xref: /openbmc/linux/drivers/dma/fsldma.c (revision 5d0e4d78)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
42 
43 #define chan_dbg(chan, fmt, arg...)					\
44 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)					\
46 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47 
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 
50 /*
51  * Register Helpers
52  */
53 
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 	DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58 
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 	return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63 
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 	DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68 
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 	return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73 
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78 
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83 
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 	DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88 
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 	return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93 
94 /*
95  * Descriptor Helpers
96  */
97 
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 				struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 	hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103 
104 static void set_desc_src(struct fsldma_chan *chan,
105 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113 
114 static void set_desc_dst(struct fsldma_chan *chan,
115 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 	u64 snoop_bits;
118 
119 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123 
124 static void set_desc_next(struct fsldma_chan *chan,
125 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 	u64 snoop_bits;
128 
129 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 		? FSL_DMA_SNEN : 0;
131 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133 
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 	u64 snoop_bits;
137 
138 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 		? FSL_DMA_SNEN : 0;
140 
141 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 			| snoop_bits, 64);
144 }
145 
146 /*
147  * DMA Engine Hardware Control Helpers
148  */
149 
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 	/* Reset the channel */
153 	set_mr(chan, 0);
154 
155 	switch (chan->feature & FSL_DMA_IP_MASK) {
156 	case FSL_DMA_IP_85XX:
157 		/* Set the channel to below modes:
158 		 * EIE - Error interrupt enable
159 		 * EOLNIE - End of links interrupt enable
160 		 * BWC - Bandwidth sharing among channels
161 		 */
162 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 			| FSL_DMA_MR_EOLNIE);
164 		break;
165 	case FSL_DMA_IP_83XX:
166 		/* Set the channel to below modes:
167 		 * EOTIE - End-of-transfer interrupt enable
168 		 * PRC_RM - PCI read multiple
169 		 */
170 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 		break;
172 	}
173 }
174 
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 	u32 sr = get_sr(chan);
178 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180 
181 /*
182  * Start the DMA controller
183  *
184  * Preconditions:
185  * - the CDAR register must point to the start descriptor
186  * - the MRn[CS] bit must be cleared
187  */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 	u32 mode;
191 
192 	mode = get_mr(chan);
193 
194 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 		set_bcr(chan, 0);
196 		mode |= FSL_DMA_MR_EMP_EN;
197 	} else {
198 		mode &= ~FSL_DMA_MR_EMP_EN;
199 	}
200 
201 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 		mode |= FSL_DMA_MR_EMS_EN;
203 	} else {
204 		mode &= ~FSL_DMA_MR_EMS_EN;
205 		mode |= FSL_DMA_MR_CS;
206 	}
207 
208 	set_mr(chan, mode);
209 }
210 
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 	u32 mode;
214 	int i;
215 
216 	/* read the mode register */
217 	mode = get_mr(chan);
218 
219 	/*
220 	 * The 85xx controller supports channel abort, which will stop
221 	 * the current transfer. On 83xx, this bit is the transfer error
222 	 * mask bit, which should not be changed.
223 	 */
224 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 		mode |= FSL_DMA_MR_CA;
226 		set_mr(chan, mode);
227 
228 		mode &= ~FSL_DMA_MR_CA;
229 	}
230 
231 	/* stop the DMA controller */
232 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 	set_mr(chan, mode);
234 
235 	/* wait for the DMA controller to become idle */
236 	for (i = 0; i < 100; i++) {
237 		if (dma_is_idle(chan))
238 			return;
239 
240 		udelay(10);
241 	}
242 
243 	if (!dma_is_idle(chan))
244 		chan_err(chan, "DMA halt timeout!\n");
245 }
246 
247 /**
248  * fsl_chan_set_src_loop_size - Set source address hold transfer size
249  * @chan : Freescale DMA channel
250  * @size     : Address loop size, 0 for disable loop
251  *
252  * The set source address hold transfer size. The source
253  * address hold or loop transfer size is when the DMA transfer
254  * data from source address (SA), if the loop size is 4, the DMA will
255  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256  * SA + 1 ... and so on.
257  */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 	u32 mode;
261 
262 	mode = get_mr(chan);
263 
264 	switch (size) {
265 	case 0:
266 		mode &= ~FSL_DMA_MR_SAHE;
267 		break;
268 	case 1:
269 	case 2:
270 	case 4:
271 	case 8:
272 		mode &= ~FSL_DMA_MR_SAHTS_MASK;
273 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
274 		break;
275 	}
276 
277 	set_mr(chan, mode);
278 }
279 
280 /**
281  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
282  * @chan : Freescale DMA channel
283  * @size     : Address loop size, 0 for disable loop
284  *
285  * The set destination address hold transfer size. The destination
286  * address hold or loop transfer size is when the DMA transfer
287  * data to destination address (TA), if the loop size is 4, the DMA will
288  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
289  * TA + 1 ... and so on.
290  */
291 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
292 {
293 	u32 mode;
294 
295 	mode = get_mr(chan);
296 
297 	switch (size) {
298 	case 0:
299 		mode &= ~FSL_DMA_MR_DAHE;
300 		break;
301 	case 1:
302 	case 2:
303 	case 4:
304 	case 8:
305 		mode &= ~FSL_DMA_MR_DAHTS_MASK;
306 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
307 		break;
308 	}
309 
310 	set_mr(chan, mode);
311 }
312 
313 /**
314  * fsl_chan_set_request_count - Set DMA Request Count for external control
315  * @chan : Freescale DMA channel
316  * @size     : Number of bytes to transfer in a single request
317  *
318  * The Freescale DMA channel can be controlled by the external signal DREQ#.
319  * The DMA request count is how many bytes are allowed to transfer before
320  * pausing the channel, after which a new assertion of DREQ# resumes channel
321  * operation.
322  *
323  * A size of 0 disables external pause control. The maximum size is 1024.
324  */
325 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
326 {
327 	u32 mode;
328 
329 	BUG_ON(size > 1024);
330 
331 	mode = get_mr(chan);
332 	mode &= ~FSL_DMA_MR_BWC_MASK;
333 	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
334 
335 	set_mr(chan, mode);
336 }
337 
338 /**
339  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
340  * @chan : Freescale DMA channel
341  * @enable   : 0 is disabled, 1 is enabled.
342  *
343  * The Freescale DMA channel can be controlled by the external signal DREQ#.
344  * The DMA Request Count feature should be used in addition to this feature
345  * to set the number of bytes to transfer before pausing the channel.
346  */
347 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
348 {
349 	if (enable)
350 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
351 	else
352 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
353 }
354 
355 /**
356  * fsl_chan_toggle_ext_start - Toggle channel external start status
357  * @chan : Freescale DMA channel
358  * @enable   : 0 is disabled, 1 is enabled.
359  *
360  * If enable the external start, the channel can be started by an
361  * external DMA start pin. So the dma_start() does not start the
362  * transfer immediately. The DMA channel will wait for the
363  * control pin asserted.
364  */
365 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
366 {
367 	if (enable)
368 		chan->feature |= FSL_DMA_CHAN_START_EXT;
369 	else
370 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
371 }
372 
373 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
374 {
375 	struct fsldma_chan *chan;
376 
377 	if (!dchan)
378 		return -EINVAL;
379 
380 	chan = to_fsl_chan(dchan);
381 
382 	fsl_chan_toggle_ext_start(chan, enable);
383 	return 0;
384 }
385 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
386 
387 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
388 {
389 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
390 
391 	if (list_empty(&chan->ld_pending))
392 		goto out_splice;
393 
394 	/*
395 	 * Add the hardware descriptor to the chain of hardware descriptors
396 	 * that already exists in memory.
397 	 *
398 	 * This will un-set the EOL bit of the existing transaction, and the
399 	 * last link in this transaction will become the EOL descriptor.
400 	 */
401 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
402 
403 	/*
404 	 * Add the software descriptor and all children to the list
405 	 * of pending transactions
406 	 */
407 out_splice:
408 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
409 }
410 
411 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
412 {
413 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
414 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
415 	struct fsl_desc_sw *child;
416 	dma_cookie_t cookie = -EINVAL;
417 
418 	spin_lock_bh(&chan->desc_lock);
419 
420 #ifdef CONFIG_PM
421 	if (unlikely(chan->pm_state != RUNNING)) {
422 		chan_dbg(chan, "cannot submit due to suspend\n");
423 		spin_unlock_bh(&chan->desc_lock);
424 		return -1;
425 	}
426 #endif
427 
428 	/*
429 	 * assign cookies to all of the software descriptors
430 	 * that make up this transaction
431 	 */
432 	list_for_each_entry(child, &desc->tx_list, node) {
433 		cookie = dma_cookie_assign(&child->async_tx);
434 	}
435 
436 	/* put this transaction onto the tail of the pending queue */
437 	append_ld_queue(chan, desc);
438 
439 	spin_unlock_bh(&chan->desc_lock);
440 
441 	return cookie;
442 }
443 
444 /**
445  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
446  * @chan : Freescale DMA channel
447  * @desc: descriptor to be freed
448  */
449 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
450 		struct fsl_desc_sw *desc)
451 {
452 	list_del(&desc->node);
453 	chan_dbg(chan, "LD %p free\n", desc);
454 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
455 }
456 
457 /**
458  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
459  * @chan : Freescale DMA channel
460  *
461  * Return - The descriptor allocated. NULL for failed.
462  */
463 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
464 {
465 	struct fsl_desc_sw *desc;
466 	dma_addr_t pdesc;
467 
468 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
469 	if (!desc) {
470 		chan_dbg(chan, "out of memory for link descriptor\n");
471 		return NULL;
472 	}
473 
474 	INIT_LIST_HEAD(&desc->tx_list);
475 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
476 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
477 	desc->async_tx.phys = pdesc;
478 
479 	chan_dbg(chan, "LD %p allocated\n", desc);
480 
481 	return desc;
482 }
483 
484 /**
485  * fsldma_clean_completed_descriptor - free all descriptors which
486  * has been completed and acked
487  * @chan: Freescale DMA channel
488  *
489  * This function is used on all completed and acked descriptors.
490  * All descriptors should only be freed in this function.
491  */
492 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
493 {
494 	struct fsl_desc_sw *desc, *_desc;
495 
496 	/* Run the callback for each descriptor, in order */
497 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
498 		if (async_tx_test_ack(&desc->async_tx))
499 			fsl_dma_free_descriptor(chan, desc);
500 }
501 
502 /**
503  * fsldma_run_tx_complete_actions - cleanup a single link descriptor
504  * @chan: Freescale DMA channel
505  * @desc: descriptor to cleanup and free
506  * @cookie: Freescale DMA transaction identifier
507  *
508  * This function is used on a descriptor which has been executed by the DMA
509  * controller. It will run any callbacks, submit any dependencies.
510  */
511 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
512 		struct fsl_desc_sw *desc, dma_cookie_t cookie)
513 {
514 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
515 	dma_cookie_t ret = cookie;
516 
517 	BUG_ON(txd->cookie < 0);
518 
519 	if (txd->cookie > 0) {
520 		ret = txd->cookie;
521 
522 		dma_descriptor_unmap(txd);
523 		/* Run the link descriptor callback function */
524 		dmaengine_desc_get_callback_invoke(txd, NULL);
525 	}
526 
527 	/* Run any dependencies */
528 	dma_run_dependencies(txd);
529 
530 	return ret;
531 }
532 
533 /**
534  * fsldma_clean_running_descriptor - move the completed descriptor from
535  * ld_running to ld_completed
536  * @chan: Freescale DMA channel
537  * @desc: the descriptor which is completed
538  *
539  * Free the descriptor directly if acked by async_tx api, or move it to
540  * queue ld_completed.
541  */
542 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
543 		struct fsl_desc_sw *desc)
544 {
545 	/* Remove from the list of transactions */
546 	list_del(&desc->node);
547 
548 	/*
549 	 * the client is allowed to attach dependent operations
550 	 * until 'ack' is set
551 	 */
552 	if (!async_tx_test_ack(&desc->async_tx)) {
553 		/*
554 		 * Move this descriptor to the list of descriptors which is
555 		 * completed, but still awaiting the 'ack' bit to be set.
556 		 */
557 		list_add_tail(&desc->node, &chan->ld_completed);
558 		return;
559 	}
560 
561 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
562 }
563 
564 /**
565  * fsl_chan_xfer_ld_queue - transfer any pending transactions
566  * @chan : Freescale DMA channel
567  *
568  * HARDWARE STATE: idle
569  * LOCKING: must hold chan->desc_lock
570  */
571 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
572 {
573 	struct fsl_desc_sw *desc;
574 
575 	/*
576 	 * If the list of pending descriptors is empty, then we
577 	 * don't need to do any work at all
578 	 */
579 	if (list_empty(&chan->ld_pending)) {
580 		chan_dbg(chan, "no pending LDs\n");
581 		return;
582 	}
583 
584 	/*
585 	 * The DMA controller is not idle, which means that the interrupt
586 	 * handler will start any queued transactions when it runs after
587 	 * this transaction finishes
588 	 */
589 	if (!chan->idle) {
590 		chan_dbg(chan, "DMA controller still busy\n");
591 		return;
592 	}
593 
594 	/*
595 	 * If there are some link descriptors which have not been
596 	 * transferred, we need to start the controller
597 	 */
598 
599 	/*
600 	 * Move all elements from the queue of pending transactions
601 	 * onto the list of running transactions
602 	 */
603 	chan_dbg(chan, "idle, starting controller\n");
604 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
605 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
606 
607 	/*
608 	 * The 85xx DMA controller doesn't clear the channel start bit
609 	 * automatically at the end of a transfer. Therefore we must clear
610 	 * it in software before starting the transfer.
611 	 */
612 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
613 		u32 mode;
614 
615 		mode = get_mr(chan);
616 		mode &= ~FSL_DMA_MR_CS;
617 		set_mr(chan, mode);
618 	}
619 
620 	/*
621 	 * Program the descriptor's address into the DMA controller,
622 	 * then start the DMA transaction
623 	 */
624 	set_cdar(chan, desc->async_tx.phys);
625 	get_cdar(chan);
626 
627 	dma_start(chan);
628 	chan->idle = false;
629 }
630 
631 /**
632  * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
633  * and move them to ld_completed to free until flag 'ack' is set
634  * @chan: Freescale DMA channel
635  *
636  * This function is used on descriptors which have been executed by the DMA
637  * controller. It will run any callbacks, submit any dependencies, then
638  * free these descriptors if flag 'ack' is set.
639  */
640 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
641 {
642 	struct fsl_desc_sw *desc, *_desc;
643 	dma_cookie_t cookie = 0;
644 	dma_addr_t curr_phys = get_cdar(chan);
645 	int seen_current = 0;
646 
647 	fsldma_clean_completed_descriptor(chan);
648 
649 	/* Run the callback for each descriptor, in order */
650 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
651 		/*
652 		 * do not advance past the current descriptor loaded into the
653 		 * hardware channel, subsequent descriptors are either in
654 		 * process or have not been submitted
655 		 */
656 		if (seen_current)
657 			break;
658 
659 		/*
660 		 * stop the search if we reach the current descriptor and the
661 		 * channel is busy
662 		 */
663 		if (desc->async_tx.phys == curr_phys) {
664 			seen_current = 1;
665 			if (!dma_is_idle(chan))
666 				break;
667 		}
668 
669 		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
670 
671 		fsldma_clean_running_descriptor(chan, desc);
672 	}
673 
674 	/*
675 	 * Start any pending transactions automatically
676 	 *
677 	 * In the ideal case, we keep the DMA controller busy while we go
678 	 * ahead and free the descriptors below.
679 	 */
680 	fsl_chan_xfer_ld_queue(chan);
681 
682 	if (cookie > 0)
683 		chan->common.completed_cookie = cookie;
684 }
685 
686 /**
687  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
688  * @chan : Freescale DMA channel
689  *
690  * This function will create a dma pool for descriptor allocation.
691  *
692  * Return - The number of descriptors allocated.
693  */
694 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
695 {
696 	struct fsldma_chan *chan = to_fsl_chan(dchan);
697 
698 	/* Has this channel already been allocated? */
699 	if (chan->desc_pool)
700 		return 1;
701 
702 	/*
703 	 * We need the descriptor to be aligned to 32bytes
704 	 * for meeting FSL DMA specification requirement.
705 	 */
706 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
707 					  sizeof(struct fsl_desc_sw),
708 					  __alignof__(struct fsl_desc_sw), 0);
709 	if (!chan->desc_pool) {
710 		chan_err(chan, "unable to allocate descriptor pool\n");
711 		return -ENOMEM;
712 	}
713 
714 	/* there is at least one descriptor free to be allocated */
715 	return 1;
716 }
717 
718 /**
719  * fsldma_free_desc_list - Free all descriptors in a queue
720  * @chan: Freescae DMA channel
721  * @list: the list to free
722  *
723  * LOCKING: must hold chan->desc_lock
724  */
725 static void fsldma_free_desc_list(struct fsldma_chan *chan,
726 				  struct list_head *list)
727 {
728 	struct fsl_desc_sw *desc, *_desc;
729 
730 	list_for_each_entry_safe(desc, _desc, list, node)
731 		fsl_dma_free_descriptor(chan, desc);
732 }
733 
734 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
735 					  struct list_head *list)
736 {
737 	struct fsl_desc_sw *desc, *_desc;
738 
739 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
740 		fsl_dma_free_descriptor(chan, desc);
741 }
742 
743 /**
744  * fsl_dma_free_chan_resources - Free all resources of the channel.
745  * @chan : Freescale DMA channel
746  */
747 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
748 {
749 	struct fsldma_chan *chan = to_fsl_chan(dchan);
750 
751 	chan_dbg(chan, "free all channel resources\n");
752 	spin_lock_bh(&chan->desc_lock);
753 	fsldma_cleanup_descriptors(chan);
754 	fsldma_free_desc_list(chan, &chan->ld_pending);
755 	fsldma_free_desc_list(chan, &chan->ld_running);
756 	fsldma_free_desc_list(chan, &chan->ld_completed);
757 	spin_unlock_bh(&chan->desc_lock);
758 
759 	dma_pool_destroy(chan->desc_pool);
760 	chan->desc_pool = NULL;
761 }
762 
763 static struct dma_async_tx_descriptor *
764 fsl_dma_prep_memcpy(struct dma_chan *dchan,
765 	dma_addr_t dma_dst, dma_addr_t dma_src,
766 	size_t len, unsigned long flags)
767 {
768 	struct fsldma_chan *chan;
769 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
770 	size_t copy;
771 
772 	if (!dchan)
773 		return NULL;
774 
775 	if (!len)
776 		return NULL;
777 
778 	chan = to_fsl_chan(dchan);
779 
780 	do {
781 
782 		/* Allocate the link descriptor from DMA pool */
783 		new = fsl_dma_alloc_descriptor(chan);
784 		if (!new) {
785 			chan_err(chan, "%s\n", msg_ld_oom);
786 			goto fail;
787 		}
788 
789 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
790 
791 		set_desc_cnt(chan, &new->hw, copy);
792 		set_desc_src(chan, &new->hw, dma_src);
793 		set_desc_dst(chan, &new->hw, dma_dst);
794 
795 		if (!first)
796 			first = new;
797 		else
798 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
799 
800 		new->async_tx.cookie = 0;
801 		async_tx_ack(&new->async_tx);
802 
803 		prev = new;
804 		len -= copy;
805 		dma_src += copy;
806 		dma_dst += copy;
807 
808 		/* Insert the link descriptor to the LD ring */
809 		list_add_tail(&new->node, &first->tx_list);
810 	} while (len);
811 
812 	new->async_tx.flags = flags; /* client is in control of this ack */
813 	new->async_tx.cookie = -EBUSY;
814 
815 	/* Set End-of-link to the last link descriptor of new list */
816 	set_ld_eol(chan, new);
817 
818 	return &first->async_tx;
819 
820 fail:
821 	if (!first)
822 		return NULL;
823 
824 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
825 	return NULL;
826 }
827 
828 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
829 	struct scatterlist *dst_sg, unsigned int dst_nents,
830 	struct scatterlist *src_sg, unsigned int src_nents,
831 	unsigned long flags)
832 {
833 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
834 	struct fsldma_chan *chan = to_fsl_chan(dchan);
835 	size_t dst_avail, src_avail;
836 	dma_addr_t dst, src;
837 	size_t len;
838 
839 	/* basic sanity checks */
840 	if (dst_nents == 0 || src_nents == 0)
841 		return NULL;
842 
843 	if (dst_sg == NULL || src_sg == NULL)
844 		return NULL;
845 
846 	/*
847 	 * TODO: should we check that both scatterlists have the same
848 	 * TODO: number of bytes in total? Is that really an error?
849 	 */
850 
851 	/* get prepared for the loop */
852 	dst_avail = sg_dma_len(dst_sg);
853 	src_avail = sg_dma_len(src_sg);
854 
855 	/* run until we are out of scatterlist entries */
856 	while (true) {
857 
858 		/* create the largest transaction possible */
859 		len = min_t(size_t, src_avail, dst_avail);
860 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
861 		if (len == 0)
862 			goto fetch;
863 
864 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
865 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
866 
867 		/* allocate and populate the descriptor */
868 		new = fsl_dma_alloc_descriptor(chan);
869 		if (!new) {
870 			chan_err(chan, "%s\n", msg_ld_oom);
871 			goto fail;
872 		}
873 
874 		set_desc_cnt(chan, &new->hw, len);
875 		set_desc_src(chan, &new->hw, src);
876 		set_desc_dst(chan, &new->hw, dst);
877 
878 		if (!first)
879 			first = new;
880 		else
881 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
882 
883 		new->async_tx.cookie = 0;
884 		async_tx_ack(&new->async_tx);
885 		prev = new;
886 
887 		/* Insert the link descriptor to the LD ring */
888 		list_add_tail(&new->node, &first->tx_list);
889 
890 		/* update metadata */
891 		dst_avail -= len;
892 		src_avail -= len;
893 
894 fetch:
895 		/* fetch the next dst scatterlist entry */
896 		if (dst_avail == 0) {
897 
898 			/* no more entries: we're done */
899 			if (dst_nents == 0)
900 				break;
901 
902 			/* fetch the next entry: if there are no more: done */
903 			dst_sg = sg_next(dst_sg);
904 			if (dst_sg == NULL)
905 				break;
906 
907 			dst_nents--;
908 			dst_avail = sg_dma_len(dst_sg);
909 		}
910 
911 		/* fetch the next src scatterlist entry */
912 		if (src_avail == 0) {
913 
914 			/* no more entries: we're done */
915 			if (src_nents == 0)
916 				break;
917 
918 			/* fetch the next entry: if there are no more: done */
919 			src_sg = sg_next(src_sg);
920 			if (src_sg == NULL)
921 				break;
922 
923 			src_nents--;
924 			src_avail = sg_dma_len(src_sg);
925 		}
926 	}
927 
928 	new->async_tx.flags = flags; /* client is in control of this ack */
929 	new->async_tx.cookie = -EBUSY;
930 
931 	/* Set End-of-link to the last link descriptor of new list */
932 	set_ld_eol(chan, new);
933 
934 	return &first->async_tx;
935 
936 fail:
937 	if (!first)
938 		return NULL;
939 
940 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
941 	return NULL;
942 }
943 
944 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
945 {
946 	struct fsldma_chan *chan;
947 
948 	if (!dchan)
949 		return -EINVAL;
950 
951 	chan = to_fsl_chan(dchan);
952 
953 	spin_lock_bh(&chan->desc_lock);
954 
955 	/* Halt the DMA engine */
956 	dma_halt(chan);
957 
958 	/* Remove and free all of the descriptors in the LD queue */
959 	fsldma_free_desc_list(chan, &chan->ld_pending);
960 	fsldma_free_desc_list(chan, &chan->ld_running);
961 	fsldma_free_desc_list(chan, &chan->ld_completed);
962 	chan->idle = true;
963 
964 	spin_unlock_bh(&chan->desc_lock);
965 	return 0;
966 }
967 
968 static int fsl_dma_device_config(struct dma_chan *dchan,
969 				 struct dma_slave_config *config)
970 {
971 	struct fsldma_chan *chan;
972 	int size;
973 
974 	if (!dchan)
975 		return -EINVAL;
976 
977 	chan = to_fsl_chan(dchan);
978 
979 	/* make sure the channel supports setting burst size */
980 	if (!chan->set_request_count)
981 		return -ENXIO;
982 
983 	/* we set the controller burst size depending on direction */
984 	if (config->direction == DMA_MEM_TO_DEV)
985 		size = config->dst_addr_width * config->dst_maxburst;
986 	else
987 		size = config->src_addr_width * config->src_maxburst;
988 
989 	chan->set_request_count(chan, size);
990 	return 0;
991 }
992 
993 
994 /**
995  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
996  * @chan : Freescale DMA channel
997  */
998 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
999 {
1000 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1001 
1002 	spin_lock_bh(&chan->desc_lock);
1003 	fsl_chan_xfer_ld_queue(chan);
1004 	spin_unlock_bh(&chan->desc_lock);
1005 }
1006 
1007 /**
1008  * fsl_tx_status - Determine the DMA status
1009  * @chan : Freescale DMA channel
1010  */
1011 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1012 					dma_cookie_t cookie,
1013 					struct dma_tx_state *txstate)
1014 {
1015 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1016 	enum dma_status ret;
1017 
1018 	ret = dma_cookie_status(dchan, cookie, txstate);
1019 	if (ret == DMA_COMPLETE)
1020 		return ret;
1021 
1022 	spin_lock_bh(&chan->desc_lock);
1023 	fsldma_cleanup_descriptors(chan);
1024 	spin_unlock_bh(&chan->desc_lock);
1025 
1026 	return dma_cookie_status(dchan, cookie, txstate);
1027 }
1028 
1029 /*----------------------------------------------------------------------------*/
1030 /* Interrupt Handling                                                         */
1031 /*----------------------------------------------------------------------------*/
1032 
1033 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1034 {
1035 	struct fsldma_chan *chan = data;
1036 	u32 stat;
1037 
1038 	/* save and clear the status register */
1039 	stat = get_sr(chan);
1040 	set_sr(chan, stat);
1041 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1042 
1043 	/* check that this was really our device */
1044 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1045 	if (!stat)
1046 		return IRQ_NONE;
1047 
1048 	if (stat & FSL_DMA_SR_TE)
1049 		chan_err(chan, "Transfer Error!\n");
1050 
1051 	/*
1052 	 * Programming Error
1053 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1054 	 * trigger a PE interrupt.
1055 	 */
1056 	if (stat & FSL_DMA_SR_PE) {
1057 		chan_dbg(chan, "irq: Programming Error INT\n");
1058 		stat &= ~FSL_DMA_SR_PE;
1059 		if (get_bcr(chan) != 0)
1060 			chan_err(chan, "Programming Error!\n");
1061 	}
1062 
1063 	/*
1064 	 * For MPC8349, EOCDI event need to update cookie
1065 	 * and start the next transfer if it exist.
1066 	 */
1067 	if (stat & FSL_DMA_SR_EOCDI) {
1068 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1069 		stat &= ~FSL_DMA_SR_EOCDI;
1070 	}
1071 
1072 	/*
1073 	 * If it current transfer is the end-of-transfer,
1074 	 * we should clear the Channel Start bit for
1075 	 * prepare next transfer.
1076 	 */
1077 	if (stat & FSL_DMA_SR_EOLNI) {
1078 		chan_dbg(chan, "irq: End-of-link INT\n");
1079 		stat &= ~FSL_DMA_SR_EOLNI;
1080 	}
1081 
1082 	/* check that the DMA controller is really idle */
1083 	if (!dma_is_idle(chan))
1084 		chan_err(chan, "irq: controller not idle!\n");
1085 
1086 	/* check that we handled all of the bits */
1087 	if (stat)
1088 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1089 
1090 	/*
1091 	 * Schedule the tasklet to handle all cleanup of the current
1092 	 * transaction. It will start a new transaction if there is
1093 	 * one pending.
1094 	 */
1095 	tasklet_schedule(&chan->tasklet);
1096 	chan_dbg(chan, "irq: Exit\n");
1097 	return IRQ_HANDLED;
1098 }
1099 
1100 static void dma_do_tasklet(unsigned long data)
1101 {
1102 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1103 
1104 	chan_dbg(chan, "tasklet entry\n");
1105 
1106 	spin_lock_bh(&chan->desc_lock);
1107 
1108 	/* the hardware is now idle and ready for more */
1109 	chan->idle = true;
1110 
1111 	/* Run all cleanup for descriptors which have been completed */
1112 	fsldma_cleanup_descriptors(chan);
1113 
1114 	spin_unlock_bh(&chan->desc_lock);
1115 
1116 	chan_dbg(chan, "tasklet exit\n");
1117 }
1118 
1119 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1120 {
1121 	struct fsldma_device *fdev = data;
1122 	struct fsldma_chan *chan;
1123 	unsigned int handled = 0;
1124 	u32 gsr, mask;
1125 	int i;
1126 
1127 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1128 						   : in_le32(fdev->regs);
1129 	mask = 0xff000000;
1130 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1131 
1132 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1133 		chan = fdev->chan[i];
1134 		if (!chan)
1135 			continue;
1136 
1137 		if (gsr & mask) {
1138 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1139 			fsldma_chan_irq(irq, chan);
1140 			handled++;
1141 		}
1142 
1143 		gsr &= ~mask;
1144 		mask >>= 8;
1145 	}
1146 
1147 	return IRQ_RETVAL(handled);
1148 }
1149 
1150 static void fsldma_free_irqs(struct fsldma_device *fdev)
1151 {
1152 	struct fsldma_chan *chan;
1153 	int i;
1154 
1155 	if (fdev->irq) {
1156 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1157 		free_irq(fdev->irq, fdev);
1158 		return;
1159 	}
1160 
1161 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1162 		chan = fdev->chan[i];
1163 		if (chan && chan->irq) {
1164 			chan_dbg(chan, "free per-channel IRQ\n");
1165 			free_irq(chan->irq, chan);
1166 		}
1167 	}
1168 }
1169 
1170 static int fsldma_request_irqs(struct fsldma_device *fdev)
1171 {
1172 	struct fsldma_chan *chan;
1173 	int ret;
1174 	int i;
1175 
1176 	/* if we have a per-controller IRQ, use that */
1177 	if (fdev->irq) {
1178 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1179 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1180 				  "fsldma-controller", fdev);
1181 		return ret;
1182 	}
1183 
1184 	/* no per-controller IRQ, use the per-channel IRQs */
1185 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1186 		chan = fdev->chan[i];
1187 		if (!chan)
1188 			continue;
1189 
1190 		if (!chan->irq) {
1191 			chan_err(chan, "interrupts property missing in device tree\n");
1192 			ret = -ENODEV;
1193 			goto out_unwind;
1194 		}
1195 
1196 		chan_dbg(chan, "request per-channel IRQ\n");
1197 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1198 				  "fsldma-chan", chan);
1199 		if (ret) {
1200 			chan_err(chan, "unable to request per-channel IRQ\n");
1201 			goto out_unwind;
1202 		}
1203 	}
1204 
1205 	return 0;
1206 
1207 out_unwind:
1208 	for (/* none */; i >= 0; i--) {
1209 		chan = fdev->chan[i];
1210 		if (!chan)
1211 			continue;
1212 
1213 		if (!chan->irq)
1214 			continue;
1215 
1216 		free_irq(chan->irq, chan);
1217 	}
1218 
1219 	return ret;
1220 }
1221 
1222 /*----------------------------------------------------------------------------*/
1223 /* OpenFirmware Subsystem                                                     */
1224 /*----------------------------------------------------------------------------*/
1225 
1226 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1227 	struct device_node *node, u32 feature, const char *compatible)
1228 {
1229 	struct fsldma_chan *chan;
1230 	struct resource res;
1231 	int err;
1232 
1233 	/* alloc channel */
1234 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1235 	if (!chan) {
1236 		err = -ENOMEM;
1237 		goto out_return;
1238 	}
1239 
1240 	/* ioremap registers for use */
1241 	chan->regs = of_iomap(node, 0);
1242 	if (!chan->regs) {
1243 		dev_err(fdev->dev, "unable to ioremap registers\n");
1244 		err = -ENOMEM;
1245 		goto out_free_chan;
1246 	}
1247 
1248 	err = of_address_to_resource(node, 0, &res);
1249 	if (err) {
1250 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1251 		goto out_iounmap_regs;
1252 	}
1253 
1254 	chan->feature = feature;
1255 	if (!fdev->feature)
1256 		fdev->feature = chan->feature;
1257 
1258 	/*
1259 	 * If the DMA device's feature is different than the feature
1260 	 * of its channels, report the bug
1261 	 */
1262 	WARN_ON(fdev->feature != chan->feature);
1263 
1264 	chan->dev = fdev->dev;
1265 	chan->id = (res.start & 0xfff) < 0x300 ?
1266 		   ((res.start - 0x100) & 0xfff) >> 7 :
1267 		   ((res.start - 0x200) & 0xfff) >> 7;
1268 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1269 		dev_err(fdev->dev, "too many channels for device\n");
1270 		err = -EINVAL;
1271 		goto out_iounmap_regs;
1272 	}
1273 
1274 	fdev->chan[chan->id] = chan;
1275 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1276 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1277 
1278 	/* Initialize the channel */
1279 	dma_init(chan);
1280 
1281 	/* Clear cdar registers */
1282 	set_cdar(chan, 0);
1283 
1284 	switch (chan->feature & FSL_DMA_IP_MASK) {
1285 	case FSL_DMA_IP_85XX:
1286 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1287 	case FSL_DMA_IP_83XX:
1288 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1289 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1290 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1291 		chan->set_request_count = fsl_chan_set_request_count;
1292 	}
1293 
1294 	spin_lock_init(&chan->desc_lock);
1295 	INIT_LIST_HEAD(&chan->ld_pending);
1296 	INIT_LIST_HEAD(&chan->ld_running);
1297 	INIT_LIST_HEAD(&chan->ld_completed);
1298 	chan->idle = true;
1299 #ifdef CONFIG_PM
1300 	chan->pm_state = RUNNING;
1301 #endif
1302 
1303 	chan->common.device = &fdev->common;
1304 	dma_cookie_init(&chan->common);
1305 
1306 	/* find the IRQ line, if it exists in the device tree */
1307 	chan->irq = irq_of_parse_and_map(node, 0);
1308 
1309 	/* Add the channel to DMA device channel list */
1310 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1311 
1312 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1313 		 chan->irq ? chan->irq : fdev->irq);
1314 
1315 	return 0;
1316 
1317 out_iounmap_regs:
1318 	iounmap(chan->regs);
1319 out_free_chan:
1320 	kfree(chan);
1321 out_return:
1322 	return err;
1323 }
1324 
1325 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1326 {
1327 	irq_dispose_mapping(chan->irq);
1328 	list_del(&chan->common.device_node);
1329 	iounmap(chan->regs);
1330 	kfree(chan);
1331 }
1332 
1333 static int fsldma_of_probe(struct platform_device *op)
1334 {
1335 	struct fsldma_device *fdev;
1336 	struct device_node *child;
1337 	int err;
1338 
1339 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1340 	if (!fdev) {
1341 		err = -ENOMEM;
1342 		goto out_return;
1343 	}
1344 
1345 	fdev->dev = &op->dev;
1346 	INIT_LIST_HEAD(&fdev->common.channels);
1347 
1348 	/* ioremap the registers for use */
1349 	fdev->regs = of_iomap(op->dev.of_node, 0);
1350 	if (!fdev->regs) {
1351 		dev_err(&op->dev, "unable to ioremap registers\n");
1352 		err = -ENOMEM;
1353 		goto out_free;
1354 	}
1355 
1356 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1357 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1358 
1359 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1360 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1361 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1362 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1363 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1364 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1365 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1366 	fdev->common.device_tx_status = fsl_tx_status;
1367 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1368 	fdev->common.device_config = fsl_dma_device_config;
1369 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1370 	fdev->common.dev = &op->dev;
1371 
1372 	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1373 	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1374 	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1375 	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1376 
1377 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1378 
1379 	platform_set_drvdata(op, fdev);
1380 
1381 	/*
1382 	 * We cannot use of_platform_bus_probe() because there is no
1383 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1384 	 * channel object.
1385 	 */
1386 	for_each_child_of_node(op->dev.of_node, child) {
1387 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1388 			fsl_dma_chan_probe(fdev, child,
1389 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1390 				"fsl,eloplus-dma-channel");
1391 		}
1392 
1393 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1394 			fsl_dma_chan_probe(fdev, child,
1395 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1396 				"fsl,elo-dma-channel");
1397 		}
1398 	}
1399 
1400 	/*
1401 	 * Hookup the IRQ handler(s)
1402 	 *
1403 	 * If we have a per-controller interrupt, we prefer that to the
1404 	 * per-channel interrupts to reduce the number of shared interrupt
1405 	 * handlers on the same IRQ line
1406 	 */
1407 	err = fsldma_request_irqs(fdev);
1408 	if (err) {
1409 		dev_err(fdev->dev, "unable to request IRQs\n");
1410 		goto out_free_fdev;
1411 	}
1412 
1413 	dma_async_device_register(&fdev->common);
1414 	return 0;
1415 
1416 out_free_fdev:
1417 	irq_dispose_mapping(fdev->irq);
1418 	iounmap(fdev->regs);
1419 out_free:
1420 	kfree(fdev);
1421 out_return:
1422 	return err;
1423 }
1424 
1425 static int fsldma_of_remove(struct platform_device *op)
1426 {
1427 	struct fsldma_device *fdev;
1428 	unsigned int i;
1429 
1430 	fdev = platform_get_drvdata(op);
1431 	dma_async_device_unregister(&fdev->common);
1432 
1433 	fsldma_free_irqs(fdev);
1434 
1435 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1436 		if (fdev->chan[i])
1437 			fsl_dma_chan_remove(fdev->chan[i]);
1438 	}
1439 
1440 	iounmap(fdev->regs);
1441 	kfree(fdev);
1442 
1443 	return 0;
1444 }
1445 
1446 #ifdef CONFIG_PM
1447 static int fsldma_suspend_late(struct device *dev)
1448 {
1449 	struct platform_device *pdev = to_platform_device(dev);
1450 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1451 	struct fsldma_chan *chan;
1452 	int i;
1453 
1454 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1455 		chan = fdev->chan[i];
1456 		if (!chan)
1457 			continue;
1458 
1459 		spin_lock_bh(&chan->desc_lock);
1460 		if (unlikely(!chan->idle))
1461 			goto out;
1462 		chan->regs_save.mr = get_mr(chan);
1463 		chan->pm_state = SUSPENDED;
1464 		spin_unlock_bh(&chan->desc_lock);
1465 	}
1466 	return 0;
1467 
1468 out:
1469 	for (; i >= 0; i--) {
1470 		chan = fdev->chan[i];
1471 		if (!chan)
1472 			continue;
1473 		chan->pm_state = RUNNING;
1474 		spin_unlock_bh(&chan->desc_lock);
1475 	}
1476 	return -EBUSY;
1477 }
1478 
1479 static int fsldma_resume_early(struct device *dev)
1480 {
1481 	struct platform_device *pdev = to_platform_device(dev);
1482 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1483 	struct fsldma_chan *chan;
1484 	u32 mode;
1485 	int i;
1486 
1487 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1488 		chan = fdev->chan[i];
1489 		if (!chan)
1490 			continue;
1491 
1492 		spin_lock_bh(&chan->desc_lock);
1493 		mode = chan->regs_save.mr
1494 			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1495 		set_mr(chan, mode);
1496 		chan->pm_state = RUNNING;
1497 		spin_unlock_bh(&chan->desc_lock);
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 static const struct dev_pm_ops fsldma_pm_ops = {
1504 	.suspend_late	= fsldma_suspend_late,
1505 	.resume_early	= fsldma_resume_early,
1506 };
1507 #endif
1508 
1509 static const struct of_device_id fsldma_of_ids[] = {
1510 	{ .compatible = "fsl,elo3-dma", },
1511 	{ .compatible = "fsl,eloplus-dma", },
1512 	{ .compatible = "fsl,elo-dma", },
1513 	{}
1514 };
1515 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1516 
1517 static struct platform_driver fsldma_of_driver = {
1518 	.driver = {
1519 		.name = "fsl-elo-dma",
1520 		.of_match_table = fsldma_of_ids,
1521 #ifdef CONFIG_PM
1522 		.pm = &fsldma_pm_ops,
1523 #endif
1524 	},
1525 	.probe = fsldma_of_probe,
1526 	.remove = fsldma_of_remove,
1527 };
1528 
1529 /*----------------------------------------------------------------------------*/
1530 /* Module Init / Exit                                                         */
1531 /*----------------------------------------------------------------------------*/
1532 
1533 static __init int fsldma_init(void)
1534 {
1535 	pr_info("Freescale Elo series DMA driver\n");
1536 	return platform_driver_register(&fsldma_of_driver);
1537 }
1538 
1539 static void __exit fsldma_exit(void)
1540 {
1541 	platform_driver_unregister(&fsldma_of_driver);
1542 }
1543 
1544 subsys_initcall(fsldma_init);
1545 module_exit(fsldma_exit);
1546 
1547 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1548 MODULE_LICENSE("GPL");
1549