xref: /openbmc/linux/drivers/dma/fsldma.c (revision 61c7a080)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA contorller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
37 
38 #include <asm/fsldma.h>
39 #include "fsldma.h"
40 
41 static void dma_init(struct fsldma_chan *chan)
42 {
43 	/* Reset the channel */
44 	DMA_OUT(chan, &chan->regs->mr, 0, 32);
45 
46 	switch (chan->feature & FSL_DMA_IP_MASK) {
47 	case FSL_DMA_IP_85XX:
48 		/* Set the channel to below modes:
49 		 * EIE - Error interrupt enable
50 		 * EOSIE - End of segments interrupt enable (basic mode)
51 		 * EOLNIE - End of links interrupt enable
52 		 */
53 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EIE
54 				| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
55 		break;
56 	case FSL_DMA_IP_83XX:
57 		/* Set the channel to below modes:
58 		 * EOTIE - End-of-transfer interrupt enable
59 		 * PRC_RM - PCI read multiple
60 		 */
61 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
62 				| FSL_DMA_MR_PRC_RM, 32);
63 		break;
64 	}
65 }
66 
67 static void set_sr(struct fsldma_chan *chan, u32 val)
68 {
69 	DMA_OUT(chan, &chan->regs->sr, val, 32);
70 }
71 
72 static u32 get_sr(struct fsldma_chan *chan)
73 {
74 	return DMA_IN(chan, &chan->regs->sr, 32);
75 }
76 
77 static void set_desc_cnt(struct fsldma_chan *chan,
78 				struct fsl_dma_ld_hw *hw, u32 count)
79 {
80 	hw->count = CPU_TO_DMA(chan, count, 32);
81 }
82 
83 static void set_desc_src(struct fsldma_chan *chan,
84 				struct fsl_dma_ld_hw *hw, dma_addr_t src)
85 {
86 	u64 snoop_bits;
87 
88 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
89 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
90 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
91 }
92 
93 static void set_desc_dst(struct fsldma_chan *chan,
94 				struct fsl_dma_ld_hw *hw, dma_addr_t dst)
95 {
96 	u64 snoop_bits;
97 
98 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
99 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
100 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
101 }
102 
103 static void set_desc_next(struct fsldma_chan *chan,
104 				struct fsl_dma_ld_hw *hw, dma_addr_t next)
105 {
106 	u64 snoop_bits;
107 
108 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
109 		? FSL_DMA_SNEN : 0;
110 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
111 }
112 
113 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
114 {
115 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
116 }
117 
118 static dma_addr_t get_cdar(struct fsldma_chan *chan)
119 {
120 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
121 }
122 
123 static dma_addr_t get_ndar(struct fsldma_chan *chan)
124 {
125 	return DMA_IN(chan, &chan->regs->ndar, 64);
126 }
127 
128 static u32 get_bcr(struct fsldma_chan *chan)
129 {
130 	return DMA_IN(chan, &chan->regs->bcr, 32);
131 }
132 
133 static int dma_is_idle(struct fsldma_chan *chan)
134 {
135 	u32 sr = get_sr(chan);
136 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
137 }
138 
139 static void dma_start(struct fsldma_chan *chan)
140 {
141 	u32 mode;
142 
143 	mode = DMA_IN(chan, &chan->regs->mr, 32);
144 
145 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
146 		if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
147 			DMA_OUT(chan, &chan->regs->bcr, 0, 32);
148 			mode |= FSL_DMA_MR_EMP_EN;
149 		} else {
150 			mode &= ~FSL_DMA_MR_EMP_EN;
151 		}
152 	}
153 
154 	if (chan->feature & FSL_DMA_CHAN_START_EXT)
155 		mode |= FSL_DMA_MR_EMS_EN;
156 	else
157 		mode |= FSL_DMA_MR_CS;
158 
159 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
160 }
161 
162 static void dma_halt(struct fsldma_chan *chan)
163 {
164 	u32 mode;
165 	int i;
166 
167 	mode = DMA_IN(chan, &chan->regs->mr, 32);
168 	mode |= FSL_DMA_MR_CA;
169 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
170 
171 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
172 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
173 
174 	for (i = 0; i < 100; i++) {
175 		if (dma_is_idle(chan))
176 			return;
177 
178 		udelay(10);
179 	}
180 
181 	if (!dma_is_idle(chan))
182 		dev_err(chan->dev, "DMA halt timeout!\n");
183 }
184 
185 static void set_ld_eol(struct fsldma_chan *chan,
186 			struct fsl_desc_sw *desc)
187 {
188 	u64 snoop_bits;
189 
190 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
191 		? FSL_DMA_SNEN : 0;
192 
193 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
194 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
195 			| snoop_bits, 64);
196 }
197 
198 /**
199  * fsl_chan_set_src_loop_size - Set source address hold transfer size
200  * @chan : Freescale DMA channel
201  * @size     : Address loop size, 0 for disable loop
202  *
203  * The set source address hold transfer size. The source
204  * address hold or loop transfer size is when the DMA transfer
205  * data from source address (SA), if the loop size is 4, the DMA will
206  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
207  * SA + 1 ... and so on.
208  */
209 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
210 {
211 	u32 mode;
212 
213 	mode = DMA_IN(chan, &chan->regs->mr, 32);
214 
215 	switch (size) {
216 	case 0:
217 		mode &= ~FSL_DMA_MR_SAHE;
218 		break;
219 	case 1:
220 	case 2:
221 	case 4:
222 	case 8:
223 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
224 		break;
225 	}
226 
227 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
228 }
229 
230 /**
231  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
232  * @chan : Freescale DMA channel
233  * @size     : Address loop size, 0 for disable loop
234  *
235  * The set destination address hold transfer size. The destination
236  * address hold or loop transfer size is when the DMA transfer
237  * data to destination address (TA), if the loop size is 4, the DMA will
238  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
239  * TA + 1 ... and so on.
240  */
241 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
242 {
243 	u32 mode;
244 
245 	mode = DMA_IN(chan, &chan->regs->mr, 32);
246 
247 	switch (size) {
248 	case 0:
249 		mode &= ~FSL_DMA_MR_DAHE;
250 		break;
251 	case 1:
252 	case 2:
253 	case 4:
254 	case 8:
255 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
256 		break;
257 	}
258 
259 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
260 }
261 
262 /**
263  * fsl_chan_set_request_count - Set DMA Request Count for external control
264  * @chan : Freescale DMA channel
265  * @size     : Number of bytes to transfer in a single request
266  *
267  * The Freescale DMA channel can be controlled by the external signal DREQ#.
268  * The DMA request count is how many bytes are allowed to transfer before
269  * pausing the channel, after which a new assertion of DREQ# resumes channel
270  * operation.
271  *
272  * A size of 0 disables external pause control. The maximum size is 1024.
273  */
274 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
275 {
276 	u32 mode;
277 
278 	BUG_ON(size > 1024);
279 
280 	mode = DMA_IN(chan, &chan->regs->mr, 32);
281 	mode |= (__ilog2(size) << 24) & 0x0f000000;
282 
283 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
284 }
285 
286 /**
287  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
288  * @chan : Freescale DMA channel
289  * @enable   : 0 is disabled, 1 is enabled.
290  *
291  * The Freescale DMA channel can be controlled by the external signal DREQ#.
292  * The DMA Request Count feature should be used in addition to this feature
293  * to set the number of bytes to transfer before pausing the channel.
294  */
295 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
296 {
297 	if (enable)
298 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
299 	else
300 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
301 }
302 
303 /**
304  * fsl_chan_toggle_ext_start - Toggle channel external start status
305  * @chan : Freescale DMA channel
306  * @enable   : 0 is disabled, 1 is enabled.
307  *
308  * If enable the external start, the channel can be started by an
309  * external DMA start pin. So the dma_start() does not start the
310  * transfer immediately. The DMA channel will wait for the
311  * control pin asserted.
312  */
313 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
314 {
315 	if (enable)
316 		chan->feature |= FSL_DMA_CHAN_START_EXT;
317 	else
318 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
319 }
320 
321 static void append_ld_queue(struct fsldma_chan *chan,
322 			    struct fsl_desc_sw *desc)
323 {
324 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
325 
326 	if (list_empty(&chan->ld_pending))
327 		goto out_splice;
328 
329 	/*
330 	 * Add the hardware descriptor to the chain of hardware descriptors
331 	 * that already exists in memory.
332 	 *
333 	 * This will un-set the EOL bit of the existing transaction, and the
334 	 * last link in this transaction will become the EOL descriptor.
335 	 */
336 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
337 
338 	/*
339 	 * Add the software descriptor and all children to the list
340 	 * of pending transactions
341 	 */
342 out_splice:
343 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
344 }
345 
346 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
347 {
348 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
349 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
350 	struct fsl_desc_sw *child;
351 	unsigned long flags;
352 	dma_cookie_t cookie;
353 
354 	spin_lock_irqsave(&chan->desc_lock, flags);
355 
356 	/*
357 	 * assign cookies to all of the software descriptors
358 	 * that make up this transaction
359 	 */
360 	cookie = chan->common.cookie;
361 	list_for_each_entry(child, &desc->tx_list, node) {
362 		cookie++;
363 		if (cookie < 0)
364 			cookie = 1;
365 
366 		child->async_tx.cookie = cookie;
367 	}
368 
369 	chan->common.cookie = cookie;
370 
371 	/* put this transaction onto the tail of the pending queue */
372 	append_ld_queue(chan, desc);
373 
374 	spin_unlock_irqrestore(&chan->desc_lock, flags);
375 
376 	return cookie;
377 }
378 
379 /**
380  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
381  * @chan : Freescale DMA channel
382  *
383  * Return - The descriptor allocated. NULL for failed.
384  */
385 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
386 					struct fsldma_chan *chan)
387 {
388 	struct fsl_desc_sw *desc;
389 	dma_addr_t pdesc;
390 
391 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
392 	if (!desc) {
393 		dev_dbg(chan->dev, "out of memory for link desc\n");
394 		return NULL;
395 	}
396 
397 	memset(desc, 0, sizeof(*desc));
398 	INIT_LIST_HEAD(&desc->tx_list);
399 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
400 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
401 	desc->async_tx.phys = pdesc;
402 
403 	return desc;
404 }
405 
406 
407 /**
408  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
409  * @chan : Freescale DMA channel
410  *
411  * This function will create a dma pool for descriptor allocation.
412  *
413  * Return - The number of descriptors allocated.
414  */
415 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
416 {
417 	struct fsldma_chan *chan = to_fsl_chan(dchan);
418 
419 	/* Has this channel already been allocated? */
420 	if (chan->desc_pool)
421 		return 1;
422 
423 	/*
424 	 * We need the descriptor to be aligned to 32bytes
425 	 * for meeting FSL DMA specification requirement.
426 	 */
427 	chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
428 					  chan->dev,
429 					  sizeof(struct fsl_desc_sw),
430 					  __alignof__(struct fsl_desc_sw), 0);
431 	if (!chan->desc_pool) {
432 		dev_err(chan->dev, "unable to allocate channel %d "
433 				   "descriptor pool\n", chan->id);
434 		return -ENOMEM;
435 	}
436 
437 	/* there is at least one descriptor free to be allocated */
438 	return 1;
439 }
440 
441 /**
442  * fsldma_free_desc_list - Free all descriptors in a queue
443  * @chan: Freescae DMA channel
444  * @list: the list to free
445  *
446  * LOCKING: must hold chan->desc_lock
447  */
448 static void fsldma_free_desc_list(struct fsldma_chan *chan,
449 				  struct list_head *list)
450 {
451 	struct fsl_desc_sw *desc, *_desc;
452 
453 	list_for_each_entry_safe(desc, _desc, list, node) {
454 		list_del(&desc->node);
455 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
456 	}
457 }
458 
459 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
460 					  struct list_head *list)
461 {
462 	struct fsl_desc_sw *desc, *_desc;
463 
464 	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
465 		list_del(&desc->node);
466 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
467 	}
468 }
469 
470 /**
471  * fsl_dma_free_chan_resources - Free all resources of the channel.
472  * @chan : Freescale DMA channel
473  */
474 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
475 {
476 	struct fsldma_chan *chan = to_fsl_chan(dchan);
477 	unsigned long flags;
478 
479 	dev_dbg(chan->dev, "Free all channel resources.\n");
480 	spin_lock_irqsave(&chan->desc_lock, flags);
481 	fsldma_free_desc_list(chan, &chan->ld_pending);
482 	fsldma_free_desc_list(chan, &chan->ld_running);
483 	spin_unlock_irqrestore(&chan->desc_lock, flags);
484 
485 	dma_pool_destroy(chan->desc_pool);
486 	chan->desc_pool = NULL;
487 }
488 
489 static struct dma_async_tx_descriptor *
490 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
491 {
492 	struct fsldma_chan *chan;
493 	struct fsl_desc_sw *new;
494 
495 	if (!dchan)
496 		return NULL;
497 
498 	chan = to_fsl_chan(dchan);
499 
500 	new = fsl_dma_alloc_descriptor(chan);
501 	if (!new) {
502 		dev_err(chan->dev, "No free memory for link descriptor\n");
503 		return NULL;
504 	}
505 
506 	new->async_tx.cookie = -EBUSY;
507 	new->async_tx.flags = flags;
508 
509 	/* Insert the link descriptor to the LD ring */
510 	list_add_tail(&new->node, &new->tx_list);
511 
512 	/* Set End-of-link to the last link descriptor of new list*/
513 	set_ld_eol(chan, new);
514 
515 	return &new->async_tx;
516 }
517 
518 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
519 	struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src,
520 	size_t len, unsigned long flags)
521 {
522 	struct fsldma_chan *chan;
523 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
524 	size_t copy;
525 
526 	if (!dchan)
527 		return NULL;
528 
529 	if (!len)
530 		return NULL;
531 
532 	chan = to_fsl_chan(dchan);
533 
534 	do {
535 
536 		/* Allocate the link descriptor from DMA pool */
537 		new = fsl_dma_alloc_descriptor(chan);
538 		if (!new) {
539 			dev_err(chan->dev,
540 					"No free memory for link descriptor\n");
541 			goto fail;
542 		}
543 #ifdef FSL_DMA_LD_DEBUG
544 		dev_dbg(chan->dev, "new link desc alloc %p\n", new);
545 #endif
546 
547 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
548 
549 		set_desc_cnt(chan, &new->hw, copy);
550 		set_desc_src(chan, &new->hw, dma_src);
551 		set_desc_dst(chan, &new->hw, dma_dst);
552 
553 		if (!first)
554 			first = new;
555 		else
556 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
557 
558 		new->async_tx.cookie = 0;
559 		async_tx_ack(&new->async_tx);
560 
561 		prev = new;
562 		len -= copy;
563 		dma_src += copy;
564 		dma_dst += copy;
565 
566 		/* Insert the link descriptor to the LD ring */
567 		list_add_tail(&new->node, &first->tx_list);
568 	} while (len);
569 
570 	new->async_tx.flags = flags; /* client is in control of this ack */
571 	new->async_tx.cookie = -EBUSY;
572 
573 	/* Set End-of-link to the last link descriptor of new list*/
574 	set_ld_eol(chan, new);
575 
576 	return &first->async_tx;
577 
578 fail:
579 	if (!first)
580 		return NULL;
581 
582 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
583 	return NULL;
584 }
585 
586 /**
587  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
588  * @chan: DMA channel
589  * @sgl: scatterlist to transfer to/from
590  * @sg_len: number of entries in @scatterlist
591  * @direction: DMA direction
592  * @flags: DMAEngine flags
593  *
594  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
595  * DMA_SLAVE API, this gets the device-specific information from the
596  * chan->private variable.
597  */
598 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
599 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
600 	enum dma_data_direction direction, unsigned long flags)
601 {
602 	struct fsldma_chan *chan;
603 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
604 	struct fsl_dma_slave *slave;
605 	size_t copy;
606 
607 	int i;
608 	struct scatterlist *sg;
609 	size_t sg_used;
610 	size_t hw_used;
611 	struct fsl_dma_hw_addr *hw;
612 	dma_addr_t dma_dst, dma_src;
613 
614 	if (!dchan)
615 		return NULL;
616 
617 	if (!dchan->private)
618 		return NULL;
619 
620 	chan = to_fsl_chan(dchan);
621 	slave = dchan->private;
622 
623 	if (list_empty(&slave->addresses))
624 		return NULL;
625 
626 	hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
627 	hw_used = 0;
628 
629 	/*
630 	 * Build the hardware transaction to copy from the scatterlist to
631 	 * the hardware, or from the hardware to the scatterlist
632 	 *
633 	 * If you are copying from the hardware to the scatterlist and it
634 	 * takes two hardware entries to fill an entire page, then both
635 	 * hardware entries will be coalesced into the same page
636 	 *
637 	 * If you are copying from the scatterlist to the hardware and a
638 	 * single page can fill two hardware entries, then the data will
639 	 * be read out of the page into the first hardware entry, and so on
640 	 */
641 	for_each_sg(sgl, sg, sg_len, i) {
642 		sg_used = 0;
643 
644 		/* Loop until the entire scatterlist entry is used */
645 		while (sg_used < sg_dma_len(sg)) {
646 
647 			/*
648 			 * If we've used up the current hardware address/length
649 			 * pair, we need to load a new one
650 			 *
651 			 * This is done in a while loop so that descriptors with
652 			 * length == 0 will be skipped
653 			 */
654 			while (hw_used >= hw->length) {
655 
656 				/*
657 				 * If the current hardware entry is the last
658 				 * entry in the list, we're finished
659 				 */
660 				if (list_is_last(&hw->entry, &slave->addresses))
661 					goto finished;
662 
663 				/* Get the next hardware address/length pair */
664 				hw = list_entry(hw->entry.next,
665 						struct fsl_dma_hw_addr, entry);
666 				hw_used = 0;
667 			}
668 
669 			/* Allocate the link descriptor from DMA pool */
670 			new = fsl_dma_alloc_descriptor(chan);
671 			if (!new) {
672 				dev_err(chan->dev, "No free memory for "
673 						       "link descriptor\n");
674 				goto fail;
675 			}
676 #ifdef FSL_DMA_LD_DEBUG
677 			dev_dbg(chan->dev, "new link desc alloc %p\n", new);
678 #endif
679 
680 			/*
681 			 * Calculate the maximum number of bytes to transfer,
682 			 * making sure it is less than the DMA controller limit
683 			 */
684 			copy = min_t(size_t, sg_dma_len(sg) - sg_used,
685 					     hw->length - hw_used);
686 			copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
687 
688 			/*
689 			 * DMA_FROM_DEVICE
690 			 * from the hardware to the scatterlist
691 			 *
692 			 * DMA_TO_DEVICE
693 			 * from the scatterlist to the hardware
694 			 */
695 			if (direction == DMA_FROM_DEVICE) {
696 				dma_src = hw->address + hw_used;
697 				dma_dst = sg_dma_address(sg) + sg_used;
698 			} else {
699 				dma_src = sg_dma_address(sg) + sg_used;
700 				dma_dst = hw->address + hw_used;
701 			}
702 
703 			/* Fill in the descriptor */
704 			set_desc_cnt(chan, &new->hw, copy);
705 			set_desc_src(chan, &new->hw, dma_src);
706 			set_desc_dst(chan, &new->hw, dma_dst);
707 
708 			/*
709 			 * If this is not the first descriptor, chain the
710 			 * current descriptor after the previous descriptor
711 			 */
712 			if (!first) {
713 				first = new;
714 			} else {
715 				set_desc_next(chan, &prev->hw,
716 					      new->async_tx.phys);
717 			}
718 
719 			new->async_tx.cookie = 0;
720 			async_tx_ack(&new->async_tx);
721 
722 			prev = new;
723 			sg_used += copy;
724 			hw_used += copy;
725 
726 			/* Insert the link descriptor into the LD ring */
727 			list_add_tail(&new->node, &first->tx_list);
728 		}
729 	}
730 
731 finished:
732 
733 	/* All of the hardware address/length pairs had length == 0 */
734 	if (!first || !new)
735 		return NULL;
736 
737 	new->async_tx.flags = flags;
738 	new->async_tx.cookie = -EBUSY;
739 
740 	/* Set End-of-link to the last link descriptor of new list */
741 	set_ld_eol(chan, new);
742 
743 	/* Enable extra controller features */
744 	if (chan->set_src_loop_size)
745 		chan->set_src_loop_size(chan, slave->src_loop_size);
746 
747 	if (chan->set_dst_loop_size)
748 		chan->set_dst_loop_size(chan, slave->dst_loop_size);
749 
750 	if (chan->toggle_ext_start)
751 		chan->toggle_ext_start(chan, slave->external_start);
752 
753 	if (chan->toggle_ext_pause)
754 		chan->toggle_ext_pause(chan, slave->external_pause);
755 
756 	if (chan->set_request_count)
757 		chan->set_request_count(chan, slave->request_count);
758 
759 	return &first->async_tx;
760 
761 fail:
762 	/* If first was not set, then we failed to allocate the very first
763 	 * descriptor, and we're done */
764 	if (!first)
765 		return NULL;
766 
767 	/*
768 	 * First is set, so all of the descriptors we allocated have been added
769 	 * to first->tx_list, INCLUDING "first" itself. Therefore we
770 	 * must traverse the list backwards freeing each descriptor in turn
771 	 *
772 	 * We're re-using variables for the loop, oh well
773 	 */
774 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
775 	return NULL;
776 }
777 
778 static void fsl_dma_device_terminate_all(struct dma_chan *dchan)
779 {
780 	struct fsldma_chan *chan;
781 	unsigned long flags;
782 
783 	if (!dchan)
784 		return;
785 
786 	chan = to_fsl_chan(dchan);
787 
788 	/* Halt the DMA engine */
789 	dma_halt(chan);
790 
791 	spin_lock_irqsave(&chan->desc_lock, flags);
792 
793 	/* Remove and free all of the descriptors in the LD queue */
794 	fsldma_free_desc_list(chan, &chan->ld_pending);
795 	fsldma_free_desc_list(chan, &chan->ld_running);
796 
797 	spin_unlock_irqrestore(&chan->desc_lock, flags);
798 }
799 
800 /**
801  * fsl_dma_update_completed_cookie - Update the completed cookie.
802  * @chan : Freescale DMA channel
803  *
804  * CONTEXT: hardirq
805  */
806 static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
807 {
808 	struct fsl_desc_sw *desc;
809 	unsigned long flags;
810 	dma_cookie_t cookie;
811 
812 	spin_lock_irqsave(&chan->desc_lock, flags);
813 
814 	if (list_empty(&chan->ld_running)) {
815 		dev_dbg(chan->dev, "no running descriptors\n");
816 		goto out_unlock;
817 	}
818 
819 	/* Get the last descriptor, update the cookie to that */
820 	desc = to_fsl_desc(chan->ld_running.prev);
821 	if (dma_is_idle(chan))
822 		cookie = desc->async_tx.cookie;
823 	else {
824 		cookie = desc->async_tx.cookie - 1;
825 		if (unlikely(cookie < DMA_MIN_COOKIE))
826 			cookie = DMA_MAX_COOKIE;
827 	}
828 
829 	chan->completed_cookie = cookie;
830 
831 out_unlock:
832 	spin_unlock_irqrestore(&chan->desc_lock, flags);
833 }
834 
835 /**
836  * fsldma_desc_status - Check the status of a descriptor
837  * @chan: Freescale DMA channel
838  * @desc: DMA SW descriptor
839  *
840  * This function will return the status of the given descriptor
841  */
842 static enum dma_status fsldma_desc_status(struct fsldma_chan *chan,
843 					  struct fsl_desc_sw *desc)
844 {
845 	return dma_async_is_complete(desc->async_tx.cookie,
846 				     chan->completed_cookie,
847 				     chan->common.cookie);
848 }
849 
850 /**
851  * fsl_chan_ld_cleanup - Clean up link descriptors
852  * @chan : Freescale DMA channel
853  *
854  * This function clean up the ld_queue of DMA channel.
855  */
856 static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
857 {
858 	struct fsl_desc_sw *desc, *_desc;
859 	unsigned long flags;
860 
861 	spin_lock_irqsave(&chan->desc_lock, flags);
862 
863 	dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie);
864 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
865 		dma_async_tx_callback callback;
866 		void *callback_param;
867 
868 		if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS)
869 			break;
870 
871 		/* Remove from the list of running transactions */
872 		list_del(&desc->node);
873 
874 		/* Run the link descriptor callback function */
875 		callback = desc->async_tx.callback;
876 		callback_param = desc->async_tx.callback_param;
877 		if (callback) {
878 			spin_unlock_irqrestore(&chan->desc_lock, flags);
879 			dev_dbg(chan->dev, "LD %p callback\n", desc);
880 			callback(callback_param);
881 			spin_lock_irqsave(&chan->desc_lock, flags);
882 		}
883 
884 		/* Run any dependencies, then free the descriptor */
885 		dma_run_dependencies(&desc->async_tx);
886 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
887 	}
888 
889 	spin_unlock_irqrestore(&chan->desc_lock, flags);
890 }
891 
892 /**
893  * fsl_chan_xfer_ld_queue - transfer any pending transactions
894  * @chan : Freescale DMA channel
895  *
896  * This will make sure that any pending transactions will be run.
897  * If the DMA controller is idle, it will be started. Otherwise,
898  * the DMA controller's interrupt handler will start any pending
899  * transactions when it becomes idle.
900  */
901 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
902 {
903 	struct fsl_desc_sw *desc;
904 	unsigned long flags;
905 
906 	spin_lock_irqsave(&chan->desc_lock, flags);
907 
908 	/*
909 	 * If the list of pending descriptors is empty, then we
910 	 * don't need to do any work at all
911 	 */
912 	if (list_empty(&chan->ld_pending)) {
913 		dev_dbg(chan->dev, "no pending LDs\n");
914 		goto out_unlock;
915 	}
916 
917 	/*
918 	 * The DMA controller is not idle, which means the interrupt
919 	 * handler will start any queued transactions when it runs
920 	 * at the end of the current transaction
921 	 */
922 	if (!dma_is_idle(chan)) {
923 		dev_dbg(chan->dev, "DMA controller still busy\n");
924 		goto out_unlock;
925 	}
926 
927 	/*
928 	 * TODO:
929 	 * make sure the dma_halt() function really un-wedges the
930 	 * controller as much as possible
931 	 */
932 	dma_halt(chan);
933 
934 	/*
935 	 * If there are some link descriptors which have not been
936 	 * transferred, we need to start the controller
937 	 */
938 
939 	/*
940 	 * Move all elements from the queue of pending transactions
941 	 * onto the list of running transactions
942 	 */
943 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
944 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
945 
946 	/*
947 	 * Program the descriptor's address into the DMA controller,
948 	 * then start the DMA transaction
949 	 */
950 	set_cdar(chan, desc->async_tx.phys);
951 	dma_start(chan);
952 
953 out_unlock:
954 	spin_unlock_irqrestore(&chan->desc_lock, flags);
955 }
956 
957 /**
958  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
959  * @chan : Freescale DMA channel
960  */
961 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
962 {
963 	struct fsldma_chan *chan = to_fsl_chan(dchan);
964 	fsl_chan_xfer_ld_queue(chan);
965 }
966 
967 /**
968  * fsl_dma_is_complete - Determine the DMA status
969  * @chan : Freescale DMA channel
970  */
971 static enum dma_status fsl_dma_is_complete(struct dma_chan *dchan,
972 					dma_cookie_t cookie,
973 					dma_cookie_t *done,
974 					dma_cookie_t *used)
975 {
976 	struct fsldma_chan *chan = to_fsl_chan(dchan);
977 	dma_cookie_t last_used;
978 	dma_cookie_t last_complete;
979 
980 	fsl_chan_ld_cleanup(chan);
981 
982 	last_used = dchan->cookie;
983 	last_complete = chan->completed_cookie;
984 
985 	if (done)
986 		*done = last_complete;
987 
988 	if (used)
989 		*used = last_used;
990 
991 	return dma_async_is_complete(cookie, last_complete, last_used);
992 }
993 
994 /*----------------------------------------------------------------------------*/
995 /* Interrupt Handling                                                         */
996 /*----------------------------------------------------------------------------*/
997 
998 static irqreturn_t fsldma_chan_irq(int irq, void *data)
999 {
1000 	struct fsldma_chan *chan = data;
1001 	int update_cookie = 0;
1002 	int xfer_ld_q = 0;
1003 	u32 stat;
1004 
1005 	/* save and clear the status register */
1006 	stat = get_sr(chan);
1007 	set_sr(chan, stat);
1008 	dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat);
1009 
1010 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1011 	if (!stat)
1012 		return IRQ_NONE;
1013 
1014 	if (stat & FSL_DMA_SR_TE)
1015 		dev_err(chan->dev, "Transfer Error!\n");
1016 
1017 	/*
1018 	 * Programming Error
1019 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1020 	 * triger a PE interrupt.
1021 	 */
1022 	if (stat & FSL_DMA_SR_PE) {
1023 		dev_dbg(chan->dev, "irq: Programming Error INT\n");
1024 		if (get_bcr(chan) == 0) {
1025 			/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1026 			 * Now, update the completed cookie, and continue the
1027 			 * next uncompleted transfer.
1028 			 */
1029 			update_cookie = 1;
1030 			xfer_ld_q = 1;
1031 		}
1032 		stat &= ~FSL_DMA_SR_PE;
1033 	}
1034 
1035 	/*
1036 	 * If the link descriptor segment transfer finishes,
1037 	 * we will recycle the used descriptor.
1038 	 */
1039 	if (stat & FSL_DMA_SR_EOSI) {
1040 		dev_dbg(chan->dev, "irq: End-of-segments INT\n");
1041 		dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1042 			(unsigned long long)get_cdar(chan),
1043 			(unsigned long long)get_ndar(chan));
1044 		stat &= ~FSL_DMA_SR_EOSI;
1045 		update_cookie = 1;
1046 	}
1047 
1048 	/*
1049 	 * For MPC8349, EOCDI event need to update cookie
1050 	 * and start the next transfer if it exist.
1051 	 */
1052 	if (stat & FSL_DMA_SR_EOCDI) {
1053 		dev_dbg(chan->dev, "irq: End-of-Chain link INT\n");
1054 		stat &= ~FSL_DMA_SR_EOCDI;
1055 		update_cookie = 1;
1056 		xfer_ld_q = 1;
1057 	}
1058 
1059 	/*
1060 	 * If it current transfer is the end-of-transfer,
1061 	 * we should clear the Channel Start bit for
1062 	 * prepare next transfer.
1063 	 */
1064 	if (stat & FSL_DMA_SR_EOLNI) {
1065 		dev_dbg(chan->dev, "irq: End-of-link INT\n");
1066 		stat &= ~FSL_DMA_SR_EOLNI;
1067 		xfer_ld_q = 1;
1068 	}
1069 
1070 	if (update_cookie)
1071 		fsl_dma_update_completed_cookie(chan);
1072 	if (xfer_ld_q)
1073 		fsl_chan_xfer_ld_queue(chan);
1074 	if (stat)
1075 		dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat);
1076 
1077 	dev_dbg(chan->dev, "irq: Exit\n");
1078 	tasklet_schedule(&chan->tasklet);
1079 	return IRQ_HANDLED;
1080 }
1081 
1082 static void dma_do_tasklet(unsigned long data)
1083 {
1084 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1085 	fsl_chan_ld_cleanup(chan);
1086 }
1087 
1088 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1089 {
1090 	struct fsldma_device *fdev = data;
1091 	struct fsldma_chan *chan;
1092 	unsigned int handled = 0;
1093 	u32 gsr, mask;
1094 	int i;
1095 
1096 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1097 						   : in_le32(fdev->regs);
1098 	mask = 0xff000000;
1099 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1100 
1101 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1102 		chan = fdev->chan[i];
1103 		if (!chan)
1104 			continue;
1105 
1106 		if (gsr & mask) {
1107 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1108 			fsldma_chan_irq(irq, chan);
1109 			handled++;
1110 		}
1111 
1112 		gsr &= ~mask;
1113 		mask >>= 8;
1114 	}
1115 
1116 	return IRQ_RETVAL(handled);
1117 }
1118 
1119 static void fsldma_free_irqs(struct fsldma_device *fdev)
1120 {
1121 	struct fsldma_chan *chan;
1122 	int i;
1123 
1124 	if (fdev->irq != NO_IRQ) {
1125 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1126 		free_irq(fdev->irq, fdev);
1127 		return;
1128 	}
1129 
1130 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1131 		chan = fdev->chan[i];
1132 		if (chan && chan->irq != NO_IRQ) {
1133 			dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id);
1134 			free_irq(chan->irq, chan);
1135 		}
1136 	}
1137 }
1138 
1139 static int fsldma_request_irqs(struct fsldma_device *fdev)
1140 {
1141 	struct fsldma_chan *chan;
1142 	int ret;
1143 	int i;
1144 
1145 	/* if we have a per-controller IRQ, use that */
1146 	if (fdev->irq != NO_IRQ) {
1147 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1148 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1149 				  "fsldma-controller", fdev);
1150 		return ret;
1151 	}
1152 
1153 	/* no per-controller IRQ, use the per-channel IRQs */
1154 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1155 		chan = fdev->chan[i];
1156 		if (!chan)
1157 			continue;
1158 
1159 		if (chan->irq == NO_IRQ) {
1160 			dev_err(fdev->dev, "no interrupts property defined for "
1161 					   "DMA channel %d. Please fix your "
1162 					   "device tree\n", chan->id);
1163 			ret = -ENODEV;
1164 			goto out_unwind;
1165 		}
1166 
1167 		dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id);
1168 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1169 				  "fsldma-chan", chan);
1170 		if (ret) {
1171 			dev_err(fdev->dev, "unable to request IRQ for DMA "
1172 					   "channel %d\n", chan->id);
1173 			goto out_unwind;
1174 		}
1175 	}
1176 
1177 	return 0;
1178 
1179 out_unwind:
1180 	for (/* none */; i >= 0; i--) {
1181 		chan = fdev->chan[i];
1182 		if (!chan)
1183 			continue;
1184 
1185 		if (chan->irq == NO_IRQ)
1186 			continue;
1187 
1188 		free_irq(chan->irq, chan);
1189 	}
1190 
1191 	return ret;
1192 }
1193 
1194 /*----------------------------------------------------------------------------*/
1195 /* OpenFirmware Subsystem                                                     */
1196 /*----------------------------------------------------------------------------*/
1197 
1198 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1199 	struct device_node *node, u32 feature, const char *compatible)
1200 {
1201 	struct fsldma_chan *chan;
1202 	struct resource res;
1203 	int err;
1204 
1205 	/* alloc channel */
1206 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1207 	if (!chan) {
1208 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1209 		err = -ENOMEM;
1210 		goto out_return;
1211 	}
1212 
1213 	/* ioremap registers for use */
1214 	chan->regs = of_iomap(node, 0);
1215 	if (!chan->regs) {
1216 		dev_err(fdev->dev, "unable to ioremap registers\n");
1217 		err = -ENOMEM;
1218 		goto out_free_chan;
1219 	}
1220 
1221 	err = of_address_to_resource(node, 0, &res);
1222 	if (err) {
1223 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1224 		goto out_iounmap_regs;
1225 	}
1226 
1227 	chan->feature = feature;
1228 	if (!fdev->feature)
1229 		fdev->feature = chan->feature;
1230 
1231 	/*
1232 	 * If the DMA device's feature is different than the feature
1233 	 * of its channels, report the bug
1234 	 */
1235 	WARN_ON(fdev->feature != chan->feature);
1236 
1237 	chan->dev = fdev->dev;
1238 	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1239 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1240 		dev_err(fdev->dev, "too many channels for device\n");
1241 		err = -EINVAL;
1242 		goto out_iounmap_regs;
1243 	}
1244 
1245 	fdev->chan[chan->id] = chan;
1246 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1247 
1248 	/* Initialize the channel */
1249 	dma_init(chan);
1250 
1251 	/* Clear cdar registers */
1252 	set_cdar(chan, 0);
1253 
1254 	switch (chan->feature & FSL_DMA_IP_MASK) {
1255 	case FSL_DMA_IP_85XX:
1256 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1257 	case FSL_DMA_IP_83XX:
1258 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1259 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1260 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1261 		chan->set_request_count = fsl_chan_set_request_count;
1262 	}
1263 
1264 	spin_lock_init(&chan->desc_lock);
1265 	INIT_LIST_HEAD(&chan->ld_pending);
1266 	INIT_LIST_HEAD(&chan->ld_running);
1267 
1268 	chan->common.device = &fdev->common;
1269 
1270 	/* find the IRQ line, if it exists in the device tree */
1271 	chan->irq = irq_of_parse_and_map(node, 0);
1272 
1273 	/* Add the channel to DMA device channel list */
1274 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1275 	fdev->common.chancnt++;
1276 
1277 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1278 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1279 
1280 	return 0;
1281 
1282 out_iounmap_regs:
1283 	iounmap(chan->regs);
1284 out_free_chan:
1285 	kfree(chan);
1286 out_return:
1287 	return err;
1288 }
1289 
1290 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1291 {
1292 	irq_dispose_mapping(chan->irq);
1293 	list_del(&chan->common.device_node);
1294 	iounmap(chan->regs);
1295 	kfree(chan);
1296 }
1297 
1298 static int __devinit fsldma_of_probe(struct of_device *op,
1299 			const struct of_device_id *match)
1300 {
1301 	struct fsldma_device *fdev;
1302 	struct device_node *child;
1303 	int err;
1304 
1305 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1306 	if (!fdev) {
1307 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1308 		err = -ENOMEM;
1309 		goto out_return;
1310 	}
1311 
1312 	fdev->dev = &op->dev;
1313 	INIT_LIST_HEAD(&fdev->common.channels);
1314 
1315 	/* ioremap the registers for use */
1316 	fdev->regs = of_iomap(op->dev.of_node, 0);
1317 	if (!fdev->regs) {
1318 		dev_err(&op->dev, "unable to ioremap registers\n");
1319 		err = -ENOMEM;
1320 		goto out_free_fdev;
1321 	}
1322 
1323 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1324 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1325 
1326 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1327 	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1328 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1329 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1330 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1331 	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1332 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1333 	fdev->common.device_is_tx_complete = fsl_dma_is_complete;
1334 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1335 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1336 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1337 	fdev->common.dev = &op->dev;
1338 
1339 	dev_set_drvdata(&op->dev, fdev);
1340 
1341 	/*
1342 	 * We cannot use of_platform_bus_probe() because there is no
1343 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1344 	 * channel object.
1345 	 */
1346 	for_each_child_of_node(op->dev.of_node, child) {
1347 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1348 			fsl_dma_chan_probe(fdev, child,
1349 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1350 				"fsl,eloplus-dma-channel");
1351 		}
1352 
1353 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1354 			fsl_dma_chan_probe(fdev, child,
1355 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1356 				"fsl,elo-dma-channel");
1357 		}
1358 	}
1359 
1360 	/*
1361 	 * Hookup the IRQ handler(s)
1362 	 *
1363 	 * If we have a per-controller interrupt, we prefer that to the
1364 	 * per-channel interrupts to reduce the number of shared interrupt
1365 	 * handlers on the same IRQ line
1366 	 */
1367 	err = fsldma_request_irqs(fdev);
1368 	if (err) {
1369 		dev_err(fdev->dev, "unable to request IRQs\n");
1370 		goto out_free_fdev;
1371 	}
1372 
1373 	dma_async_device_register(&fdev->common);
1374 	return 0;
1375 
1376 out_free_fdev:
1377 	irq_dispose_mapping(fdev->irq);
1378 	kfree(fdev);
1379 out_return:
1380 	return err;
1381 }
1382 
1383 static int fsldma_of_remove(struct of_device *op)
1384 {
1385 	struct fsldma_device *fdev;
1386 	unsigned int i;
1387 
1388 	fdev = dev_get_drvdata(&op->dev);
1389 	dma_async_device_unregister(&fdev->common);
1390 
1391 	fsldma_free_irqs(fdev);
1392 
1393 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1394 		if (fdev->chan[i])
1395 			fsl_dma_chan_remove(fdev->chan[i]);
1396 	}
1397 
1398 	iounmap(fdev->regs);
1399 	dev_set_drvdata(&op->dev, NULL);
1400 	kfree(fdev);
1401 
1402 	return 0;
1403 }
1404 
1405 static const struct of_device_id fsldma_of_ids[] = {
1406 	{ .compatible = "fsl,eloplus-dma", },
1407 	{ .compatible = "fsl,elo-dma", },
1408 	{}
1409 };
1410 
1411 static struct of_platform_driver fsldma_of_driver = {
1412 	.name		= "fsl-elo-dma",
1413 	.match_table	= fsldma_of_ids,
1414 	.probe		= fsldma_of_probe,
1415 	.remove		= fsldma_of_remove,
1416 };
1417 
1418 /*----------------------------------------------------------------------------*/
1419 /* Module Init / Exit                                                         */
1420 /*----------------------------------------------------------------------------*/
1421 
1422 static __init int fsldma_init(void)
1423 {
1424 	int ret;
1425 
1426 	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1427 
1428 	ret = of_register_platform_driver(&fsldma_of_driver);
1429 	if (ret)
1430 		pr_err("fsldma: failed to register platform driver\n");
1431 
1432 	return ret;
1433 }
1434 
1435 static void __exit fsldma_exit(void)
1436 {
1437 	of_unregister_platform_driver(&fsldma_of_driver);
1438 }
1439 
1440 subsys_initcall(fsldma_init);
1441 module_exit(fsldma_exit);
1442 
1443 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1444 MODULE_LICENSE("GPL");
1445