldma_chan *chan = to_fsl_chan(dchan);
747 
748 	chan_dbg(chan, "free all channel resources\n");
749 	spin_lock_bh(&chan->desc_lock);
750 	fsldma_cleanup_descriptors(chan);
751 	fsldma_free_desc_list(chan, &chan->ld_pending);
752 	fsldma_free_desc_list(chan, &chan->ld_running);
753 	fsldma_free_desc_list(chan, &chan->ld_completed);
754 	spin_unlock_bh(&chan->desc_lock);
755 
756 	dma_pool_destroy(chan->desc_pool);
757 	chan->desc_pool = NULL;
758 }
759 
760 static struct dma_async_tx_descriptor *
761 fsl_dma_prep_memcpy(struct dma_chan *dchan,
762 	dma_addr_t dma_dst, dma_addr_t dma_src,
763 	size_t len, unsigned long flags)
764 {
765 	struct fsldma_chan *chan;
766 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
767 	size_t copy;
768 
769 	if (!dchan)
770 		return NULL;
771 
772 	if (!len)
773 		return NULL;
774 
775 	chan = to_fsl_chan(dchan);
776 
777 	do {
778 
779 		/* Allocate the link descriptor from DMA pool */
780 		new = fsl_dma_alloc_descriptor(chan);
781 		if (!new) {
782 			chan_err(chan, "%s\n", msg_ld_oom);
783 			goto fail;
784 		}
785 
786 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
787 
788 		set_desc_cnt(chan, &new->hw, copy);
789 		set_desc_src(chan, &new->hw, dma_src);
790 		set_desc_dst(chan, &new->hw, dma_dst);
791 
792 		if (!first)
793 			first = new;
794 		else
795 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
796 
797 		new->async_tx.cookie = 0;
798 		async_tx_ack(&new->async_tx);
799 
800 		prev = new;
801 		len -= copy;
802 		dma_src += copy;
803 		dma_dst += copy;
804 
805 		/* Insert the link descriptor to the LD ring */
806 		list_add_tail(&new->node, &first->tx_list);
807 	} while (len);
808 
809 	new->async_tx.flags = flags; /* client is in control of this ack */
810 	new->async_tx.cookie = -EBUSY;
811 
812 	/* Set End-of-link to the last link descriptor of new list */
813 	set_ld_eol(chan, new);
814 
815 	return &first->async_tx;
816 
817 fail:
818 	if (!first)
819 		return NULL;
820 
821 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
822 	return NULL;
823 }
824 
825 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
826 	struct scatterlist *dst_sg, unsigned int dst_nents,
827 	struct scatterlist *src_sg, unsigned int src_nents,
828 	unsigned long flags)
829 {
830 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
831 	struct fsldma_chan *chan = to_fsl_chan(dchan);
832 	size_t dst_avail, src_avail;
833 	dma_addr_t dst, src;
834 	size_t len;
835 
836 	/* basic sanity checks */
837 	if (dst_nents == 0 || src_nents == 0)
838 		return NULL;
839 
840 	if (dst_sg == NULL || src_sg == NULL)
841 		return NULL;
842 
843 	/*
844 	 * TODO: should we check that both scatterlists have the same
845 	 * TODO: number of bytes in total? Is that really an error?
846 	 */
847 
848 	/* get prepared for the loop */
849 	dst_avail = sg_dma_len(dst_sg);
850 	src_avail = sg_dma_len(src_sg);
851 
852 	/* run until we are out of scatterlist entries */
853 	while (true) {
854 
855 		/* create the largest transaction possible */
856 		len = min_t(size_t, src_avail, dst_avail);
857 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
858 		if (len == 0)
859 			goto fetch;
860 
861 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
862 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
863 
864 		/* allocate and populate the descriptor */
865 		new = fsl_dma_alloc_descriptor(chan);
866 		if (!new) {
867 			chan_err(chan, "%s\n", msg_ld_oom);
868 			goto fail;
869 		}
870 
871 		set_desc_cnt(chan, &new->hw, len);
872 		set_desc_src(chan, &new->hw, src);
873 		set_desc_dst(chan, &new->hw, dst);
874 
875 		if (!first)
876 			first = new;
877 		else
878 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
879 
880 		new->async_tx.cookie = 0;
881 		async_tx_ack(&new->async_tx);
882 		prev = new;
883 
884 		/* Insert the link descriptor to the LD ring */
885 		list_add_tail(&new->node, &first->tx_list);
886 
887 		/* update metadata */
888 		dst_avail -= len;
889 		src_avail -= len;
890 
891 fetch:
892 		/* fetch the next dst scatterlist entry */
893 		if (dst_avail == 0) {
894 
895 			/* no more entries: we're done */
896 			if (dst_nents == 0)
897 				break;
898 
899 			/* fetch the next entry: if there are no more: done */
900 			dst_sg = sg_next(dst_sg);
901 			if (dst_sg == NULL)
902 				break;
903 
904 			dst_nents--;
905 			dst_avail = sg_dma_len(dst_sg);
906 		}
907 
908 		/* fetch the next src scatterlist entry */
909 		if (src_avail == 0) {
910 
911 			/* no more entries: we're done */
912 			if (src_nents == 0)
913 				break;
914 
915 			/* fetch the next entry: if there are no more: done */
916 			src_sg = sg_next(src_sg);
917 			if (src_sg == NULL)
918 				break;
919 
920 			src_nents--;
921 			src_avail = sg_dma_len(src_sg);
922 		}
923 	}
924 
925 	new->async_tx.flags = flags; /* client is in control of this ack */
926 	new->async_tx.cookie = -EBUSY;
927 
928 	/* Set End-of-link to the last link descriptor of new list */
929 	set_ld_eol(chan, new);
930 
931 	return &first->async_tx;
932 
933 fail:
934 	if (!first)
935 		return NULL;
936 
937 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
938 	return NULL;
939 }
940 
941 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
942 {
943 	struct fsldma_chan *chan;
944 
945 	if (!dchan)
946 		return -EINVAL;
947 
948 	chan = to_fsl_chan(dchan);
949 
950 	spin_lock_bh(&chan->desc_lock);
951 
952 	/* Halt the DMA engine */
953 	dma_halt(chan);
954 
955 	/* Remove and free all of the descriptors in the LD queue */
956 	fsldma_free_desc_list(chan, &chan->ld_pending);
957 	fsldma_free_desc_list(chan, &chan->ld_running);
958 	fsldma_free_desc_list(chan, &chan->ld_completed);
959 	chan->idle = true;
960 
961 	spin_unlock_bh(&chan->desc_lock);
962 	return 0;
963 }
964 
965 static int fsl_dma_device_config(struct dma_chan *dchan,
966 				 struct dma_slave_config *config)
967 {
968 	struct fsldma_chan *chan;
969 	int size;
970 
971 	if (!dchan)
972 		return -EINVAL;
973 
974 	chan = to_fsl_chan(dchan);
975 
976 	/* make sure the channel supports setting burst size */
977 	if (!chan->set_request_count)
978 		return -ENXIO;
979 
980 	/* we set the controller burst size depending on direction */
981 	if (config->direction == DMA_MEM_TO_DEV)
982 		size = config->dst_addr_width * config->dst_maxburst;
983 	else
984 		size = config->src_addr_width * config->src_maxburst;
985 
986 	chan->set_request_count(chan, size);
987 	return 0;
988 }
989 
990 
991 /**
992  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
993  * @chan : Freescale DMA channel
994  */
995 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
996 {
997 	struct fsldma_chan *chan = to_fsl_chan(dchan);
998 
999 	spin_lock_bh(&chan->desc_lock);
1000 	fsl_chan_xfer_ld_queue(chan);
1001 	spin_unlock_bh(&chan->desc_lock);
1002 }
1003 
1004 /**
1005  * fsl_tx_status - Determine the DMA status
1006  * @chan : Freescale DMA channel
1007  */
1008 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1009 					dma_cookie_t cookie,
1010 					struct dma_tx_state *txstate)
1011 {
1012 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1013 	enum dma_status ret;
1014 
1015 	ret = dma_cookie_status(dchan, cookie, txstate);
1016 	if (ret == DMA_COMPLETE)
1017 		return ret;
1018 
1019 	spin_lock_bh(&chan->desc_lock);
1020 	fsldma_cleanup_descriptors(chan);
1021 	spin_unlock_bh(&chan->desc_lock);
1022 
1023 	return dma_cookie_status(dchan, cookie, txstate);
1024 }
1025 
1026 /*----------------------------------------------------------------------------*/
1027 /* Interrupt Handling                                                         */
1028 /*----------------------------------------------------------------------------*/
1029 
1030 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1031 {
1032 	struct fsldma_chan *chan = data;
1033 	u32 stat;
1034 
1035 	/* save and clear the status register */
1036 	stat = get_sr(chan);
1037 	set_sr(chan, stat);
1038 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1039 
1040 	/* check that this was really our device */
1041 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1042 	if (!stat)
1043 		return IRQ_NONE;
1044 
1045 	if (stat & FSL_DMA_SR_TE)
1046 		chan_err(chan, "Transfer Error!\n");
1047 
1048 	/*
1049 	 * Programming Error
1050 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1051 	 * trigger a PE interrupt.
1052 	 */
1053 	if (stat & FSL_DMA_SR_PE) {
1054 		chan_dbg(chan, "irq: Programming Error INT\n");
1055 		stat &= ~FSL_DMA_SR_PE;
1056 		if (get_bcr(chan) != 0)
1057 			chan_err(chan, "Programming Error!\n");
1058 	}
1059 
1060 	/*
1061 	 * For MPC8349, EOCDI event need to update cookie
1062 	 * and start the next transfer if it exist.
1063 	 */
1064 	if (stat & FSL_DMA_SR_EOCDI) {
1065 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1066 		stat &= ~FSL_DMA_SR_EOCDI;
1067 	}
1068 
1069 	/*
1070 	 * If it current transfer is the end-of-transfer,
1071 	 * we should clear the Channel Start bit for
1072 	 * prepare next transfer.
1073 	 */
1074 	if (stat & FSL_DMA_SR_EOLNI) {
1075 		chan_dbg(chan, "irq: End-of-link INT\n");
1076 		stat &= ~FSL_DMA_SR_EOLNI;
1077 	}
1078 
1079 	/* check that the DMA controller is really idle */
1080 	if (!dma_is_idle(chan))
1081 		chan_err(chan, "irq: controller not idle!\n");
1082 
1083 	/* check that we handled all of the bits */
1084 	if (stat)
1085 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1086 
1087 	/*
1088 	 * Schedule the tasklet to handle all cleanup of the current
1089 	 * transaction. It will start a new transaction if there is
1090 	 * one pending.
1091 	 */
1092 	tasklet_schedule(&chan->tasklet);
1093 	chan_dbg(chan, "irq: Exit\n");
1094 	return IRQ_HANDLED;
1095 }
1096 
1097 static void dma_do_tasklet(unsigned long data)
1098 {
1099 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1100 
1101 	chan_dbg(chan, "tasklet entry\n");
1102 
1103 	spin_lock_bh(&chan->desc_lock);
1104 
1105 	/* the hardware is now idle and ready for more */
1106 	chan->idle = true;
1107 
1108 	/* Run all cleanup for descriptors which have been completed */
1109 	fsldma_cleanup_descriptors(chan);
1110 
1111 	spin_unlock_bh(&chan->desc_lock);
1112 
1113 	chan_dbg(chan, "tasklet exit\n");
1114 }
1115 
1116 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1117 {
1118 	struct fsldma_device *fdev = data;
1119 	struct fsldma_chan *chan;
1120 	unsigned int handled = 0;
1121 	u32 gsr, mask;
1122 	int i;
1123 
1124 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1125 						   : in_le32(fdev->regs);
1126 	mask = 0xff000000;
1127 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1128 
1129 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1130 		chan = fdev->chan[i];
1131 		if (!chan)
1132 			continue;
1133 
1134 		if (gsr & mask) {
1135 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1136 			fsldma_chan_irq(irq, chan);
1137 			handled++;
1138 		}
1139 
1140 		gsr &= ~mask;
1141 		mask >>= 8;
1142 	}
1143 
1144 	return IRQ_RETVAL(handled);
1145 }
1146 
1147 static void fsldma_free_irqs(struct fsldma_device *fdev)
1148 {
1149 	struct fsldma_chan *chan;
1150 	int i;
1151 
1152 	if (fdev->irq) {
1153 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1154 		free_irq(fdev->irq, fdev);
1155 		return;
1156 	}
1157 
1158 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1159 		chan = fdev->chan[i];
1160 		if (chan && chan->irq) {
1161 			chan_dbg(chan, "free per-channel IRQ\n");
1162 			free_irq(chan->irq, chan);
1163 		}
1164 	}
1165 }
1166 
1167 static int fsldma_request_irqs(struct fsldma_device *fdev)
1168 {
1169 	struct fsldma_chan *chan;
1170 	int ret;
1171 	int i;
1172 
1173 	/* if we have a per-controller IRQ, use that */
1174 	if (fdev->irq) {
1175 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1176 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1177 				  "fsldma-controller", fdev);
1178 		return ret;
1179 	}
1180 
1181 	/* no per-controller IRQ, use the per-channel IRQs */
1182 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1183 		chan = fdev->chan[i];
1184 		if (!chan)
1185 			continue;
1186 
1187 		if (!chan->irq) {
1188 			chan_err(chan, "interrupts property missing in device tree\n");
1189 			ret = -ENODEV;
1190 			goto out_unwind;
1191 		}
1192 
1193 		chan_dbg(chan, "request per-channel IRQ\n");
1194 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1195 				  "fsldma-chan", chan);
1196 		if (ret) {
1197 			chan_err(chan, "unable to request per-channel IRQ\n");
1198 			goto out_unwind;
1199 		}
1200 	}
1201 
1202 	return 0;
1203 
1204 out_unwind:
1205 	for (/* none */; i >= 0; i--) {
1206 		chan = fdev->chan[i];
1207 		if (!chan)
1208 			continue;
1209 
1210 		if (!chan->irq)
1211 			continue;
1212 
1213 		free_irq(chan->irq, chan);
1214 	}
1215 
1216 	return ret;
1217 }
1218 
1219 /*----------------------------------------------------------------------------*/
1220 /* OpenFirmware Subsystem                                                     */
1221 /*----------------------------------------------------------------------------*/
1222 
1223 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1224 	struct device_node *node, u32 feature, const char *compatible)
1225 {
1226 	struct fsldma_chan *chan;
1227 	struct resource res;
1228 	int err;
1229 
1230 	/* alloc channel */
1231 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1232 	if (!chan) {
1233 		err = -ENOMEM;
1234 		goto out_return;
1235 	}
1236 
1237 	/* ioremap registers for use */
1238 	chan->regs = of_iomap(node, 0);
1239 	if (!chan->regs) {
1240 		dev_err(fdev->dev, "unable to ioremap registers\n");
1241 		err = -ENOMEM;
1242 		goto out_free_chan;
1243 	}
1244 
1245 	err = of_address_to_resource(node, 0, &res);
1246 	if (err) {
1247 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1248 		goto out_iounmap_regs;
1249 	}
1250 
1251 	chan->feature = feature;
1252 	if (!fdev->feature)
1253 		fdev->feature = chan->feature;
1254 
1255 	/*
1256 	 * If the DMA device's feature is different than the feature
1257 	 * of its channels, report the bug
1258 	 */
1259 	WARN_ON(fdev->feature != chan->feature);
1260 
1261 	chan->dev = fdev->dev;
1262 	chan->id = (res.start & 0xfff) < 0x300 ?
1263 		   ((res.start - 0x100) & 0xfff) >> 7 :
1264 		   ((res.start - 0x200) & 0xfff) >> 7;
1265 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1266 		dev_err(fdev->dev, "too many channels for device\n");
1267 		err = -EINVAL;
1268 		goto out_iounmap_regs;
1269 	}
1270 
1271 	fdev->chan[chan->id] = chan;
1272 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1273 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1274 
1275 	/* Initialize the channel */
1276 	dma_init(chan);
1277 
1278 	/* Clear cdar registers */
1279 	set_cdar(chan, 0);
1280 
1281 	switch (chan->feature & FSL_DMA_IP_MASK) {
1282 	case FSL_DMA_IP_85XX:
1283 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1284 	case FSL_DMA_IP_83XX:
1285 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1286 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1287 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1288 		chan->set_request_count = fsl_chan_set_request_count;
1289 	}
1290 
1291 	spin_lock_init(&chan->desc_lock);
1292 	INIT_LIST_HEAD(&chan->ld_pending);
1293 	INIT_LIST_HEAD(&chan->ld_running);
1294 	INIT_LIST_HEAD(&chan->ld_completed);
1295 	chan->idle = true;
1296 #ifdef CONFIG_PM
1297 	chan->pm_state = RUNNING;
1298 #endif
1299 
1300 	chan->common.device = &fdev->common;
1301 	dma_cookie_init(&chan->common);
1302 
1303 	/* find the IRQ line, if it exists in the device tree */
1304 	chan->irq = irq_of_parse_and_map(node, 0);
1305 
1306 	/* Add the channel to DMA device channel list */
1307 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1308 
1309 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1310 		 chan->irq ? chan->irq : fdev->irq);
1311 
1312 	return 0;
1313 
1314 out_iounmap_regs:
1315 	iounmap(chan->regs);
1316 out_free_chan:
1317 	kfree(chan);
1318 out_return:
1319 	return err;
1320 }
1321 
1322 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1323 {
1324 	irq_dispose_mapping(chan->irq);
1325 	list_del(&chan->common.device_node);
1326 	iounmap(chan->regs);
1327 	kfree(chan);
1328 }
1329 
1330 static int fsldma_of_probe(struct platform_device *op)
1331 {
1332 	struct fsldma_device *fdev;
1333 	struct device_node *child;
1334 	int err;
1335 
1336 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1337 	if (!fdev) {
1338 		err = -ENOMEM;
1339 		goto out_return;
1340 	}
1341 
1342 	fdev->dev = &op->dev;
1343 	INIT_LIST_HEAD(&fdev->common.channels);
1344 
1345 	/* ioremap the registers for use */
1346 	fdev->regs = of_iomap(op->dev.of_node, 0);
1347 	if (!fdev->regs) {
1348 		dev_err(&op->dev, "unable to ioremap registers\n");
1349 		err = -ENOMEM;
1350 		goto out_free;
1351 	}
1352 
1353 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1354 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1355 
1356 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1357 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1358 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1359 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1360 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1361 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1362 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1363 	fdev->common.device_tx_status = fsl_tx_status;
1364 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1365 	fdev->common.device_config = fsl_dma_device_config;
1366 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1367 	fdev->common.dev = &op->dev;
1368 
1369 	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1370 	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1371 	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1372 	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1373 
1374 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1375 
1376 	platform_set_drvdata(op, fdev);
1377 
1378 	/*
1379 	 * We cannot use of_platform_bus_probe() because there is no
1380 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1381 	 * channel object.
1382 	 */
1383 	for_each_child_of_node(op->dev.of_node, child) {
1384 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1385 			fsl_dma_chan_probe(fdev, child,
1386 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1387 				"fsl,eloplus-dma-channel");
1388 		}
1389 
1390 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1391 			fsl_dma_chan_probe(fdev, child,
1392 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1393 				"fsl,elo-dma-channel");
1394 		}
1395 	}
1396 
1397 	/*
1398 	 * Hookup the IRQ handler(s)
1399 	 *
1400 	 * If we have a per-controller interrupt, we prefer that to the
1401 	 * per-channel interrupts to reduce the number of shared interrupt
1402 	 * handlers on the same IRQ line
1403 	 */
1404 	err = fsldma_request_irqs(fdev);
1405 	if (err) {
1406 		dev_err(fdev->dev, "unable to request IRQs\n");
1407 		goto out_free_fdev;
1408 	}
1409 
1410 	dma_async_device_register(&fdev->common);
1411 	return 0;
1412 
1413 out_free_fdev:
1414 	irq_dispose_mapping(fdev->irq);
1415 	iounmap(fdev->regs);
1416 out_free:
1417 	kfree(fdev);
1418 out_return:
1419 	return err;
1420 }
1421 
1422 static int fsldma_of_remove(struct platform_device *op)
1423 {
1424 	struct fsldma_device *fdev;
1425 	unsigned int i;
1426 
1427 	fdev = platform_get_drvdata(op);
1428 	dma_async_device_unregister(&fdev->common);
1429 
1430 	fsldma_free_irqs(fdev);
1431 
1432 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1433 		if (fdev->chan[i])
1434 			fsl_dma_chan_remove(fdev->chan[i]);
1435 	}
1436 
1437 	iounmap(fdev->regs);
1438 	kfree(fdev);
1439 
1440 	return 0;
1441 }
1442 
1443 #ifdef CONFIG_PM
1444 static int fsldma_suspend_late(struct device *dev)
1445 {
1446 	struct platform_device *pdev = to_platform_device(dev);
1447 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1448 	struct fsldma_chan *chan;
1449 	int i;
1450 
1451 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1452 		chan = fdev->chan[i];
1453 		if (!chan)
1454 			continue;
1455 
1456 		spin_lock_bh(&chan->desc_lock);
1457 		if (unlikely(!chan->idle))
1458 			goto out;
1459 		chan->regs_save.mr = get_mr(chan);
1460 		chan->pm_state = SUSPENDED;
1461 		spin_unlock_bh(&chan->desc_lock);
1462 	}
1463 	return 0;
1464 
1465 out:
1466 	for (; i >= 0; i--) {
1467 		chan = fdev->chan[i];
1468 		if (!chan)
1469 			continue;
1470 		chan->pm_state = RUNNING;
1471 		spin_unlock_bh(&chan->desc_lock);
1472 	}
1473 	return -EBUSY;
1474 }
1475 
1476 static int fsldma_resume_early(struct device *dev)
1477 {
1478 	struct platform_device *pdev = to_platform_device(dev);
1479 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1480 	struct fsldma_chan *chan;
1481 	u32 mode;
1482 	int i;
1483 
1484 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1485 		chan = fdev->chan[i];
1486 		if (!chan)
1487 			continue;
1488 
1489 		spin_lock_bh(&chan->desc_lock);
1490 		mode = chan->regs_save.mr
1491 			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1492 		set_mr(chan, mode);
1493 		chan->pm_state = RUNNING;
1494 		spin_unlock_bh(&chan->desc_lock);
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static const struct dev_pm_ops fsldma_pm_ops = {
1501 	.suspend_late	= fsldma_suspend_late,
1502 	.resume_early	= fsldma_resume_early,
1503 };
1504 #endif
1505 
1506 static const struct of_device_id fsldma_of_ids[] = {
1507 	{ .compatible = "fsl,elo3-dma", },
1508 	{ .compatible = "fsl,eloplus-dma", },
1509 	{ .compatible = "fsl,elo-dma", },
1510 	{}
1511 };
1512 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1513 
1514 static struct platform_driver fsldma_of_driver = {
1515 	.driver = {
1516 		.name = "fsl-elo-dma",
1517 		.of_match_table = fsldma_of_ids,
1518 #ifdef CONFIG_PM
1519 		.pm = &fsldma_pm_ops,
1520 #endif
1521 	},
1522 	.probe = fsldma_of_probe,
1523 	.remove = fsldma_of_remove,
1524 };
1525 
1526 /*----------------------------------------------------------------------------*/
1527 /* Module Init / Exit                                                         */
1528 /*----------------------------------------------------------------------------*/
1529 
1530 static __init int fsldma_init(void)
1531 {
1532 	pr_info("Freescale Elo series DMA driver\n");
1533 	return platform_driver_register(&fsldma_of_driver);
1534 }
1535 
1536 static void __exit fsldma_exit(void)
1537 {
1538 	platform_driver_unregister(&fsldma_of_driver);
1539 }
1540 
1541 subsys_initcall(fsldma_init);
1542 module_exit(fsldma_exit);
1543 
1544 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1545 MODULE_LICENSE("GPL");
1546