xref: /openbmc/linux/drivers/dma/fsldma.c (revision 56d06fa2)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
42 
43 #define chan_dbg(chan, fmt, arg...)					\
44 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)					\
46 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47 
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 
50 /*
51  * Register Helpers
52  */
53 
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 	DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58 
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 	return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63 
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 	DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68 
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 	return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73 
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78 
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83 
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 	DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88 
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 	return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93 
94 /*
95  * Descriptor Helpers
96  */
97 
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 				struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 	hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103 
104 static void set_desc_src(struct fsldma_chan *chan,
105 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113 
114 static void set_desc_dst(struct fsldma_chan *chan,
115 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 	u64 snoop_bits;
118 
119 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123 
124 static void set_desc_next(struct fsldma_chan *chan,
125 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 	u64 snoop_bits;
128 
129 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 		? FSL_DMA_SNEN : 0;
131 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133 
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 	u64 snoop_bits;
137 
138 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 		? FSL_DMA_SNEN : 0;
140 
141 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 			| snoop_bits, 64);
144 }
145 
146 /*
147  * DMA Engine Hardware Control Helpers
148  */
149 
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 	/* Reset the channel */
153 	set_mr(chan, 0);
154 
155 	switch (chan->feature & FSL_DMA_IP_MASK) {
156 	case FSL_DMA_IP_85XX:
157 		/* Set the channel to below modes:
158 		 * EIE - Error interrupt enable
159 		 * EOLNIE - End of links interrupt enable
160 		 * BWC - Bandwidth sharing among channels
161 		 */
162 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 			| FSL_DMA_MR_EOLNIE);
164 		break;
165 	case FSL_DMA_IP_83XX:
166 		/* Set the channel to below modes:
167 		 * EOTIE - End-of-transfer interrupt enable
168 		 * PRC_RM - PCI read multiple
169 		 */
170 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 		break;
172 	}
173 }
174 
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 	u32 sr = get_sr(chan);
178 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180 
181 /*
182  * Start the DMA controller
183  *
184  * Preconditions:
185  * - the CDAR register must point to the start descriptor
186  * - the MRn[CS] bit must be cleared
187  */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 	u32 mode;
191 
192 	mode = get_mr(chan);
193 
194 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 		set_bcr(chan, 0);
196 		mode |= FSL_DMA_MR_EMP_EN;
197 	} else {
198 		mode &= ~FSL_DMA_MR_EMP_EN;
199 	}
200 
201 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 		mode |= FSL_DMA_MR_EMS_EN;
203 	} else {
204 		mode &= ~FSL_DMA_MR_EMS_EN;
205 		mode |= FSL_DMA_MR_CS;
206 	}
207 
208 	set_mr(chan, mode);
209 }
210 
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 	u32 mode;
214 	int i;
215 
216 	/* read the mode register */
217 	mode = get_mr(chan);
218 
219 	/*
220 	 * The 85xx controller supports channel abort, which will stop
221 	 * the current transfer. On 83xx, this bit is the transfer error
222 	 * mask bit, which should not be changed.
223 	 */
224 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 		mode |= FSL_DMA_MR_CA;
226 		set_mr(chan, mode);
227 
228 		mode &= ~FSL_DMA_MR_CA;
229 	}
230 
231 	/* stop the DMA controller */
232 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 	set_mr(chan, mode);
234 
235 	/* wait for the DMA controller to become idle */
236 	for (i = 0; i < 100; i++) {
237 		if (dma_is_idle(chan))
238 			return;
239 
240 		udelay(10);
241 	}
242 
243 	if (!dma_is_idle(chan))
244 		chan_err(chan, "DMA halt timeout!\n");
245 }
246 
247 /**
248  * fsl_chan_set_src_loop_size - Set source address hold transfer size
249  * @chan : Freescale DMA channel
250  * @size     : Address loop size, 0 for disable loop
251  *
252  * The set source address hold transfer size. The source
253  * address hold or loop transfer size is when the DMA transfer
254  * data from source address (SA), if the loop size is 4, the DMA will
255  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256  * SA + 1 ... and so on.
257  */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 	u32 mode;
261 
262 	mode = get_mr(chan);
263 
264 	switch (size) {
265 	case 0:
266 		mode &= ~FSL_DMA_MR_SAHE;
267 		break;
268 	case 1:
269 	case 2:
270 	case 4:
271 	case 8:
272 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 		break;
274 	}
275 
276 	set_mr(chan, mode);
277 }
278 
279 /**
280  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281  * @chan : Freescale DMA channel
282  * @size     : Address loop size, 0 for disable loop
283  *
284  * The set destination address hold transfer size. The destination
285  * address hold or loop transfer size is when the DMA transfer
286  * data to destination address (TA), if the loop size is 4, the DMA will
287  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288  * TA + 1 ... and so on.
289  */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292 	u32 mode;
293 
294 	mode = get_mr(chan);
295 
296 	switch (size) {
297 	case 0:
298 		mode &= ~FSL_DMA_MR_DAHE;
299 		break;
300 	case 1:
301 	case 2:
302 	case 4:
303 	case 8:
304 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 		break;
306 	}
307 
308 	set_mr(chan, mode);
309 }
310 
311 /**
312  * fsl_chan_set_request_count - Set DMA Request Count for external control
313  * @chan : Freescale DMA channel
314  * @size     : Number of bytes to transfer in a single request
315  *
316  * The Freescale DMA channel can be controlled by the external signal DREQ#.
317  * The DMA request count is how many bytes are allowed to transfer before
318  * pausing the channel, after which a new assertion of DREQ# resumes channel
319  * operation.
320  *
321  * A size of 0 disables external pause control. The maximum size is 1024.
322  */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325 	u32 mode;
326 
327 	BUG_ON(size > 1024);
328 
329 	mode = get_mr(chan);
330 	mode |= (__ilog2(size) << 24) & 0x0f000000;
331 
332 	set_mr(chan, mode);
333 }
334 
335 /**
336  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337  * @chan : Freescale DMA channel
338  * @enable   : 0 is disabled, 1 is enabled.
339  *
340  * The Freescale DMA channel can be controlled by the external signal DREQ#.
341  * The DMA Request Count feature should be used in addition to this feature
342  * to set the number of bytes to transfer before pausing the channel.
343  */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346 	if (enable)
347 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 	else
349 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351 
352 /**
353  * fsl_chan_toggle_ext_start - Toggle channel external start status
354  * @chan : Freescale DMA channel
355  * @enable   : 0 is disabled, 1 is enabled.
356  *
357  * If enable the external start, the channel can be started by an
358  * external DMA start pin. So the dma_start() does not start the
359  * transfer immediately. The DMA channel will wait for the
360  * control pin asserted.
361  */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364 	if (enable)
365 		chan->feature |= FSL_DMA_CHAN_START_EXT;
366 	else
367 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369 
370 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
371 {
372 	struct fsldma_chan *chan;
373 
374 	if (!dchan)
375 		return -EINVAL;
376 
377 	chan = to_fsl_chan(dchan);
378 
379 	fsl_chan_toggle_ext_start(chan, enable);
380 	return 0;
381 }
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
383 
384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
385 {
386 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
387 
388 	if (list_empty(&chan->ld_pending))
389 		goto out_splice;
390 
391 	/*
392 	 * Add the hardware descriptor to the chain of hardware descriptors
393 	 * that already exists in memory.
394 	 *
395 	 * This will un-set the EOL bit of the existing transaction, and the
396 	 * last link in this transaction will become the EOL descriptor.
397 	 */
398 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
399 
400 	/*
401 	 * Add the software descriptor and all children to the list
402 	 * of pending transactions
403 	 */
404 out_splice:
405 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
406 }
407 
408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
409 {
410 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
411 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
412 	struct fsl_desc_sw *child;
413 	dma_cookie_t cookie = -EINVAL;
414 
415 	spin_lock_bh(&chan->desc_lock);
416 
417 #ifdef CONFIG_PM
418 	if (unlikely(chan->pm_state != RUNNING)) {
419 		chan_dbg(chan, "cannot submit due to suspend\n");
420 		spin_unlock_bh(&chan->desc_lock);
421 		return -1;
422 	}
423 #endif
424 
425 	/*
426 	 * assign cookies to all of the software descriptors
427 	 * that make up this transaction
428 	 */
429 	list_for_each_entry(child, &desc->tx_list, node) {
430 		cookie = dma_cookie_assign(&child->async_tx);
431 	}
432 
433 	/* put this transaction onto the tail of the pending queue */
434 	append_ld_queue(chan, desc);
435 
436 	spin_unlock_bh(&chan->desc_lock);
437 
438 	return cookie;
439 }
440 
441 /**
442  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443  * @chan : Freescale DMA channel
444  * @desc: descriptor to be freed
445  */
446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
447 		struct fsl_desc_sw *desc)
448 {
449 	list_del(&desc->node);
450 	chan_dbg(chan, "LD %p free\n", desc);
451 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
452 }
453 
454 /**
455  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456  * @chan : Freescale DMA channel
457  *
458  * Return - The descriptor allocated. NULL for failed.
459  */
460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
461 {
462 	struct fsl_desc_sw *desc;
463 	dma_addr_t pdesc;
464 
465 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
466 	if (!desc) {
467 		chan_dbg(chan, "out of memory for link descriptor\n");
468 		return NULL;
469 	}
470 
471 	memset(desc, 0, sizeof(*desc));
472 	INIT_LIST_HEAD(&desc->tx_list);
473 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
474 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
475 	desc->async_tx.phys = pdesc;
476 
477 	chan_dbg(chan, "LD %p allocated\n", desc);
478 
479 	return desc;
480 }
481 
482 /**
483  * fsldma_clean_completed_descriptor - free all descriptors which
484  * has been completed and acked
485  * @chan: Freescale DMA channel
486  *
487  * This function is used on all completed and acked descriptors.
488  * All descriptors should only be freed in this function.
489  */
490 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
491 {
492 	struct fsl_desc_sw *desc, *_desc;
493 
494 	/* Run the callback for each descriptor, in order */
495 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
496 		if (async_tx_test_ack(&desc->async_tx))
497 			fsl_dma_free_descriptor(chan, desc);
498 }
499 
500 /**
501  * fsldma_run_tx_complete_actions - cleanup a single link descriptor
502  * @chan: Freescale DMA channel
503  * @desc: descriptor to cleanup and free
504  * @cookie: Freescale DMA transaction identifier
505  *
506  * This function is used on a descriptor which has been executed by the DMA
507  * controller. It will run any callbacks, submit any dependencies.
508  */
509 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
510 		struct fsl_desc_sw *desc, dma_cookie_t cookie)
511 {
512 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
513 	dma_cookie_t ret = cookie;
514 
515 	BUG_ON(txd->cookie < 0);
516 
517 	if (txd->cookie > 0) {
518 		ret = txd->cookie;
519 
520 		/* Run the link descriptor callback function */
521 		if (txd->callback) {
522 			chan_dbg(chan, "LD %p callback\n", desc);
523 			txd->callback(txd->callback_param);
524 		}
525 
526 		dma_descriptor_unmap(txd);
527 	}
528 
529 	/* Run any dependencies */
530 	dma_run_dependencies(txd);
531 
532 	return ret;
533 }
534 
535 /**
536  * fsldma_clean_running_descriptor - move the completed descriptor from
537  * ld_running to ld_completed
538  * @chan: Freescale DMA channel
539  * @desc: the descriptor which is completed
540  *
541  * Free the descriptor directly if acked by async_tx api, or move it to
542  * queue ld_completed.
543  */
544 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
545 		struct fsl_desc_sw *desc)
546 {
547 	/* Remove from the list of transactions */
548 	list_del(&desc->node);
549 
550 	/*
551 	 * the client is allowed to attach dependent operations
552 	 * until 'ack' is set
553 	 */
554 	if (!async_tx_test_ack(&desc->async_tx)) {
555 		/*
556 		 * Move this descriptor to the list of descriptors which is
557 		 * completed, but still awaiting the 'ack' bit to be set.
558 		 */
559 		list_add_tail(&desc->node, &chan->ld_completed);
560 		return;
561 	}
562 
563 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
564 }
565 
566 /**
567  * fsl_chan_xfer_ld_queue - transfer any pending transactions
568  * @chan : Freescale DMA channel
569  *
570  * HARDWARE STATE: idle
571  * LOCKING: must hold chan->desc_lock
572  */
573 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
574 {
575 	struct fsl_desc_sw *desc;
576 
577 	/*
578 	 * If the list of pending descriptors is empty, then we
579 	 * don't need to do any work at all
580 	 */
581 	if (list_empty(&chan->ld_pending)) {
582 		chan_dbg(chan, "no pending LDs\n");
583 		return;
584 	}
585 
586 	/*
587 	 * The DMA controller is not idle, which means that the interrupt
588 	 * handler will start any queued transactions when it runs after
589 	 * this transaction finishes
590 	 */
591 	if (!chan->idle) {
592 		chan_dbg(chan, "DMA controller still busy\n");
593 		return;
594 	}
595 
596 	/*
597 	 * If there are some link descriptors which have not been
598 	 * transferred, we need to start the controller
599 	 */
600 
601 	/*
602 	 * Move all elements from the queue of pending transactions
603 	 * onto the list of running transactions
604 	 */
605 	chan_dbg(chan, "idle, starting controller\n");
606 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
607 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
608 
609 	/*
610 	 * The 85xx DMA controller doesn't clear the channel start bit
611 	 * automatically at the end of a transfer. Therefore we must clear
612 	 * it in software before starting the transfer.
613 	 */
614 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
615 		u32 mode;
616 
617 		mode = get_mr(chan);
618 		mode &= ~FSL_DMA_MR_CS;
619 		set_mr(chan, mode);
620 	}
621 
622 	/*
623 	 * Program the descriptor's address into the DMA controller,
624 	 * then start the DMA transaction
625 	 */
626 	set_cdar(chan, desc->async_tx.phys);
627 	get_cdar(chan);
628 
629 	dma_start(chan);
630 	chan->idle = false;
631 }
632 
633 /**
634  * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
635  * and move them to ld_completed to free until flag 'ack' is set
636  * @chan: Freescale DMA channel
637  *
638  * This function is used on descriptors which have been executed by the DMA
639  * controller. It will run any callbacks, submit any dependencies, then
640  * free these descriptors if flag 'ack' is set.
641  */
642 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
643 {
644 	struct fsl_desc_sw *desc, *_desc;
645 	dma_cookie_t cookie = 0;
646 	dma_addr_t curr_phys = get_cdar(chan);
647 	int seen_current = 0;
648 
649 	fsldma_clean_completed_descriptor(chan);
650 
651 	/* Run the callback for each descriptor, in order */
652 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
653 		/*
654 		 * do not advance past the current descriptor loaded into the
655 		 * hardware channel, subsequent descriptors are either in
656 		 * process or have not been submitted
657 		 */
658 		if (seen_current)
659 			break;
660 
661 		/*
662 		 * stop the search if we reach the current descriptor and the
663 		 * channel is busy
664 		 */
665 		if (desc->async_tx.phys == curr_phys) {
666 			seen_current = 1;
667 			if (!dma_is_idle(chan))
668 				break;
669 		}
670 
671 		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
672 
673 		fsldma_clean_running_descriptor(chan, desc);
674 	}
675 
676 	/*
677 	 * Start any pending transactions automatically
678 	 *
679 	 * In the ideal case, we keep the DMA controller busy while we go
680 	 * ahead and free the descriptors below.
681 	 */
682 	fsl_chan_xfer_ld_queue(chan);
683 
684 	if (cookie > 0)
685 		chan->common.completed_cookie = cookie;
686 }
687 
688 /**
689  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
690  * @chan : Freescale DMA channel
691  *
692  * This function will create a dma pool for descriptor allocation.
693  *
694  * Return - The number of descriptors allocated.
695  */
696 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
697 {
698 	struct fsldma_chan *chan = to_fsl_chan(dchan);
699 
700 	/* Has this channel already been allocated? */
701 	if (chan->desc_pool)
702 		return 1;
703 
704 	/*
705 	 * We need the descriptor to be aligned to 32bytes
706 	 * for meeting FSL DMA specification requirement.
707 	 */
708 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
709 					  sizeof(struct fsl_desc_sw),
710 					  __alignof__(struct fsl_desc_sw), 0);
711 	if (!chan->desc_pool) {
712 		chan_err(chan, "unable to allocate descriptor pool\n");
713 		return -ENOMEM;
714 	}
715 
716 	/* there is at least one descriptor free to be allocated */
717 	return 1;
718 }
719 
720 /**
721  * fsldma_free_desc_list - Free all descriptors in a queue
722  * @chan: Freescae DMA channel
723  * @list: the list to free
724  *
725  * LOCKING: must hold chan->desc_lock
726  */
727 static void fsldma_free_desc_list(struct fsldma_chan *chan,
728 				  struct list_head *list)
729 {
730 	struct fsl_desc_sw *desc, *_desc;
731 
732 	list_for_each_entry_safe(desc, _desc, list, node)
733 		fsl_dma_free_descriptor(chan, desc);
734 }
735 
736 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
737 					  struct list_head *list)
738 {
739 	struct fsl_desc_sw *desc, *_desc;
740 
741 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
742 		fsl_dma_free_descriptor(chan, desc);
743 }
744 
745 /**
746  * fsl_dma_free_chan_resources - Free all resources of the channel.
747  * @chan : Freescale DMA channel
748  */
749 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
750 {
751 	struct fsldma_chan *chan = to_fsl_chan(dchan);
752 
753 	chan_dbg(chan, "free all channel resources\n");
754 	spin_lock_bh(&chan->desc_lock);
755 	fsldma_cleanup_descriptors(chan);
756 	fsldma_free_desc_list(chan, &chan->ld_pending);
757 	fsldma_free_desc_list(chan, &chan->ld_running);
758 	fsldma_free_desc_list(chan, &chan->ld_completed);
759 	spin_unlock_bh(&chan->desc_lock);
760 
761 	dma_pool_destroy(chan->desc_pool);
762 	chan->desc_pool = NULL;
763 }
764 
765 static struct dma_async_tx_descriptor *
766 fsl_dma_prep_memcpy(struct dma_chan *dchan,
767 	dma_addr_t dma_dst, dma_addr_t dma_src,
768 	size_t len, unsigned long flags)
769 {
770 	struct fsldma_chan *chan;
771 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
772 	size_t copy;
773 
774 	if (!dchan)
775 		return NULL;
776 
777 	if (!len)
778 		return NULL;
779 
780 	chan = to_fsl_chan(dchan);
781 
782 	do {
783 
784 		/* Allocate the link descriptor from DMA pool */
785 		new = fsl_dma_alloc_descriptor(chan);
786 		if (!new) {
787 			chan_err(chan, "%s\n", msg_ld_oom);
788 			goto fail;
789 		}
790 
791 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
792 
793 		set_desc_cnt(chan, &new->hw, copy);
794 		set_desc_src(chan, &new->hw, dma_src);
795 		set_desc_dst(chan, &new->hw, dma_dst);
796 
797 		if (!first)
798 			first = new;
799 		else
800 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
801 
802 		new->async_tx.cookie = 0;
803 		async_tx_ack(&new->async_tx);
804 
805 		prev = new;
806 		len -= copy;
807 		dma_src += copy;
808 		dma_dst += copy;
809 
810 		/* Insert the link descriptor to the LD ring */
811 		list_add_tail(&new->node, &first->tx_list);
812 	} while (len);
813 
814 	new->async_tx.flags = flags; /* client is in control of this ack */
815 	new->async_tx.cookie = -EBUSY;
816 
817 	/* Set End-of-link to the last link descriptor of new list */
818 	set_ld_eol(chan, new);
819 
820 	return &first->async_tx;
821 
822 fail:
823 	if (!first)
824 		return NULL;
825 
826 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
827 	return NULL;
828 }
829 
830 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
831 	struct scatterlist *dst_sg, unsigned int dst_nents,
832 	struct scatterlist *src_sg, unsigned int src_nents,
833 	unsigned long flags)
834 {
835 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
836 	struct fsldma_chan *chan = to_fsl_chan(dchan);
837 	size_t dst_avail, src_avail;
838 	dma_addr_t dst, src;
839 	size_t len;
840 
841 	/* basic sanity checks */
842 	if (dst_nents == 0 || src_nents == 0)
843 		return NULL;
844 
845 	if (dst_sg == NULL || src_sg == NULL)
846 		return NULL;
847 
848 	/*
849 	 * TODO: should we check that both scatterlists have the same
850 	 * TODO: number of bytes in total? Is that really an error?
851 	 */
852 
853 	/* get prepared for the loop */
854 	dst_avail = sg_dma_len(dst_sg);
855 	src_avail = sg_dma_len(src_sg);
856 
857 	/* run until we are out of scatterlist entries */
858 	while (true) {
859 
860 		/* create the largest transaction possible */
861 		len = min_t(size_t, src_avail, dst_avail);
862 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
863 		if (len == 0)
864 			goto fetch;
865 
866 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
867 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
868 
869 		/* allocate and populate the descriptor */
870 		new = fsl_dma_alloc_descriptor(chan);
871 		if (!new) {
872 			chan_err(chan, "%s\n", msg_ld_oom);
873 			goto fail;
874 		}
875 
876 		set_desc_cnt(chan, &new->hw, len);
877 		set_desc_src(chan, &new->hw, src);
878 		set_desc_dst(chan, &new->hw, dst);
879 
880 		if (!first)
881 			first = new;
882 		else
883 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
884 
885 		new->async_tx.cookie = 0;
886 		async_tx_ack(&new->async_tx);
887 		prev = new;
888 
889 		/* Insert the link descriptor to the LD ring */
890 		list_add_tail(&new->node, &first->tx_list);
891 
892 		/* update metadata */
893 		dst_avail -= len;
894 		src_avail -= len;
895 
896 fetch:
897 		/* fetch the next dst scatterlist entry */
898 		if (dst_avail == 0) {
899 
900 			/* no more entries: we're done */
901 			if (dst_nents == 0)
902 				break;
903 
904 			/* fetch the next entry: if there are no more: done */
905 			dst_sg = sg_next(dst_sg);
906 			if (dst_sg == NULL)
907 				break;
908 
909 			dst_nents--;
910 			dst_avail = sg_dma_len(dst_sg);
911 		}
912 
913 		/* fetch the next src scatterlist entry */
914 		if (src_avail == 0) {
915 
916 			/* no more entries: we're done */
917 			if (src_nents == 0)
918 				break;
919 
920 			/* fetch the next entry: if there are no more: done */
921 			src_sg = sg_next(src_sg);
922 			if (src_sg == NULL)
923 				break;
924 
925 			src_nents--;
926 			src_avail = sg_dma_len(src_sg);
927 		}
928 	}
929 
930 	new->async_tx.flags = flags; /* client is in control of this ack */
931 	new->async_tx.cookie = -EBUSY;
932 
933 	/* Set End-of-link to the last link descriptor of new list */
934 	set_ld_eol(chan, new);
935 
936 	return &first->async_tx;
937 
938 fail:
939 	if (!first)
940 		return NULL;
941 
942 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
943 	return NULL;
944 }
945 
946 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
947 {
948 	struct fsldma_chan *chan;
949 
950 	if (!dchan)
951 		return -EINVAL;
952 
953 	chan = to_fsl_chan(dchan);
954 
955 	spin_lock_bh(&chan->desc_lock);
956 
957 	/* Halt the DMA engine */
958 	dma_halt(chan);
959 
960 	/* Remove and free all of the descriptors in the LD queue */
961 	fsldma_free_desc_list(chan, &chan->ld_pending);
962 	fsldma_free_desc_list(chan, &chan->ld_running);
963 	fsldma_free_desc_list(chan, &chan->ld_completed);
964 	chan->idle = true;
965 
966 	spin_unlock_bh(&chan->desc_lock);
967 	return 0;
968 }
969 
970 static int fsl_dma_device_config(struct dma_chan *dchan,
971 				 struct dma_slave_config *config)
972 {
973 	struct fsldma_chan *chan;
974 	int size;
975 
976 	if (!dchan)
977 		return -EINVAL;
978 
979 	chan = to_fsl_chan(dchan);
980 
981 	/* make sure the channel supports setting burst size */
982 	if (!chan->set_request_count)
983 		return -ENXIO;
984 
985 	/* we set the controller burst size depending on direction */
986 	if (config->direction == DMA_MEM_TO_DEV)
987 		size = config->dst_addr_width * config->dst_maxburst;
988 	else
989 		size = config->src_addr_width * config->src_maxburst;
990 
991 	chan->set_request_count(chan, size);
992 	return 0;
993 }
994 
995 
996 /**
997  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
998  * @chan : Freescale DMA channel
999  */
1000 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1001 {
1002 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1003 
1004 	spin_lock_bh(&chan->desc_lock);
1005 	fsl_chan_xfer_ld_queue(chan);
1006 	spin_unlock_bh(&chan->desc_lock);
1007 }
1008 
1009 /**
1010  * fsl_tx_status - Determine the DMA status
1011  * @chan : Freescale DMA channel
1012  */
1013 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1014 					dma_cookie_t cookie,
1015 					struct dma_tx_state *txstate)
1016 {
1017 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1018 	enum dma_status ret;
1019 
1020 	ret = dma_cookie_status(dchan, cookie, txstate);
1021 	if (ret == DMA_COMPLETE)
1022 		return ret;
1023 
1024 	spin_lock_bh(&chan->desc_lock);
1025 	fsldma_cleanup_descriptors(chan);
1026 	spin_unlock_bh(&chan->desc_lock);
1027 
1028 	return dma_cookie_status(dchan, cookie, txstate);
1029 }
1030 
1031 /*----------------------------------------------------------------------------*/
1032 /* Interrupt Handling                                                         */
1033 /*----------------------------------------------------------------------------*/
1034 
1035 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1036 {
1037 	struct fsldma_chan *chan = data;
1038 	u32 stat;
1039 
1040 	/* save and clear the status register */
1041 	stat = get_sr(chan);
1042 	set_sr(chan, stat);
1043 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1044 
1045 	/* check that this was really our device */
1046 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1047 	if (!stat)
1048 		return IRQ_NONE;
1049 
1050 	if (stat & FSL_DMA_SR_TE)
1051 		chan_err(chan, "Transfer Error!\n");
1052 
1053 	/*
1054 	 * Programming Error
1055 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1056 	 * trigger a PE interrupt.
1057 	 */
1058 	if (stat & FSL_DMA_SR_PE) {
1059 		chan_dbg(chan, "irq: Programming Error INT\n");
1060 		stat &= ~FSL_DMA_SR_PE;
1061 		if (get_bcr(chan) != 0)
1062 			chan_err(chan, "Programming Error!\n");
1063 	}
1064 
1065 	/*
1066 	 * For MPC8349, EOCDI event need to update cookie
1067 	 * and start the next transfer if it exist.
1068 	 */
1069 	if (stat & FSL_DMA_SR_EOCDI) {
1070 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1071 		stat &= ~FSL_DMA_SR_EOCDI;
1072 	}
1073 
1074 	/*
1075 	 * If it current transfer is the end-of-transfer,
1076 	 * we should clear the Channel Start bit for
1077 	 * prepare next transfer.
1078 	 */
1079 	if (stat & FSL_DMA_SR_EOLNI) {
1080 		chan_dbg(chan, "irq: End-of-link INT\n");
1081 		stat &= ~FSL_DMA_SR_EOLNI;
1082 	}
1083 
1084 	/* check that the DMA controller is really idle */
1085 	if (!dma_is_idle(chan))
1086 		chan_err(chan, "irq: controller not idle!\n");
1087 
1088 	/* check that we handled all of the bits */
1089 	if (stat)
1090 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1091 
1092 	/*
1093 	 * Schedule the tasklet to handle all cleanup of the current
1094 	 * transaction. It will start a new transaction if there is
1095 	 * one pending.
1096 	 */
1097 	tasklet_schedule(&chan->tasklet);
1098 	chan_dbg(chan, "irq: Exit\n");
1099 	return IRQ_HANDLED;
1100 }
1101 
1102 static void dma_do_tasklet(unsigned long data)
1103 {
1104 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1105 
1106 	chan_dbg(chan, "tasklet entry\n");
1107 
1108 	spin_lock_bh(&chan->desc_lock);
1109 
1110 	/* the hardware is now idle and ready for more */
1111 	chan->idle = true;
1112 
1113 	/* Run all cleanup for descriptors which have been completed */
1114 	fsldma_cleanup_descriptors(chan);
1115 
1116 	spin_unlock_bh(&chan->desc_lock);
1117 
1118 	chan_dbg(chan, "tasklet exit\n");
1119 }
1120 
1121 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1122 {
1123 	struct fsldma_device *fdev = data;
1124 	struct fsldma_chan *chan;
1125 	unsigned int handled = 0;
1126 	u32 gsr, mask;
1127 	int i;
1128 
1129 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1130 						   : in_le32(fdev->regs);
1131 	mask = 0xff000000;
1132 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1133 
1134 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1135 		chan = fdev->chan[i];
1136 		if (!chan)
1137 			continue;
1138 
1139 		if (gsr & mask) {
1140 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1141 			fsldma_chan_irq(irq, chan);
1142 			handled++;
1143 		}
1144 
1145 		gsr &= ~mask;
1146 		mask >>= 8;
1147 	}
1148 
1149 	return IRQ_RETVAL(handled);
1150 }
1151 
1152 static void fsldma_free_irqs(struct fsldma_device *fdev)
1153 {
1154 	struct fsldma_chan *chan;
1155 	int i;
1156 
1157 	if (fdev->irq != NO_IRQ) {
1158 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1159 		free_irq(fdev->irq, fdev);
1160 		return;
1161 	}
1162 
1163 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1164 		chan = fdev->chan[i];
1165 		if (chan && chan->irq != NO_IRQ) {
1166 			chan_dbg(chan, "free per-channel IRQ\n");
1167 			free_irq(chan->irq, chan);
1168 		}
1169 	}
1170 }
1171 
1172 static int fsldma_request_irqs(struct fsldma_device *fdev)
1173 {
1174 	struct fsldma_chan *chan;
1175 	int ret;
1176 	int i;
1177 
1178 	/* if we have a per-controller IRQ, use that */
1179 	if (fdev->irq != NO_IRQ) {
1180 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1181 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1182 				  "fsldma-controller", fdev);
1183 		return ret;
1184 	}
1185 
1186 	/* no per-controller IRQ, use the per-channel IRQs */
1187 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1188 		chan = fdev->chan[i];
1189 		if (!chan)
1190 			continue;
1191 
1192 		if (chan->irq == NO_IRQ) {
1193 			chan_err(chan, "interrupts property missing in device tree\n");
1194 			ret = -ENODEV;
1195 			goto out_unwind;
1196 		}
1197 
1198 		chan_dbg(chan, "request per-channel IRQ\n");
1199 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1200 				  "fsldma-chan", chan);
1201 		if (ret) {
1202 			chan_err(chan, "unable to request per-channel IRQ\n");
1203 			goto out_unwind;
1204 		}
1205 	}
1206 
1207 	return 0;
1208 
1209 out_unwind:
1210 	for (/* none */; i >= 0; i--) {
1211 		chan = fdev->chan[i];
1212 		if (!chan)
1213 			continue;
1214 
1215 		if (chan->irq == NO_IRQ)
1216 			continue;
1217 
1218 		free_irq(chan->irq, chan);
1219 	}
1220 
1221 	return ret;
1222 }
1223 
1224 /*----------------------------------------------------------------------------*/
1225 /* OpenFirmware Subsystem                                                     */
1226 /*----------------------------------------------------------------------------*/
1227 
1228 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1229 	struct device_node *node, u32 feature, const char *compatible)
1230 {
1231 	struct fsldma_chan *chan;
1232 	struct resource res;
1233 	int err;
1234 
1235 	/* alloc channel */
1236 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1237 	if (!chan) {
1238 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1239 		err = -ENOMEM;
1240 		goto out_return;
1241 	}
1242 
1243 	/* ioremap registers for use */
1244 	chan->regs = of_iomap(node, 0);
1245 	if (!chan->regs) {
1246 		dev_err(fdev->dev, "unable to ioremap registers\n");
1247 		err = -ENOMEM;
1248 		goto out_free_chan;
1249 	}
1250 
1251 	err = of_address_to_resource(node, 0, &res);
1252 	if (err) {
1253 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1254 		goto out_iounmap_regs;
1255 	}
1256 
1257 	chan->feature = feature;
1258 	if (!fdev->feature)
1259 		fdev->feature = chan->feature;
1260 
1261 	/*
1262 	 * If the DMA device's feature is different than the feature
1263 	 * of its channels, report the bug
1264 	 */
1265 	WARN_ON(fdev->feature != chan->feature);
1266 
1267 	chan->dev = fdev->dev;
1268 	chan->id = (res.start & 0xfff) < 0x300 ?
1269 		   ((res.start - 0x100) & 0xfff) >> 7 :
1270 		   ((res.start - 0x200) & 0xfff) >> 7;
1271 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1272 		dev_err(fdev->dev, "too many channels for device\n");
1273 		err = -EINVAL;
1274 		goto out_iounmap_regs;
1275 	}
1276 
1277 	fdev->chan[chan->id] = chan;
1278 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1279 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1280 
1281 	/* Initialize the channel */
1282 	dma_init(chan);
1283 
1284 	/* Clear cdar registers */
1285 	set_cdar(chan, 0);
1286 
1287 	switch (chan->feature & FSL_DMA_IP_MASK) {
1288 	case FSL_DMA_IP_85XX:
1289 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1290 	case FSL_DMA_IP_83XX:
1291 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1292 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1293 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1294 		chan->set_request_count = fsl_chan_set_request_count;
1295 	}
1296 
1297 	spin_lock_init(&chan->desc_lock);
1298 	INIT_LIST_HEAD(&chan->ld_pending);
1299 	INIT_LIST_HEAD(&chan->ld_running);
1300 	INIT_LIST_HEAD(&chan->ld_completed);
1301 	chan->idle = true;
1302 #ifdef CONFIG_PM
1303 	chan->pm_state = RUNNING;
1304 #endif
1305 
1306 	chan->common.device = &fdev->common;
1307 	dma_cookie_init(&chan->common);
1308 
1309 	/* find the IRQ line, if it exists in the device tree */
1310 	chan->irq = irq_of_parse_and_map(node, 0);
1311 
1312 	/* Add the channel to DMA device channel list */
1313 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1314 
1315 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1316 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1317 
1318 	return 0;
1319 
1320 out_iounmap_regs:
1321 	iounmap(chan->regs);
1322 out_free_chan:
1323 	kfree(chan);
1324 out_return:
1325 	return err;
1326 }
1327 
1328 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1329 {
1330 	irq_dispose_mapping(chan->irq);
1331 	list_del(&chan->common.device_node);
1332 	iounmap(chan->regs);
1333 	kfree(chan);
1334 }
1335 
1336 static int fsldma_of_probe(struct platform_device *op)
1337 {
1338 	struct fsldma_device *fdev;
1339 	struct device_node *child;
1340 	int err;
1341 
1342 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1343 	if (!fdev) {
1344 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1345 		err = -ENOMEM;
1346 		goto out_return;
1347 	}
1348 
1349 	fdev->dev = &op->dev;
1350 	INIT_LIST_HEAD(&fdev->common.channels);
1351 
1352 	/* ioremap the registers for use */
1353 	fdev->regs = of_iomap(op->dev.of_node, 0);
1354 	if (!fdev->regs) {
1355 		dev_err(&op->dev, "unable to ioremap registers\n");
1356 		err = -ENOMEM;
1357 		goto out_free_fdev;
1358 	}
1359 
1360 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1361 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1362 
1363 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1364 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1365 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1366 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1367 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1368 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1369 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1370 	fdev->common.device_tx_status = fsl_tx_status;
1371 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1372 	fdev->common.device_config = fsl_dma_device_config;
1373 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1374 	fdev->common.dev = &op->dev;
1375 
1376 	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1377 	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1378 	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1379 	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1380 
1381 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1382 
1383 	platform_set_drvdata(op, fdev);
1384 
1385 	/*
1386 	 * We cannot use of_platform_bus_probe() because there is no
1387 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1388 	 * channel object.
1389 	 */
1390 	for_each_child_of_node(op->dev.of_node, child) {
1391 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1392 			fsl_dma_chan_probe(fdev, child,
1393 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1394 				"fsl,eloplus-dma-channel");
1395 		}
1396 
1397 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1398 			fsl_dma_chan_probe(fdev, child,
1399 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1400 				"fsl,elo-dma-channel");
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * Hookup the IRQ handler(s)
1406 	 *
1407 	 * If we have a per-controller interrupt, we prefer that to the
1408 	 * per-channel interrupts to reduce the number of shared interrupt
1409 	 * handlers on the same IRQ line
1410 	 */
1411 	err = fsldma_request_irqs(fdev);
1412 	if (err) {
1413 		dev_err(fdev->dev, "unable to request IRQs\n");
1414 		goto out_free_fdev;
1415 	}
1416 
1417 	dma_async_device_register(&fdev->common);
1418 	return 0;
1419 
1420 out_free_fdev:
1421 	irq_dispose_mapping(fdev->irq);
1422 	kfree(fdev);
1423 out_return:
1424 	return err;
1425 }
1426 
1427 static int fsldma_of_remove(struct platform_device *op)
1428 {
1429 	struct fsldma_device *fdev;
1430 	unsigned int i;
1431 
1432 	fdev = platform_get_drvdata(op);
1433 	dma_async_device_unregister(&fdev->common);
1434 
1435 	fsldma_free_irqs(fdev);
1436 
1437 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1438 		if (fdev->chan[i])
1439 			fsl_dma_chan_remove(fdev->chan[i]);
1440 	}
1441 
1442 	iounmap(fdev->regs);
1443 	kfree(fdev);
1444 
1445 	return 0;
1446 }
1447 
1448 #ifdef CONFIG_PM
1449 static int fsldma_suspend_late(struct device *dev)
1450 {
1451 	struct platform_device *pdev = to_platform_device(dev);
1452 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1453 	struct fsldma_chan *chan;
1454 	int i;
1455 
1456 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1457 		chan = fdev->chan[i];
1458 		if (!chan)
1459 			continue;
1460 
1461 		spin_lock_bh(&chan->desc_lock);
1462 		if (unlikely(!chan->idle))
1463 			goto out;
1464 		chan->regs_save.mr = get_mr(chan);
1465 		chan->pm_state = SUSPENDED;
1466 		spin_unlock_bh(&chan->desc_lock);
1467 	}
1468 	return 0;
1469 
1470 out:
1471 	for (; i >= 0; i--) {
1472 		chan = fdev->chan[i];
1473 		if (!chan)
1474 			continue;
1475 		chan->pm_state = RUNNING;
1476 		spin_unlock_bh(&chan->desc_lock);
1477 	}
1478 	return -EBUSY;
1479 }
1480 
1481 static int fsldma_resume_early(struct device *dev)
1482 {
1483 	struct platform_device *pdev = to_platform_device(dev);
1484 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1485 	struct fsldma_chan *chan;
1486 	u32 mode;
1487 	int i;
1488 
1489 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1490 		chan = fdev->chan[i];
1491 		if (!chan)
1492 			continue;
1493 
1494 		spin_lock_bh(&chan->desc_lock);
1495 		mode = chan->regs_save.mr
1496 			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1497 		set_mr(chan, mode);
1498 		chan->pm_state = RUNNING;
1499 		spin_unlock_bh(&chan->desc_lock);
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 static const struct dev_pm_ops fsldma_pm_ops = {
1506 	.suspend_late	= fsldma_suspend_late,
1507 	.resume_early	= fsldma_resume_early,
1508 };
1509 #endif
1510 
1511 static const struct of_device_id fsldma_of_ids[] = {
1512 	{ .compatible = "fsl,elo3-dma", },
1513 	{ .compatible = "fsl,eloplus-dma", },
1514 	{ .compatible = "fsl,elo-dma", },
1515 	{}
1516 };
1517 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1518 
1519 static struct platform_driver fsldma_of_driver = {
1520 	.driver = {
1521 		.name = "fsl-elo-dma",
1522 		.of_match_table = fsldma_of_ids,
1523 #ifdef CONFIG_PM
1524 		.pm = &fsldma_pm_ops,
1525 #endif
1526 	},
1527 	.probe = fsldma_of_probe,
1528 	.remove = fsldma_of_remove,
1529 };
1530 
1531 /*----------------------------------------------------------------------------*/
1532 /* Module Init / Exit                                                         */
1533 /*----------------------------------------------------------------------------*/
1534 
1535 static __init int fsldma_init(void)
1536 {
1537 	pr_info("Freescale Elo series DMA driver\n");
1538 	return platform_driver_register(&fsldma_of_driver);
1539 }
1540 
1541 static void __exit fsldma_exit(void)
1542 {
1543 	platform_driver_unregister(&fsldma_of_driver);
1544 }
1545 
1546 subsys_initcall(fsldma_init);
1547 module_exit(fsldma_exit);
1548 
1549 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1550 MODULE_LICENSE("GPL");
1551