xref: /openbmc/linux/drivers/dma/fsldma.c (revision 4b1cf1fa)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA contorller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/interrupt.h>
31 #include <linux/dmaengine.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmapool.h>
35 #include <linux/of_platform.h>
36 
37 #include <asm/fsldma.h>
38 #include "fsldma.h"
39 
40 static void dma_init(struct fsldma_chan *chan)
41 {
42 	/* Reset the channel */
43 	DMA_OUT(chan, &chan->regs->mr, 0, 32);
44 
45 	switch (chan->feature & FSL_DMA_IP_MASK) {
46 	case FSL_DMA_IP_85XX:
47 		/* Set the channel to below modes:
48 		 * EIE - Error interrupt enable
49 		 * EOSIE - End of segments interrupt enable (basic mode)
50 		 * EOLNIE - End of links interrupt enable
51 		 */
52 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EIE
53 				| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
54 		break;
55 	case FSL_DMA_IP_83XX:
56 		/* Set the channel to below modes:
57 		 * EOTIE - End-of-transfer interrupt enable
58 		 * PRC_RM - PCI read multiple
59 		 */
60 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
61 				| FSL_DMA_MR_PRC_RM, 32);
62 		break;
63 	}
64 }
65 
66 static void set_sr(struct fsldma_chan *chan, u32 val)
67 {
68 	DMA_OUT(chan, &chan->regs->sr, val, 32);
69 }
70 
71 static u32 get_sr(struct fsldma_chan *chan)
72 {
73 	return DMA_IN(chan, &chan->regs->sr, 32);
74 }
75 
76 static void set_desc_cnt(struct fsldma_chan *chan,
77 				struct fsl_dma_ld_hw *hw, u32 count)
78 {
79 	hw->count = CPU_TO_DMA(chan, count, 32);
80 }
81 
82 static void set_desc_src(struct fsldma_chan *chan,
83 				struct fsl_dma_ld_hw *hw, dma_addr_t src)
84 {
85 	u64 snoop_bits;
86 
87 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
88 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
89 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
90 }
91 
92 static void set_desc_dst(struct fsldma_chan *chan,
93 				struct fsl_dma_ld_hw *hw, dma_addr_t dst)
94 {
95 	u64 snoop_bits;
96 
97 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
98 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
99 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
100 }
101 
102 static void set_desc_next(struct fsldma_chan *chan,
103 				struct fsl_dma_ld_hw *hw, dma_addr_t next)
104 {
105 	u64 snoop_bits;
106 
107 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
108 		? FSL_DMA_SNEN : 0;
109 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
110 }
111 
112 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
113 {
114 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
115 }
116 
117 static dma_addr_t get_cdar(struct fsldma_chan *chan)
118 {
119 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
120 }
121 
122 static dma_addr_t get_ndar(struct fsldma_chan *chan)
123 {
124 	return DMA_IN(chan, &chan->regs->ndar, 64);
125 }
126 
127 static u32 get_bcr(struct fsldma_chan *chan)
128 {
129 	return DMA_IN(chan, &chan->regs->bcr, 32);
130 }
131 
132 static int dma_is_idle(struct fsldma_chan *chan)
133 {
134 	u32 sr = get_sr(chan);
135 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
136 }
137 
138 static void dma_start(struct fsldma_chan *chan)
139 {
140 	u32 mode;
141 
142 	mode = DMA_IN(chan, &chan->regs->mr, 32);
143 
144 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
145 		if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
146 			DMA_OUT(chan, &chan->regs->bcr, 0, 32);
147 			mode |= FSL_DMA_MR_EMP_EN;
148 		} else {
149 			mode &= ~FSL_DMA_MR_EMP_EN;
150 		}
151 	}
152 
153 	if (chan->feature & FSL_DMA_CHAN_START_EXT)
154 		mode |= FSL_DMA_MR_EMS_EN;
155 	else
156 		mode |= FSL_DMA_MR_CS;
157 
158 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
159 }
160 
161 static void dma_halt(struct fsldma_chan *chan)
162 {
163 	u32 mode;
164 	int i;
165 
166 	mode = DMA_IN(chan, &chan->regs->mr, 32);
167 	mode |= FSL_DMA_MR_CA;
168 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
169 
170 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
171 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
172 
173 	for (i = 0; i < 100; i++) {
174 		if (dma_is_idle(chan))
175 			return;
176 
177 		udelay(10);
178 	}
179 
180 	if (!dma_is_idle(chan))
181 		dev_err(chan->dev, "DMA halt timeout!\n");
182 }
183 
184 static void set_ld_eol(struct fsldma_chan *chan,
185 			struct fsl_desc_sw *desc)
186 {
187 	u64 snoop_bits;
188 
189 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
190 		? FSL_DMA_SNEN : 0;
191 
192 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
193 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
194 			| snoop_bits, 64);
195 }
196 
197 /**
198  * fsl_chan_set_src_loop_size - Set source address hold transfer size
199  * @chan : Freescale DMA channel
200  * @size     : Address loop size, 0 for disable loop
201  *
202  * The set source address hold transfer size. The source
203  * address hold or loop transfer size is when the DMA transfer
204  * data from source address (SA), if the loop size is 4, the DMA will
205  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
206  * SA + 1 ... and so on.
207  */
208 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
209 {
210 	u32 mode;
211 
212 	mode = DMA_IN(chan, &chan->regs->mr, 32);
213 
214 	switch (size) {
215 	case 0:
216 		mode &= ~FSL_DMA_MR_SAHE;
217 		break;
218 	case 1:
219 	case 2:
220 	case 4:
221 	case 8:
222 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
223 		break;
224 	}
225 
226 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
227 }
228 
229 /**
230  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
231  * @chan : Freescale DMA channel
232  * @size     : Address loop size, 0 for disable loop
233  *
234  * The set destination address hold transfer size. The destination
235  * address hold or loop transfer size is when the DMA transfer
236  * data to destination address (TA), if the loop size is 4, the DMA will
237  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
238  * TA + 1 ... and so on.
239  */
240 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
241 {
242 	u32 mode;
243 
244 	mode = DMA_IN(chan, &chan->regs->mr, 32);
245 
246 	switch (size) {
247 	case 0:
248 		mode &= ~FSL_DMA_MR_DAHE;
249 		break;
250 	case 1:
251 	case 2:
252 	case 4:
253 	case 8:
254 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
255 		break;
256 	}
257 
258 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
259 }
260 
261 /**
262  * fsl_chan_set_request_count - Set DMA Request Count for external control
263  * @chan : Freescale DMA channel
264  * @size     : Number of bytes to transfer in a single request
265  *
266  * The Freescale DMA channel can be controlled by the external signal DREQ#.
267  * The DMA request count is how many bytes are allowed to transfer before
268  * pausing the channel, after which a new assertion of DREQ# resumes channel
269  * operation.
270  *
271  * A size of 0 disables external pause control. The maximum size is 1024.
272  */
273 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
274 {
275 	u32 mode;
276 
277 	BUG_ON(size > 1024);
278 
279 	mode = DMA_IN(chan, &chan->regs->mr, 32);
280 	mode |= (__ilog2(size) << 24) & 0x0f000000;
281 
282 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
283 }
284 
285 /**
286  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
287  * @chan : Freescale DMA channel
288  * @enable   : 0 is disabled, 1 is enabled.
289  *
290  * The Freescale DMA channel can be controlled by the external signal DREQ#.
291  * The DMA Request Count feature should be used in addition to this feature
292  * to set the number of bytes to transfer before pausing the channel.
293  */
294 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
295 {
296 	if (enable)
297 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
298 	else
299 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
300 }
301 
302 /**
303  * fsl_chan_toggle_ext_start - Toggle channel external start status
304  * @chan : Freescale DMA channel
305  * @enable   : 0 is disabled, 1 is enabled.
306  *
307  * If enable the external start, the channel can be started by an
308  * external DMA start pin. So the dma_start() does not start the
309  * transfer immediately. The DMA channel will wait for the
310  * control pin asserted.
311  */
312 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
313 {
314 	if (enable)
315 		chan->feature |= FSL_DMA_CHAN_START_EXT;
316 	else
317 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
318 }
319 
320 static void append_ld_queue(struct fsldma_chan *chan,
321 			    struct fsl_desc_sw *desc)
322 {
323 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
324 
325 	if (list_empty(&chan->ld_pending))
326 		goto out_splice;
327 
328 	/*
329 	 * Add the hardware descriptor to the chain of hardware descriptors
330 	 * that already exists in memory.
331 	 *
332 	 * This will un-set the EOL bit of the existing transaction, and the
333 	 * last link in this transaction will become the EOL descriptor.
334 	 */
335 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
336 
337 	/*
338 	 * Add the software descriptor and all children to the list
339 	 * of pending transactions
340 	 */
341 out_splice:
342 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
343 }
344 
345 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
346 {
347 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
348 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
349 	struct fsl_desc_sw *child;
350 	unsigned long flags;
351 	dma_cookie_t cookie;
352 
353 	spin_lock_irqsave(&chan->desc_lock, flags);
354 
355 	/*
356 	 * assign cookies to all of the software descriptors
357 	 * that make up this transaction
358 	 */
359 	cookie = chan->common.cookie;
360 	list_for_each_entry(child, &desc->tx_list, node) {
361 		cookie++;
362 		if (cookie < 0)
363 			cookie = 1;
364 
365 		desc->async_tx.cookie = cookie;
366 	}
367 
368 	chan->common.cookie = cookie;
369 
370 	/* put this transaction onto the tail of the pending queue */
371 	append_ld_queue(chan, desc);
372 
373 	spin_unlock_irqrestore(&chan->desc_lock, flags);
374 
375 	return cookie;
376 }
377 
378 /**
379  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
380  * @chan : Freescale DMA channel
381  *
382  * Return - The descriptor allocated. NULL for failed.
383  */
384 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
385 					struct fsldma_chan *chan)
386 {
387 	struct fsl_desc_sw *desc;
388 	dma_addr_t pdesc;
389 
390 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
391 	if (!desc) {
392 		dev_dbg(chan->dev, "out of memory for link desc\n");
393 		return NULL;
394 	}
395 
396 	memset(desc, 0, sizeof(*desc));
397 	INIT_LIST_HEAD(&desc->tx_list);
398 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
399 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
400 	desc->async_tx.phys = pdesc;
401 
402 	return desc;
403 }
404 
405 
406 /**
407  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
408  * @chan : Freescale DMA channel
409  *
410  * This function will create a dma pool for descriptor allocation.
411  *
412  * Return - The number of descriptors allocated.
413  */
414 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
415 {
416 	struct fsldma_chan *chan = to_fsl_chan(dchan);
417 
418 	/* Has this channel already been allocated? */
419 	if (chan->desc_pool)
420 		return 1;
421 
422 	/*
423 	 * We need the descriptor to be aligned to 32bytes
424 	 * for meeting FSL DMA specification requirement.
425 	 */
426 	chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
427 					  chan->dev,
428 					  sizeof(struct fsl_desc_sw),
429 					  __alignof__(struct fsl_desc_sw), 0);
430 	if (!chan->desc_pool) {
431 		dev_err(chan->dev, "unable to allocate channel %d "
432 				   "descriptor pool\n", chan->id);
433 		return -ENOMEM;
434 	}
435 
436 	/* there is at least one descriptor free to be allocated */
437 	return 1;
438 }
439 
440 /**
441  * fsldma_free_desc_list - Free all descriptors in a queue
442  * @chan: Freescae DMA channel
443  * @list: the list to free
444  *
445  * LOCKING: must hold chan->desc_lock
446  */
447 static void fsldma_free_desc_list(struct fsldma_chan *chan,
448 				  struct list_head *list)
449 {
450 	struct fsl_desc_sw *desc, *_desc;
451 
452 	list_for_each_entry_safe(desc, _desc, list, node) {
453 		list_del(&desc->node);
454 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
455 	}
456 }
457 
458 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
459 					  struct list_head *list)
460 {
461 	struct fsl_desc_sw *desc, *_desc;
462 
463 	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
464 		list_del(&desc->node);
465 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
466 	}
467 }
468 
469 /**
470  * fsl_dma_free_chan_resources - Free all resources of the channel.
471  * @chan : Freescale DMA channel
472  */
473 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
474 {
475 	struct fsldma_chan *chan = to_fsl_chan(dchan);
476 	unsigned long flags;
477 
478 	dev_dbg(chan->dev, "Free all channel resources.\n");
479 	spin_lock_irqsave(&chan->desc_lock, flags);
480 	fsldma_free_desc_list(chan, &chan->ld_pending);
481 	fsldma_free_desc_list(chan, &chan->ld_running);
482 	spin_unlock_irqrestore(&chan->desc_lock, flags);
483 
484 	dma_pool_destroy(chan->desc_pool);
485 	chan->desc_pool = NULL;
486 }
487 
488 static struct dma_async_tx_descriptor *
489 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
490 {
491 	struct fsldma_chan *chan;
492 	struct fsl_desc_sw *new;
493 
494 	if (!dchan)
495 		return NULL;
496 
497 	chan = to_fsl_chan(dchan);
498 
499 	new = fsl_dma_alloc_descriptor(chan);
500 	if (!new) {
501 		dev_err(chan->dev, "No free memory for link descriptor\n");
502 		return NULL;
503 	}
504 
505 	new->async_tx.cookie = -EBUSY;
506 	new->async_tx.flags = flags;
507 
508 	/* Insert the link descriptor to the LD ring */
509 	list_add_tail(&new->node, &new->tx_list);
510 
511 	/* Set End-of-link to the last link descriptor of new list*/
512 	set_ld_eol(chan, new);
513 
514 	return &new->async_tx;
515 }
516 
517 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
518 	struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src,
519 	size_t len, unsigned long flags)
520 {
521 	struct fsldma_chan *chan;
522 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
523 	size_t copy;
524 
525 	if (!dchan)
526 		return NULL;
527 
528 	if (!len)
529 		return NULL;
530 
531 	chan = to_fsl_chan(dchan);
532 
533 	do {
534 
535 		/* Allocate the link descriptor from DMA pool */
536 		new = fsl_dma_alloc_descriptor(chan);
537 		if (!new) {
538 			dev_err(chan->dev,
539 					"No free memory for link descriptor\n");
540 			goto fail;
541 		}
542 #ifdef FSL_DMA_LD_DEBUG
543 		dev_dbg(chan->dev, "new link desc alloc %p\n", new);
544 #endif
545 
546 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
547 
548 		set_desc_cnt(chan, &new->hw, copy);
549 		set_desc_src(chan, &new->hw, dma_src);
550 		set_desc_dst(chan, &new->hw, dma_dst);
551 
552 		if (!first)
553 			first = new;
554 		else
555 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
556 
557 		new->async_tx.cookie = 0;
558 		async_tx_ack(&new->async_tx);
559 
560 		prev = new;
561 		len -= copy;
562 		dma_src += copy;
563 		dma_dst += copy;
564 
565 		/* Insert the link descriptor to the LD ring */
566 		list_add_tail(&new->node, &first->tx_list);
567 	} while (len);
568 
569 	new->async_tx.flags = flags; /* client is in control of this ack */
570 	new->async_tx.cookie = -EBUSY;
571 
572 	/* Set End-of-link to the last link descriptor of new list*/
573 	set_ld_eol(chan, new);
574 
575 	return &first->async_tx;
576 
577 fail:
578 	if (!first)
579 		return NULL;
580 
581 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
582 	return NULL;
583 }
584 
585 /**
586  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
587  * @chan: DMA channel
588  * @sgl: scatterlist to transfer to/from
589  * @sg_len: number of entries in @scatterlist
590  * @direction: DMA direction
591  * @flags: DMAEngine flags
592  *
593  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
594  * DMA_SLAVE API, this gets the device-specific information from the
595  * chan->private variable.
596  */
597 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
598 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
599 	enum dma_data_direction direction, unsigned long flags)
600 {
601 	struct fsldma_chan *chan;
602 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
603 	struct fsl_dma_slave *slave;
604 	size_t copy;
605 
606 	int i;
607 	struct scatterlist *sg;
608 	size_t sg_used;
609 	size_t hw_used;
610 	struct fsl_dma_hw_addr *hw;
611 	dma_addr_t dma_dst, dma_src;
612 
613 	if (!dchan)
614 		return NULL;
615 
616 	if (!dchan->private)
617 		return NULL;
618 
619 	chan = to_fsl_chan(dchan);
620 	slave = dchan->private;
621 
622 	if (list_empty(&slave->addresses))
623 		return NULL;
624 
625 	hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
626 	hw_used = 0;
627 
628 	/*
629 	 * Build the hardware transaction to copy from the scatterlist to
630 	 * the hardware, or from the hardware to the scatterlist
631 	 *
632 	 * If you are copying from the hardware to the scatterlist and it
633 	 * takes two hardware entries to fill an entire page, then both
634 	 * hardware entries will be coalesced into the same page
635 	 *
636 	 * If you are copying from the scatterlist to the hardware and a
637 	 * single page can fill two hardware entries, then the data will
638 	 * be read out of the page into the first hardware entry, and so on
639 	 */
640 	for_each_sg(sgl, sg, sg_len, i) {
641 		sg_used = 0;
642 
643 		/* Loop until the entire scatterlist entry is used */
644 		while (sg_used < sg_dma_len(sg)) {
645 
646 			/*
647 			 * If we've used up the current hardware address/length
648 			 * pair, we need to load a new one
649 			 *
650 			 * This is done in a while loop so that descriptors with
651 			 * length == 0 will be skipped
652 			 */
653 			while (hw_used >= hw->length) {
654 
655 				/*
656 				 * If the current hardware entry is the last
657 				 * entry in the list, we're finished
658 				 */
659 				if (list_is_last(&hw->entry, &slave->addresses))
660 					goto finished;
661 
662 				/* Get the next hardware address/length pair */
663 				hw = list_entry(hw->entry.next,
664 						struct fsl_dma_hw_addr, entry);
665 				hw_used = 0;
666 			}
667 
668 			/* Allocate the link descriptor from DMA pool */
669 			new = fsl_dma_alloc_descriptor(chan);
670 			if (!new) {
671 				dev_err(chan->dev, "No free memory for "
672 						       "link descriptor\n");
673 				goto fail;
674 			}
675 #ifdef FSL_DMA_LD_DEBUG
676 			dev_dbg(chan->dev, "new link desc alloc %p\n", new);
677 #endif
678 
679 			/*
680 			 * Calculate the maximum number of bytes to transfer,
681 			 * making sure it is less than the DMA controller limit
682 			 */
683 			copy = min_t(size_t, sg_dma_len(sg) - sg_used,
684 					     hw->length - hw_used);
685 			copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
686 
687 			/*
688 			 * DMA_FROM_DEVICE
689 			 * from the hardware to the scatterlist
690 			 *
691 			 * DMA_TO_DEVICE
692 			 * from the scatterlist to the hardware
693 			 */
694 			if (direction == DMA_FROM_DEVICE) {
695 				dma_src = hw->address + hw_used;
696 				dma_dst = sg_dma_address(sg) + sg_used;
697 			} else {
698 				dma_src = sg_dma_address(sg) + sg_used;
699 				dma_dst = hw->address + hw_used;
700 			}
701 
702 			/* Fill in the descriptor */
703 			set_desc_cnt(chan, &new->hw, copy);
704 			set_desc_src(chan, &new->hw, dma_src);
705 			set_desc_dst(chan, &new->hw, dma_dst);
706 
707 			/*
708 			 * If this is not the first descriptor, chain the
709 			 * current descriptor after the previous descriptor
710 			 */
711 			if (!first) {
712 				first = new;
713 			} else {
714 				set_desc_next(chan, &prev->hw,
715 					      new->async_tx.phys);
716 			}
717 
718 			new->async_tx.cookie = 0;
719 			async_tx_ack(&new->async_tx);
720 
721 			prev = new;
722 			sg_used += copy;
723 			hw_used += copy;
724 
725 			/* Insert the link descriptor into the LD ring */
726 			list_add_tail(&new->node, &first->tx_list);
727 		}
728 	}
729 
730 finished:
731 
732 	/* All of the hardware address/length pairs had length == 0 */
733 	if (!first || !new)
734 		return NULL;
735 
736 	new->async_tx.flags = flags;
737 	new->async_tx.cookie = -EBUSY;
738 
739 	/* Set End-of-link to the last link descriptor of new list */
740 	set_ld_eol(chan, new);
741 
742 	/* Enable extra controller features */
743 	if (chan->set_src_loop_size)
744 		chan->set_src_loop_size(chan, slave->src_loop_size);
745 
746 	if (chan->set_dst_loop_size)
747 		chan->set_dst_loop_size(chan, slave->dst_loop_size);
748 
749 	if (chan->toggle_ext_start)
750 		chan->toggle_ext_start(chan, slave->external_start);
751 
752 	if (chan->toggle_ext_pause)
753 		chan->toggle_ext_pause(chan, slave->external_pause);
754 
755 	if (chan->set_request_count)
756 		chan->set_request_count(chan, slave->request_count);
757 
758 	return &first->async_tx;
759 
760 fail:
761 	/* If first was not set, then we failed to allocate the very first
762 	 * descriptor, and we're done */
763 	if (!first)
764 		return NULL;
765 
766 	/*
767 	 * First is set, so all of the descriptors we allocated have been added
768 	 * to first->tx_list, INCLUDING "first" itself. Therefore we
769 	 * must traverse the list backwards freeing each descriptor in turn
770 	 *
771 	 * We're re-using variables for the loop, oh well
772 	 */
773 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
774 	return NULL;
775 }
776 
777 static void fsl_dma_device_terminate_all(struct dma_chan *dchan)
778 {
779 	struct fsldma_chan *chan;
780 	unsigned long flags;
781 
782 	if (!dchan)
783 		return;
784 
785 	chan = to_fsl_chan(dchan);
786 
787 	/* Halt the DMA engine */
788 	dma_halt(chan);
789 
790 	spin_lock_irqsave(&chan->desc_lock, flags);
791 
792 	/* Remove and free all of the descriptors in the LD queue */
793 	fsldma_free_desc_list(chan, &chan->ld_pending);
794 	fsldma_free_desc_list(chan, &chan->ld_running);
795 
796 	spin_unlock_irqrestore(&chan->desc_lock, flags);
797 }
798 
799 /**
800  * fsl_dma_update_completed_cookie - Update the completed cookie.
801  * @chan : Freescale DMA channel
802  *
803  * CONTEXT: hardirq
804  */
805 static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
806 {
807 	struct fsl_desc_sw *desc;
808 	unsigned long flags;
809 	dma_cookie_t cookie;
810 
811 	spin_lock_irqsave(&chan->desc_lock, flags);
812 
813 	if (list_empty(&chan->ld_running)) {
814 		dev_dbg(chan->dev, "no running descriptors\n");
815 		goto out_unlock;
816 	}
817 
818 	/* Get the last descriptor, update the cookie to that */
819 	desc = to_fsl_desc(chan->ld_running.prev);
820 	if (dma_is_idle(chan))
821 		cookie = desc->async_tx.cookie;
822 	else
823 		cookie = desc->async_tx.cookie - 1;
824 
825 	chan->completed_cookie = cookie;
826 
827 out_unlock:
828 	spin_unlock_irqrestore(&chan->desc_lock, flags);
829 }
830 
831 /**
832  * fsldma_desc_status - Check the status of a descriptor
833  * @chan: Freescale DMA channel
834  * @desc: DMA SW descriptor
835  *
836  * This function will return the status of the given descriptor
837  */
838 static enum dma_status fsldma_desc_status(struct fsldma_chan *chan,
839 					  struct fsl_desc_sw *desc)
840 {
841 	return dma_async_is_complete(desc->async_tx.cookie,
842 				     chan->completed_cookie,
843 				     chan->common.cookie);
844 }
845 
846 /**
847  * fsl_chan_ld_cleanup - Clean up link descriptors
848  * @chan : Freescale DMA channel
849  *
850  * This function clean up the ld_queue of DMA channel.
851  */
852 static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
853 {
854 	struct fsl_desc_sw *desc, *_desc;
855 	unsigned long flags;
856 
857 	spin_lock_irqsave(&chan->desc_lock, flags);
858 
859 	dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie);
860 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
861 		dma_async_tx_callback callback;
862 		void *callback_param;
863 
864 		if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS)
865 			break;
866 
867 		/* Remove from the list of running transactions */
868 		list_del(&desc->node);
869 
870 		/* Run the link descriptor callback function */
871 		callback = desc->async_tx.callback;
872 		callback_param = desc->async_tx.callback_param;
873 		if (callback) {
874 			spin_unlock_irqrestore(&chan->desc_lock, flags);
875 			dev_dbg(chan->dev, "LD %p callback\n", desc);
876 			callback(callback_param);
877 			spin_lock_irqsave(&chan->desc_lock, flags);
878 		}
879 
880 		/* Run any dependencies, then free the descriptor */
881 		dma_run_dependencies(&desc->async_tx);
882 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
883 	}
884 
885 	spin_unlock_irqrestore(&chan->desc_lock, flags);
886 }
887 
888 /**
889  * fsl_chan_xfer_ld_queue - transfer any pending transactions
890  * @chan : Freescale DMA channel
891  *
892  * This will make sure that any pending transactions will be run.
893  * If the DMA controller is idle, it will be started. Otherwise,
894  * the DMA controller's interrupt handler will start any pending
895  * transactions when it becomes idle.
896  */
897 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
898 {
899 	struct fsl_desc_sw *desc;
900 	unsigned long flags;
901 
902 	spin_lock_irqsave(&chan->desc_lock, flags);
903 
904 	/*
905 	 * If the list of pending descriptors is empty, then we
906 	 * don't need to do any work at all
907 	 */
908 	if (list_empty(&chan->ld_pending)) {
909 		dev_dbg(chan->dev, "no pending LDs\n");
910 		goto out_unlock;
911 	}
912 
913 	/*
914 	 * The DMA controller is not idle, which means the interrupt
915 	 * handler will start any queued transactions when it runs
916 	 * at the end of the current transaction
917 	 */
918 	if (!dma_is_idle(chan)) {
919 		dev_dbg(chan->dev, "DMA controller still busy\n");
920 		goto out_unlock;
921 	}
922 
923 	/*
924 	 * TODO:
925 	 * make sure the dma_halt() function really un-wedges the
926 	 * controller as much as possible
927 	 */
928 	dma_halt(chan);
929 
930 	/*
931 	 * If there are some link descriptors which have not been
932 	 * transferred, we need to start the controller
933 	 */
934 
935 	/*
936 	 * Move all elements from the queue of pending transactions
937 	 * onto the list of running transactions
938 	 */
939 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
940 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
941 
942 	/*
943 	 * Program the descriptor's address into the DMA controller,
944 	 * then start the DMA transaction
945 	 */
946 	set_cdar(chan, desc->async_tx.phys);
947 	dma_start(chan);
948 
949 out_unlock:
950 	spin_unlock_irqrestore(&chan->desc_lock, flags);
951 }
952 
953 /**
954  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
955  * @chan : Freescale DMA channel
956  */
957 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
958 {
959 	struct fsldma_chan *chan = to_fsl_chan(dchan);
960 	fsl_chan_xfer_ld_queue(chan);
961 }
962 
963 /**
964  * fsl_dma_is_complete - Determine the DMA status
965  * @chan : Freescale DMA channel
966  */
967 static enum dma_status fsl_dma_is_complete(struct dma_chan *dchan,
968 					dma_cookie_t cookie,
969 					dma_cookie_t *done,
970 					dma_cookie_t *used)
971 {
972 	struct fsldma_chan *chan = to_fsl_chan(dchan);
973 	dma_cookie_t last_used;
974 	dma_cookie_t last_complete;
975 
976 	fsl_chan_ld_cleanup(chan);
977 
978 	last_used = dchan->cookie;
979 	last_complete = chan->completed_cookie;
980 
981 	if (done)
982 		*done = last_complete;
983 
984 	if (used)
985 		*used = last_used;
986 
987 	return dma_async_is_complete(cookie, last_complete, last_used);
988 }
989 
990 /*----------------------------------------------------------------------------*/
991 /* Interrupt Handling                                                         */
992 /*----------------------------------------------------------------------------*/
993 
994 static irqreturn_t fsldma_chan_irq(int irq, void *data)
995 {
996 	struct fsldma_chan *chan = data;
997 	int update_cookie = 0;
998 	int xfer_ld_q = 0;
999 	u32 stat;
1000 
1001 	/* save and clear the status register */
1002 	stat = get_sr(chan);
1003 	set_sr(chan, stat);
1004 	dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat);
1005 
1006 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1007 	if (!stat)
1008 		return IRQ_NONE;
1009 
1010 	if (stat & FSL_DMA_SR_TE)
1011 		dev_err(chan->dev, "Transfer Error!\n");
1012 
1013 	/*
1014 	 * Programming Error
1015 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1016 	 * triger a PE interrupt.
1017 	 */
1018 	if (stat & FSL_DMA_SR_PE) {
1019 		dev_dbg(chan->dev, "irq: Programming Error INT\n");
1020 		if (get_bcr(chan) == 0) {
1021 			/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1022 			 * Now, update the completed cookie, and continue the
1023 			 * next uncompleted transfer.
1024 			 */
1025 			update_cookie = 1;
1026 			xfer_ld_q = 1;
1027 		}
1028 		stat &= ~FSL_DMA_SR_PE;
1029 	}
1030 
1031 	/*
1032 	 * If the link descriptor segment transfer finishes,
1033 	 * we will recycle the used descriptor.
1034 	 */
1035 	if (stat & FSL_DMA_SR_EOSI) {
1036 		dev_dbg(chan->dev, "irq: End-of-segments INT\n");
1037 		dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1038 			(unsigned long long)get_cdar(chan),
1039 			(unsigned long long)get_ndar(chan));
1040 		stat &= ~FSL_DMA_SR_EOSI;
1041 		update_cookie = 1;
1042 	}
1043 
1044 	/*
1045 	 * For MPC8349, EOCDI event need to update cookie
1046 	 * and start the next transfer if it exist.
1047 	 */
1048 	if (stat & FSL_DMA_SR_EOCDI) {
1049 		dev_dbg(chan->dev, "irq: End-of-Chain link INT\n");
1050 		stat &= ~FSL_DMA_SR_EOCDI;
1051 		update_cookie = 1;
1052 		xfer_ld_q = 1;
1053 	}
1054 
1055 	/*
1056 	 * If it current transfer is the end-of-transfer,
1057 	 * we should clear the Channel Start bit for
1058 	 * prepare next transfer.
1059 	 */
1060 	if (stat & FSL_DMA_SR_EOLNI) {
1061 		dev_dbg(chan->dev, "irq: End-of-link INT\n");
1062 		stat &= ~FSL_DMA_SR_EOLNI;
1063 		xfer_ld_q = 1;
1064 	}
1065 
1066 	if (update_cookie)
1067 		fsl_dma_update_completed_cookie(chan);
1068 	if (xfer_ld_q)
1069 		fsl_chan_xfer_ld_queue(chan);
1070 	if (stat)
1071 		dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat);
1072 
1073 	dev_dbg(chan->dev, "irq: Exit\n");
1074 	tasklet_schedule(&chan->tasklet);
1075 	return IRQ_HANDLED;
1076 }
1077 
1078 static void dma_do_tasklet(unsigned long data)
1079 {
1080 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1081 	fsl_chan_ld_cleanup(chan);
1082 }
1083 
1084 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1085 {
1086 	struct fsldma_device *fdev = data;
1087 	struct fsldma_chan *chan;
1088 	unsigned int handled = 0;
1089 	u32 gsr, mask;
1090 	int i;
1091 
1092 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1093 						   : in_le32(fdev->regs);
1094 	mask = 0xff000000;
1095 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1096 
1097 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1098 		chan = fdev->chan[i];
1099 		if (!chan)
1100 			continue;
1101 
1102 		if (gsr & mask) {
1103 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1104 			fsldma_chan_irq(irq, chan);
1105 			handled++;
1106 		}
1107 
1108 		gsr &= ~mask;
1109 		mask >>= 8;
1110 	}
1111 
1112 	return IRQ_RETVAL(handled);
1113 }
1114 
1115 static void fsldma_free_irqs(struct fsldma_device *fdev)
1116 {
1117 	struct fsldma_chan *chan;
1118 	int i;
1119 
1120 	if (fdev->irq != NO_IRQ) {
1121 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1122 		free_irq(fdev->irq, fdev);
1123 		return;
1124 	}
1125 
1126 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1127 		chan = fdev->chan[i];
1128 		if (chan && chan->irq != NO_IRQ) {
1129 			dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id);
1130 			free_irq(chan->irq, chan);
1131 		}
1132 	}
1133 }
1134 
1135 static int fsldma_request_irqs(struct fsldma_device *fdev)
1136 {
1137 	struct fsldma_chan *chan;
1138 	int ret;
1139 	int i;
1140 
1141 	/* if we have a per-controller IRQ, use that */
1142 	if (fdev->irq != NO_IRQ) {
1143 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1144 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1145 				  "fsldma-controller", fdev);
1146 		return ret;
1147 	}
1148 
1149 	/* no per-controller IRQ, use the per-channel IRQs */
1150 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1151 		chan = fdev->chan[i];
1152 		if (!chan)
1153 			continue;
1154 
1155 		if (chan->irq == NO_IRQ) {
1156 			dev_err(fdev->dev, "no interrupts property defined for "
1157 					   "DMA channel %d. Please fix your "
1158 					   "device tree\n", chan->id);
1159 			ret = -ENODEV;
1160 			goto out_unwind;
1161 		}
1162 
1163 		dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id);
1164 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1165 				  "fsldma-chan", chan);
1166 		if (ret) {
1167 			dev_err(fdev->dev, "unable to request IRQ for DMA "
1168 					   "channel %d\n", chan->id);
1169 			goto out_unwind;
1170 		}
1171 	}
1172 
1173 	return 0;
1174 
1175 out_unwind:
1176 	for (/* none */; i >= 0; i--) {
1177 		chan = fdev->chan[i];
1178 		if (!chan)
1179 			continue;
1180 
1181 		if (chan->irq == NO_IRQ)
1182 			continue;
1183 
1184 		free_irq(chan->irq, chan);
1185 	}
1186 
1187 	return ret;
1188 }
1189 
1190 /*----------------------------------------------------------------------------*/
1191 /* OpenFirmware Subsystem                                                     */
1192 /*----------------------------------------------------------------------------*/
1193 
1194 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1195 	struct device_node *node, u32 feature, const char *compatible)
1196 {
1197 	struct fsldma_chan *chan;
1198 	struct resource res;
1199 	int err;
1200 
1201 	/* alloc channel */
1202 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1203 	if (!chan) {
1204 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1205 		err = -ENOMEM;
1206 		goto out_return;
1207 	}
1208 
1209 	/* ioremap registers for use */
1210 	chan->regs = of_iomap(node, 0);
1211 	if (!chan->regs) {
1212 		dev_err(fdev->dev, "unable to ioremap registers\n");
1213 		err = -ENOMEM;
1214 		goto out_free_chan;
1215 	}
1216 
1217 	err = of_address_to_resource(node, 0, &res);
1218 	if (err) {
1219 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1220 		goto out_iounmap_regs;
1221 	}
1222 
1223 	chan->feature = feature;
1224 	if (!fdev->feature)
1225 		fdev->feature = chan->feature;
1226 
1227 	/*
1228 	 * If the DMA device's feature is different than the feature
1229 	 * of its channels, report the bug
1230 	 */
1231 	WARN_ON(fdev->feature != chan->feature);
1232 
1233 	chan->dev = fdev->dev;
1234 	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1235 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1236 		dev_err(fdev->dev, "too many channels for device\n");
1237 		err = -EINVAL;
1238 		goto out_iounmap_regs;
1239 	}
1240 
1241 	fdev->chan[chan->id] = chan;
1242 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1243 
1244 	/* Initialize the channel */
1245 	dma_init(chan);
1246 
1247 	/* Clear cdar registers */
1248 	set_cdar(chan, 0);
1249 
1250 	switch (chan->feature & FSL_DMA_IP_MASK) {
1251 	case FSL_DMA_IP_85XX:
1252 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1253 	case FSL_DMA_IP_83XX:
1254 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1255 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1256 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1257 		chan->set_request_count = fsl_chan_set_request_count;
1258 	}
1259 
1260 	spin_lock_init(&chan->desc_lock);
1261 	INIT_LIST_HEAD(&chan->ld_pending);
1262 	INIT_LIST_HEAD(&chan->ld_running);
1263 
1264 	chan->common.device = &fdev->common;
1265 
1266 	/* find the IRQ line, if it exists in the device tree */
1267 	chan->irq = irq_of_parse_and_map(node, 0);
1268 
1269 	/* Add the channel to DMA device channel list */
1270 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1271 	fdev->common.chancnt++;
1272 
1273 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1274 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1275 
1276 	return 0;
1277 
1278 out_iounmap_regs:
1279 	iounmap(chan->regs);
1280 out_free_chan:
1281 	kfree(chan);
1282 out_return:
1283 	return err;
1284 }
1285 
1286 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1287 {
1288 	irq_dispose_mapping(chan->irq);
1289 	list_del(&chan->common.device_node);
1290 	iounmap(chan->regs);
1291 	kfree(chan);
1292 }
1293 
1294 static int __devinit fsldma_of_probe(struct of_device *op,
1295 			const struct of_device_id *match)
1296 {
1297 	struct fsldma_device *fdev;
1298 	struct device_node *child;
1299 	int err;
1300 
1301 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1302 	if (!fdev) {
1303 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1304 		err = -ENOMEM;
1305 		goto out_return;
1306 	}
1307 
1308 	fdev->dev = &op->dev;
1309 	INIT_LIST_HEAD(&fdev->common.channels);
1310 
1311 	/* ioremap the registers for use */
1312 	fdev->regs = of_iomap(op->node, 0);
1313 	if (!fdev->regs) {
1314 		dev_err(&op->dev, "unable to ioremap registers\n");
1315 		err = -ENOMEM;
1316 		goto out_free_fdev;
1317 	}
1318 
1319 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1320 	fdev->irq = irq_of_parse_and_map(op->node, 0);
1321 
1322 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1323 	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1324 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1325 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1326 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1327 	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1328 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1329 	fdev->common.device_is_tx_complete = fsl_dma_is_complete;
1330 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1331 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1332 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1333 	fdev->common.dev = &op->dev;
1334 
1335 	dev_set_drvdata(&op->dev, fdev);
1336 
1337 	/*
1338 	 * We cannot use of_platform_bus_probe() because there is no
1339 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1340 	 * channel object.
1341 	 */
1342 	for_each_child_of_node(op->node, child) {
1343 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1344 			fsl_dma_chan_probe(fdev, child,
1345 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1346 				"fsl,eloplus-dma-channel");
1347 		}
1348 
1349 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1350 			fsl_dma_chan_probe(fdev, child,
1351 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1352 				"fsl,elo-dma-channel");
1353 		}
1354 	}
1355 
1356 	/*
1357 	 * Hookup the IRQ handler(s)
1358 	 *
1359 	 * If we have a per-controller interrupt, we prefer that to the
1360 	 * per-channel interrupts to reduce the number of shared interrupt
1361 	 * handlers on the same IRQ line
1362 	 */
1363 	err = fsldma_request_irqs(fdev);
1364 	if (err) {
1365 		dev_err(fdev->dev, "unable to request IRQs\n");
1366 		goto out_free_fdev;
1367 	}
1368 
1369 	dma_async_device_register(&fdev->common);
1370 	return 0;
1371 
1372 out_free_fdev:
1373 	irq_dispose_mapping(fdev->irq);
1374 	kfree(fdev);
1375 out_return:
1376 	return err;
1377 }
1378 
1379 static int fsldma_of_remove(struct of_device *op)
1380 {
1381 	struct fsldma_device *fdev;
1382 	unsigned int i;
1383 
1384 	fdev = dev_get_drvdata(&op->dev);
1385 	dma_async_device_unregister(&fdev->common);
1386 
1387 	fsldma_free_irqs(fdev);
1388 
1389 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1390 		if (fdev->chan[i])
1391 			fsl_dma_chan_remove(fdev->chan[i]);
1392 	}
1393 
1394 	iounmap(fdev->regs);
1395 	dev_set_drvdata(&op->dev, NULL);
1396 	kfree(fdev);
1397 
1398 	return 0;
1399 }
1400 
1401 static const struct of_device_id fsldma_of_ids[] = {
1402 	{ .compatible = "fsl,eloplus-dma", },
1403 	{ .compatible = "fsl,elo-dma", },
1404 	{}
1405 };
1406 
1407 static struct of_platform_driver fsldma_of_driver = {
1408 	.name		= "fsl-elo-dma",
1409 	.match_table	= fsldma_of_ids,
1410 	.probe		= fsldma_of_probe,
1411 	.remove		= fsldma_of_remove,
1412 };
1413 
1414 /*----------------------------------------------------------------------------*/
1415 /* Module Init / Exit                                                         */
1416 /*----------------------------------------------------------------------------*/
1417 
1418 static __init int fsldma_init(void)
1419 {
1420 	int ret;
1421 
1422 	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1423 
1424 	ret = of_register_platform_driver(&fsldma_of_driver);
1425 	if (ret)
1426 		pr_err("fsldma: failed to register platform driver\n");
1427 
1428 	return ret;
1429 }
1430 
1431 static void __exit fsldma_exit(void)
1432 {
1433 	of_unregister_platform_driver(&fsldma_of_driver);
1434 }
1435 
1436 subsys_initcall(fsldma_init);
1437 module_exit(fsldma_exit);
1438 
1439 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1440 MODULE_LICENSE("GPL");
1441