xref: /openbmc/linux/drivers/dma/fsldma.c (revision 2a598d0b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale MPC85xx, MPC83xx DMA Engine support
4  *
5  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
6  *
7  * Author:
8  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
9  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10  *
11  * Description:
12  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
13  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
14  *   The support for MPC8349 DMA controller is also added.
15  *
16  * This driver instructs the DMA controller to issue the PCI Read Multiple
17  * command for PCI read operations, instead of using the default PCI Read Line
18  * command. Please be aware that this setting may result in read pre-fetching
19  * on some platforms.
20  */
21 
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/dmaengine.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/fsldma.h>
35 #include "dmaengine.h"
36 #include "fsldma.h"
37 
38 #define chan_dbg(chan, fmt, arg...)					\
39 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
40 #define chan_err(chan, fmt, arg...)					\
41 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
42 
43 static const char msg_ld_oom[] = "No free memory for link descriptor";
44 
45 /*
46  * Register Helpers
47  */
48 
49 static void set_sr(struct fsldma_chan *chan, u32 val)
50 {
51 	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
52 }
53 
54 static u32 get_sr(struct fsldma_chan *chan)
55 {
56 	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
57 }
58 
59 static void set_mr(struct fsldma_chan *chan, u32 val)
60 {
61 	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
62 }
63 
64 static u32 get_mr(struct fsldma_chan *chan)
65 {
66 	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
67 }
68 
69 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
70 {
71 	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
72 }
73 
74 static dma_addr_t get_cdar(struct fsldma_chan *chan)
75 {
76 	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
77 }
78 
79 static void set_bcr(struct fsldma_chan *chan, u32 val)
80 {
81 	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
82 }
83 
84 static u32 get_bcr(struct fsldma_chan *chan)
85 {
86 	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
87 }
88 
89 /*
90  * Descriptor Helpers
91  */
92 
93 static void set_desc_cnt(struct fsldma_chan *chan,
94 				struct fsl_dma_ld_hw *hw, u32 count)
95 {
96 	hw->count = CPU_TO_DMA(chan, count, 32);
97 }
98 
99 static void set_desc_src(struct fsldma_chan *chan,
100 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
101 {
102 	u64 snoop_bits;
103 
104 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
105 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
106 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
107 }
108 
109 static void set_desc_dst(struct fsldma_chan *chan,
110 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
111 {
112 	u64 snoop_bits;
113 
114 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
115 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
116 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
117 }
118 
119 static void set_desc_next(struct fsldma_chan *chan,
120 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
121 {
122 	u64 snoop_bits;
123 
124 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
125 		? FSL_DMA_SNEN : 0;
126 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
127 }
128 
129 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
130 {
131 	u64 snoop_bits;
132 
133 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
134 		? FSL_DMA_SNEN : 0;
135 
136 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
137 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
138 			| snoop_bits, 64);
139 }
140 
141 /*
142  * DMA Engine Hardware Control Helpers
143  */
144 
145 static void dma_init(struct fsldma_chan *chan)
146 {
147 	/* Reset the channel */
148 	set_mr(chan, 0);
149 
150 	switch (chan->feature & FSL_DMA_IP_MASK) {
151 	case FSL_DMA_IP_85XX:
152 		/* Set the channel to below modes:
153 		 * EIE - Error interrupt enable
154 		 * EOLNIE - End of links interrupt enable
155 		 * BWC - Bandwidth sharing among channels
156 		 */
157 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
158 			| FSL_DMA_MR_EOLNIE);
159 		break;
160 	case FSL_DMA_IP_83XX:
161 		/* Set the channel to below modes:
162 		 * EOTIE - End-of-transfer interrupt enable
163 		 * PRC_RM - PCI read multiple
164 		 */
165 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
166 		break;
167 	}
168 }
169 
170 static int dma_is_idle(struct fsldma_chan *chan)
171 {
172 	u32 sr = get_sr(chan);
173 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
174 }
175 
176 /*
177  * Start the DMA controller
178  *
179  * Preconditions:
180  * - the CDAR register must point to the start descriptor
181  * - the MRn[CS] bit must be cleared
182  */
183 static void dma_start(struct fsldma_chan *chan)
184 {
185 	u32 mode;
186 
187 	mode = get_mr(chan);
188 
189 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
190 		set_bcr(chan, 0);
191 		mode |= FSL_DMA_MR_EMP_EN;
192 	} else {
193 		mode &= ~FSL_DMA_MR_EMP_EN;
194 	}
195 
196 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
197 		mode |= FSL_DMA_MR_EMS_EN;
198 	} else {
199 		mode &= ~FSL_DMA_MR_EMS_EN;
200 		mode |= FSL_DMA_MR_CS;
201 	}
202 
203 	set_mr(chan, mode);
204 }
205 
206 static void dma_halt(struct fsldma_chan *chan)
207 {
208 	u32 mode;
209 	int i;
210 
211 	/* read the mode register */
212 	mode = get_mr(chan);
213 
214 	/*
215 	 * The 85xx controller supports channel abort, which will stop
216 	 * the current transfer. On 83xx, this bit is the transfer error
217 	 * mask bit, which should not be changed.
218 	 */
219 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
220 		mode |= FSL_DMA_MR_CA;
221 		set_mr(chan, mode);
222 
223 		mode &= ~FSL_DMA_MR_CA;
224 	}
225 
226 	/* stop the DMA controller */
227 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
228 	set_mr(chan, mode);
229 
230 	/* wait for the DMA controller to become idle */
231 	for (i = 0; i < 100; i++) {
232 		if (dma_is_idle(chan))
233 			return;
234 
235 		udelay(10);
236 	}
237 
238 	if (!dma_is_idle(chan))
239 		chan_err(chan, "DMA halt timeout!\n");
240 }
241 
242 /**
243  * fsl_chan_set_src_loop_size - Set source address hold transfer size
244  * @chan : Freescale DMA channel
245  * @size     : Address loop size, 0 for disable loop
246  *
247  * The set source address hold transfer size. The source
248  * address hold or loop transfer size is when the DMA transfer
249  * data from source address (SA), if the loop size is 4, the DMA will
250  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
251  * SA + 1 ... and so on.
252  */
253 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
254 {
255 	u32 mode;
256 
257 	mode = get_mr(chan);
258 
259 	switch (size) {
260 	case 0:
261 		mode &= ~FSL_DMA_MR_SAHE;
262 		break;
263 	case 1:
264 	case 2:
265 	case 4:
266 	case 8:
267 		mode &= ~FSL_DMA_MR_SAHTS_MASK;
268 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
269 		break;
270 	}
271 
272 	set_mr(chan, mode);
273 }
274 
275 /**
276  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
277  * @chan : Freescale DMA channel
278  * @size     : Address loop size, 0 for disable loop
279  *
280  * The set destination address hold transfer size. The destination
281  * address hold or loop transfer size is when the DMA transfer
282  * data to destination address (TA), if the loop size is 4, the DMA will
283  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
284  * TA + 1 ... and so on.
285  */
286 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
287 {
288 	u32 mode;
289 
290 	mode = get_mr(chan);
291 
292 	switch (size) {
293 	case 0:
294 		mode &= ~FSL_DMA_MR_DAHE;
295 		break;
296 	case 1:
297 	case 2:
298 	case 4:
299 	case 8:
300 		mode &= ~FSL_DMA_MR_DAHTS_MASK;
301 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
302 		break;
303 	}
304 
305 	set_mr(chan, mode);
306 }
307 
308 /**
309  * fsl_chan_set_request_count - Set DMA Request Count for external control
310  * @chan : Freescale DMA channel
311  * @size     : Number of bytes to transfer in a single request
312  *
313  * The Freescale DMA channel can be controlled by the external signal DREQ#.
314  * The DMA request count is how many bytes are allowed to transfer before
315  * pausing the channel, after which a new assertion of DREQ# resumes channel
316  * operation.
317  *
318  * A size of 0 disables external pause control. The maximum size is 1024.
319  */
320 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
321 {
322 	u32 mode;
323 
324 	BUG_ON(size > 1024);
325 
326 	mode = get_mr(chan);
327 	mode &= ~FSL_DMA_MR_BWC_MASK;
328 	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
329 
330 	set_mr(chan, mode);
331 }
332 
333 /**
334  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
335  * @chan : Freescale DMA channel
336  * @enable   : 0 is disabled, 1 is enabled.
337  *
338  * The Freescale DMA channel can be controlled by the external signal DREQ#.
339  * The DMA Request Count feature should be used in addition to this feature
340  * to set the number of bytes to transfer before pausing the channel.
341  */
342 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
343 {
344 	if (enable)
345 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
346 	else
347 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
348 }
349 
350 /**
351  * fsl_chan_toggle_ext_start - Toggle channel external start status
352  * @chan : Freescale DMA channel
353  * @enable   : 0 is disabled, 1 is enabled.
354  *
355  * If enable the external start, the channel can be started by an
356  * external DMA start pin. So the dma_start() does not start the
357  * transfer immediately. The DMA channel will wait for the
358  * control pin asserted.
359  */
360 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
361 {
362 	if (enable)
363 		chan->feature |= FSL_DMA_CHAN_START_EXT;
364 	else
365 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
366 }
367 
368 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
369 {
370 	struct fsldma_chan *chan;
371 
372 	if (!dchan)
373 		return -EINVAL;
374 
375 	chan = to_fsl_chan(dchan);
376 
377 	fsl_chan_toggle_ext_start(chan, enable);
378 	return 0;
379 }
380 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
381 
382 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
383 {
384 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
385 
386 	if (list_empty(&chan->ld_pending))
387 		goto out_splice;
388 
389 	/*
390 	 * Add the hardware descriptor to the chain of hardware descriptors
391 	 * that already exists in memory.
392 	 *
393 	 * This will un-set the EOL bit of the existing transaction, and the
394 	 * last link in this transaction will become the EOL descriptor.
395 	 */
396 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
397 
398 	/*
399 	 * Add the software descriptor and all children to the list
400 	 * of pending transactions
401 	 */
402 out_splice:
403 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
404 }
405 
406 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
407 {
408 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
409 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
410 	struct fsl_desc_sw *child;
411 	dma_cookie_t cookie = -EINVAL;
412 
413 	spin_lock_bh(&chan->desc_lock);
414 
415 #ifdef CONFIG_PM
416 	if (unlikely(chan->pm_state != RUNNING)) {
417 		chan_dbg(chan, "cannot submit due to suspend\n");
418 		spin_unlock_bh(&chan->desc_lock);
419 		return -1;
420 	}
421 #endif
422 
423 	/*
424 	 * assign cookies to all of the software descriptors
425 	 * that make up this transaction
426 	 */
427 	list_for_each_entry(child, &desc->tx_list, node) {
428 		cookie = dma_cookie_assign(&child->async_tx);
429 	}
430 
431 	/* put this transaction onto the tail of the pending queue */
432 	append_ld_queue(chan, desc);
433 
434 	spin_unlock_bh(&chan->desc_lock);
435 
436 	return cookie;
437 }
438 
439 /**
440  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
441  * @chan : Freescale DMA channel
442  * @desc: descriptor to be freed
443  */
444 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
445 		struct fsl_desc_sw *desc)
446 {
447 	list_del(&desc->node);
448 	chan_dbg(chan, "LD %p free\n", desc);
449 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
450 }
451 
452 /**
453  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
454  * @chan : Freescale DMA channel
455  *
456  * Return - The descriptor allocated. NULL for failed.
457  */
458 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
459 {
460 	struct fsl_desc_sw *desc;
461 	dma_addr_t pdesc;
462 
463 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
464 	if (!desc) {
465 		chan_dbg(chan, "out of memory for link descriptor\n");
466 		return NULL;
467 	}
468 
469 	INIT_LIST_HEAD(&desc->tx_list);
470 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
471 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
472 	desc->async_tx.phys = pdesc;
473 
474 	chan_dbg(chan, "LD %p allocated\n", desc);
475 
476 	return desc;
477 }
478 
479 /**
480  * fsldma_clean_completed_descriptor - free all descriptors which
481  * has been completed and acked
482  * @chan: Freescale DMA channel
483  *
484  * This function is used on all completed and acked descriptors.
485  * All descriptors should only be freed in this function.
486  */
487 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
488 {
489 	struct fsl_desc_sw *desc, *_desc;
490 
491 	/* Run the callback for each descriptor, in order */
492 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
493 		if (async_tx_test_ack(&desc->async_tx))
494 			fsl_dma_free_descriptor(chan, desc);
495 }
496 
497 /**
498  * fsldma_run_tx_complete_actions - cleanup a single link descriptor
499  * @chan: Freescale DMA channel
500  * @desc: descriptor to cleanup and free
501  * @cookie: Freescale DMA transaction identifier
502  *
503  * This function is used on a descriptor which has been executed by the DMA
504  * controller. It will run any callbacks, submit any dependencies.
505  */
506 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
507 		struct fsl_desc_sw *desc, dma_cookie_t cookie)
508 {
509 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
510 	dma_cookie_t ret = cookie;
511 
512 	BUG_ON(txd->cookie < 0);
513 
514 	if (txd->cookie > 0) {
515 		ret = txd->cookie;
516 
517 		dma_descriptor_unmap(txd);
518 		/* Run the link descriptor callback function */
519 		dmaengine_desc_get_callback_invoke(txd, NULL);
520 	}
521 
522 	/* Run any dependencies */
523 	dma_run_dependencies(txd);
524 
525 	return ret;
526 }
527 
528 /**
529  * fsldma_clean_running_descriptor - move the completed descriptor from
530  * ld_running to ld_completed
531  * @chan: Freescale DMA channel
532  * @desc: the descriptor which is completed
533  *
534  * Free the descriptor directly if acked by async_tx api, or move it to
535  * queue ld_completed.
536  */
537 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
538 		struct fsl_desc_sw *desc)
539 {
540 	/* Remove from the list of transactions */
541 	list_del(&desc->node);
542 
543 	/*
544 	 * the client is allowed to attach dependent operations
545 	 * until 'ack' is set
546 	 */
547 	if (!async_tx_test_ack(&desc->async_tx)) {
548 		/*
549 		 * Move this descriptor to the list of descriptors which is
550 		 * completed, but still awaiting the 'ack' bit to be set.
551 		 */
552 		list_add_tail(&desc->node, &chan->ld_completed);
553 		return;
554 	}
555 
556 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
557 }
558 
559 /**
560  * fsl_chan_xfer_ld_queue - transfer any pending transactions
561  * @chan : Freescale DMA channel
562  *
563  * HARDWARE STATE: idle
564  * LOCKING: must hold chan->desc_lock
565  */
566 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
567 {
568 	struct fsl_desc_sw *desc;
569 
570 	/*
571 	 * If the list of pending descriptors is empty, then we
572 	 * don't need to do any work at all
573 	 */
574 	if (list_empty(&chan->ld_pending)) {
575 		chan_dbg(chan, "no pending LDs\n");
576 		return;
577 	}
578 
579 	/*
580 	 * The DMA controller is not idle, which means that the interrupt
581 	 * handler will start any queued transactions when it runs after
582 	 * this transaction finishes
583 	 */
584 	if (!chan->idle) {
585 		chan_dbg(chan, "DMA controller still busy\n");
586 		return;
587 	}
588 
589 	/*
590 	 * If there are some link descriptors which have not been
591 	 * transferred, we need to start the controller
592 	 */
593 
594 	/*
595 	 * Move all elements from the queue of pending transactions
596 	 * onto the list of running transactions
597 	 */
598 	chan_dbg(chan, "idle, starting controller\n");
599 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
600 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
601 
602 	/*
603 	 * The 85xx DMA controller doesn't clear the channel start bit
604 	 * automatically at the end of a transfer. Therefore we must clear
605 	 * it in software before starting the transfer.
606 	 */
607 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
608 		u32 mode;
609 
610 		mode = get_mr(chan);
611 		mode &= ~FSL_DMA_MR_CS;
612 		set_mr(chan, mode);
613 	}
614 
615 	/*
616 	 * Program the descriptor's address into the DMA controller,
617 	 * then start the DMA transaction
618 	 */
619 	set_cdar(chan, desc->async_tx.phys);
620 	get_cdar(chan);
621 
622 	dma_start(chan);
623 	chan->idle = false;
624 }
625 
626 /**
627  * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
628  * and move them to ld_completed to free until flag 'ack' is set
629  * @chan: Freescale DMA channel
630  *
631  * This function is used on descriptors which have been executed by the DMA
632  * controller. It will run any callbacks, submit any dependencies, then
633  * free these descriptors if flag 'ack' is set.
634  */
635 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
636 {
637 	struct fsl_desc_sw *desc, *_desc;
638 	dma_cookie_t cookie = 0;
639 	dma_addr_t curr_phys = get_cdar(chan);
640 	int seen_current = 0;
641 
642 	fsldma_clean_completed_descriptor(chan);
643 
644 	/* Run the callback for each descriptor, in order */
645 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
646 		/*
647 		 * do not advance past the current descriptor loaded into the
648 		 * hardware channel, subsequent descriptors are either in
649 		 * process or have not been submitted
650 		 */
651 		if (seen_current)
652 			break;
653 
654 		/*
655 		 * stop the search if we reach the current descriptor and the
656 		 * channel is busy
657 		 */
658 		if (desc->async_tx.phys == curr_phys) {
659 			seen_current = 1;
660 			if (!dma_is_idle(chan))
661 				break;
662 		}
663 
664 		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
665 
666 		fsldma_clean_running_descriptor(chan, desc);
667 	}
668 
669 	/*
670 	 * Start any pending transactions automatically
671 	 *
672 	 * In the ideal case, we keep the DMA controller busy while we go
673 	 * ahead and free the descriptors below.
674 	 */
675 	fsl_chan_xfer_ld_queue(chan);
676 
677 	if (cookie > 0)
678 		chan->common.completed_cookie = cookie;
679 }
680 
681 /**
682  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
683  * @chan : Freescale DMA channel
684  *
685  * This function will create a dma pool for descriptor allocation.
686  *
687  * Return - The number of descriptors allocated.
688  */
689 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
690 {
691 	struct fsldma_chan *chan = to_fsl_chan(dchan);
692 
693 	/* Has this channel already been allocated? */
694 	if (chan->desc_pool)
695 		return 1;
696 
697 	/*
698 	 * We need the descriptor to be aligned to 32bytes
699 	 * for meeting FSL DMA specification requirement.
700 	 */
701 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
702 					  sizeof(struct fsl_desc_sw),
703 					  __alignof__(struct fsl_desc_sw), 0);
704 	if (!chan->desc_pool) {
705 		chan_err(chan, "unable to allocate descriptor pool\n");
706 		return -ENOMEM;
707 	}
708 
709 	/* there is at least one descriptor free to be allocated */
710 	return 1;
711 }
712 
713 /**
714  * fsldma_free_desc_list - Free all descriptors in a queue
715  * @chan: Freescae DMA channel
716  * @list: the list to free
717  *
718  * LOCKING: must hold chan->desc_lock
719  */
720 static void fsldma_free_desc_list(struct fsldma_chan *chan,
721 				  struct list_head *list)
722 {
723 	struct fsl_desc_sw *desc, *_desc;
724 
725 	list_for_each_entry_safe(desc, _desc, list, node)
726 		fsl_dma_free_descriptor(chan, desc);
727 }
728 
729 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
730 					  struct list_head *list)
731 {
732 	struct fsl_desc_sw *desc, *_desc;
733 
734 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
735 		fsl_dma_free_descriptor(chan, desc);
736 }
737 
738 /**
739  * fsl_dma_free_chan_resources - Free all resources of the channel.
740  * @chan : Freescale DMA channel
741  */
742 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
743 {
744 	struct fsldma_chan *chan = to_fsl_chan(dchan);
745 
746 	chan_dbg(chan, "free all channel resources\n");
747 	spin_lock_bh(&chan->desc_lock);
748 	fsldma_cleanup_descriptors(chan);
749 	fsldma_free_desc_list(chan, &chan->ld_pending);
750 	fsldma_free_desc_list(chan, &chan->ld_running);
751 	fsldma_free_desc_list(chan, &chan->ld_completed);
752 	spin_unlock_bh(&chan->desc_lock);
753 
754 	dma_pool_destroy(chan->desc_pool);
755 	chan->desc_pool = NULL;
756 }
757 
758 static struct dma_async_tx_descriptor *
759 fsl_dma_prep_memcpy(struct dma_chan *dchan,
760 	dma_addr_t dma_dst, dma_addr_t dma_src,
761 	size_t len, unsigned long flags)
762 {
763 	struct fsldma_chan *chan;
764 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
765 	size_t copy;
766 
767 	if (!dchan)
768 		return NULL;
769 
770 	if (!len)
771 		return NULL;
772 
773 	chan = to_fsl_chan(dchan);
774 
775 	do {
776 
777 		/* Allocate the link descriptor from DMA pool */
778 		new = fsl_dma_alloc_descriptor(chan);
779 		if (!new) {
780 			chan_err(chan, "%s\n", msg_ld_oom);
781 			goto fail;
782 		}
783 
784 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
785 
786 		set_desc_cnt(chan, &new->hw, copy);
787 		set_desc_src(chan, &new->hw, dma_src);
788 		set_desc_dst(chan, &new->hw, dma_dst);
789 
790 		if (!first)
791 			first = new;
792 		else
793 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
794 
795 		new->async_tx.cookie = 0;
796 		async_tx_ack(&new->async_tx);
797 
798 		prev = new;
799 		len -= copy;
800 		dma_src += copy;
801 		dma_dst += copy;
802 
803 		/* Insert the link descriptor to the LD ring */
804 		list_add_tail(&new->node, &first->tx_list);
805 	} while (len);
806 
807 	new->async_tx.flags = flags; /* client is in control of this ack */
808 	new->async_tx.cookie = -EBUSY;
809 
810 	/* Set End-of-link to the last link descriptor of new list */
811 	set_ld_eol(chan, new);
812 
813 	return &first->async_tx;
814 
815 fail:
816 	if (!first)
817 		return NULL;
818 
819 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
820 	return NULL;
821 }
822 
823 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
824 {
825 	struct fsldma_chan *chan;
826 
827 	if (!dchan)
828 		return -EINVAL;
829 
830 	chan = to_fsl_chan(dchan);
831 
832 	spin_lock_bh(&chan->desc_lock);
833 
834 	/* Halt the DMA engine */
835 	dma_halt(chan);
836 
837 	/* Remove and free all of the descriptors in the LD queue */
838 	fsldma_free_desc_list(chan, &chan->ld_pending);
839 	fsldma_free_desc_list(chan, &chan->ld_running);
840 	fsldma_free_desc_list(chan, &chan->ld_completed);
841 	chan->idle = true;
842 
843 	spin_unlock_bh(&chan->desc_lock);
844 	return 0;
845 }
846 
847 static int fsl_dma_device_config(struct dma_chan *dchan,
848 				 struct dma_slave_config *config)
849 {
850 	struct fsldma_chan *chan;
851 	int size;
852 
853 	if (!dchan)
854 		return -EINVAL;
855 
856 	chan = to_fsl_chan(dchan);
857 
858 	/* make sure the channel supports setting burst size */
859 	if (!chan->set_request_count)
860 		return -ENXIO;
861 
862 	/* we set the controller burst size depending on direction */
863 	if (config->direction == DMA_MEM_TO_DEV)
864 		size = config->dst_addr_width * config->dst_maxburst;
865 	else
866 		size = config->src_addr_width * config->src_maxburst;
867 
868 	chan->set_request_count(chan, size);
869 	return 0;
870 }
871 
872 
873 /**
874  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
875  * @chan : Freescale DMA channel
876  */
877 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
878 {
879 	struct fsldma_chan *chan = to_fsl_chan(dchan);
880 
881 	spin_lock_bh(&chan->desc_lock);
882 	fsl_chan_xfer_ld_queue(chan);
883 	spin_unlock_bh(&chan->desc_lock);
884 }
885 
886 /**
887  * fsl_tx_status - Determine the DMA status
888  * @chan : Freescale DMA channel
889  */
890 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
891 					dma_cookie_t cookie,
892 					struct dma_tx_state *txstate)
893 {
894 	struct fsldma_chan *chan = to_fsl_chan(dchan);
895 	enum dma_status ret;
896 
897 	ret = dma_cookie_status(dchan, cookie, txstate);
898 	if (ret == DMA_COMPLETE)
899 		return ret;
900 
901 	spin_lock_bh(&chan->desc_lock);
902 	fsldma_cleanup_descriptors(chan);
903 	spin_unlock_bh(&chan->desc_lock);
904 
905 	return dma_cookie_status(dchan, cookie, txstate);
906 }
907 
908 /*----------------------------------------------------------------------------*/
909 /* Interrupt Handling                                                         */
910 /*----------------------------------------------------------------------------*/
911 
912 static irqreturn_t fsldma_chan_irq(int irq, void *data)
913 {
914 	struct fsldma_chan *chan = data;
915 	u32 stat;
916 
917 	/* save and clear the status register */
918 	stat = get_sr(chan);
919 	set_sr(chan, stat);
920 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
921 
922 	/* check that this was really our device */
923 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
924 	if (!stat)
925 		return IRQ_NONE;
926 
927 	if (stat & FSL_DMA_SR_TE)
928 		chan_err(chan, "Transfer Error!\n");
929 
930 	/*
931 	 * Programming Error
932 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
933 	 * trigger a PE interrupt.
934 	 */
935 	if (stat & FSL_DMA_SR_PE) {
936 		chan_dbg(chan, "irq: Programming Error INT\n");
937 		stat &= ~FSL_DMA_SR_PE;
938 		if (get_bcr(chan) != 0)
939 			chan_err(chan, "Programming Error!\n");
940 	}
941 
942 	/*
943 	 * For MPC8349, EOCDI event need to update cookie
944 	 * and start the next transfer if it exist.
945 	 */
946 	if (stat & FSL_DMA_SR_EOCDI) {
947 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
948 		stat &= ~FSL_DMA_SR_EOCDI;
949 	}
950 
951 	/*
952 	 * If it current transfer is the end-of-transfer,
953 	 * we should clear the Channel Start bit for
954 	 * prepare next transfer.
955 	 */
956 	if (stat & FSL_DMA_SR_EOLNI) {
957 		chan_dbg(chan, "irq: End-of-link INT\n");
958 		stat &= ~FSL_DMA_SR_EOLNI;
959 	}
960 
961 	/* check that the DMA controller is really idle */
962 	if (!dma_is_idle(chan))
963 		chan_err(chan, "irq: controller not idle!\n");
964 
965 	/* check that we handled all of the bits */
966 	if (stat)
967 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
968 
969 	/*
970 	 * Schedule the tasklet to handle all cleanup of the current
971 	 * transaction. It will start a new transaction if there is
972 	 * one pending.
973 	 */
974 	tasklet_schedule(&chan->tasklet);
975 	chan_dbg(chan, "irq: Exit\n");
976 	return IRQ_HANDLED;
977 }
978 
979 static void dma_do_tasklet(struct tasklet_struct *t)
980 {
981 	struct fsldma_chan *chan = from_tasklet(chan, t, tasklet);
982 
983 	chan_dbg(chan, "tasklet entry\n");
984 
985 	spin_lock(&chan->desc_lock);
986 
987 	/* the hardware is now idle and ready for more */
988 	chan->idle = true;
989 
990 	/* Run all cleanup for descriptors which have been completed */
991 	fsldma_cleanup_descriptors(chan);
992 
993 	spin_unlock(&chan->desc_lock);
994 
995 	chan_dbg(chan, "tasklet exit\n");
996 }
997 
998 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
999 {
1000 	struct fsldma_device *fdev = data;
1001 	struct fsldma_chan *chan;
1002 	unsigned int handled = 0;
1003 	u32 gsr, mask;
1004 	int i;
1005 
1006 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1007 						   : in_le32(fdev->regs);
1008 	mask = 0xff000000;
1009 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1010 
1011 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1012 		chan = fdev->chan[i];
1013 		if (!chan)
1014 			continue;
1015 
1016 		if (gsr & mask) {
1017 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1018 			fsldma_chan_irq(irq, chan);
1019 			handled++;
1020 		}
1021 
1022 		gsr &= ~mask;
1023 		mask >>= 8;
1024 	}
1025 
1026 	return IRQ_RETVAL(handled);
1027 }
1028 
1029 static void fsldma_free_irqs(struct fsldma_device *fdev)
1030 {
1031 	struct fsldma_chan *chan;
1032 	int i;
1033 
1034 	if (fdev->irq) {
1035 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1036 		free_irq(fdev->irq, fdev);
1037 		return;
1038 	}
1039 
1040 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1041 		chan = fdev->chan[i];
1042 		if (chan && chan->irq) {
1043 			chan_dbg(chan, "free per-channel IRQ\n");
1044 			free_irq(chan->irq, chan);
1045 		}
1046 	}
1047 }
1048 
1049 static int fsldma_request_irqs(struct fsldma_device *fdev)
1050 {
1051 	struct fsldma_chan *chan;
1052 	int ret;
1053 	int i;
1054 
1055 	/* if we have a per-controller IRQ, use that */
1056 	if (fdev->irq) {
1057 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1058 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1059 				  "fsldma-controller", fdev);
1060 		return ret;
1061 	}
1062 
1063 	/* no per-controller IRQ, use the per-channel IRQs */
1064 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1065 		chan = fdev->chan[i];
1066 		if (!chan)
1067 			continue;
1068 
1069 		if (!chan->irq) {
1070 			chan_err(chan, "interrupts property missing in device tree\n");
1071 			ret = -ENODEV;
1072 			goto out_unwind;
1073 		}
1074 
1075 		chan_dbg(chan, "request per-channel IRQ\n");
1076 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1077 				  "fsldma-chan", chan);
1078 		if (ret) {
1079 			chan_err(chan, "unable to request per-channel IRQ\n");
1080 			goto out_unwind;
1081 		}
1082 	}
1083 
1084 	return 0;
1085 
1086 out_unwind:
1087 	for (/* none */; i >= 0; i--) {
1088 		chan = fdev->chan[i];
1089 		if (!chan)
1090 			continue;
1091 
1092 		if (!chan->irq)
1093 			continue;
1094 
1095 		free_irq(chan->irq, chan);
1096 	}
1097 
1098 	return ret;
1099 }
1100 
1101 /*----------------------------------------------------------------------------*/
1102 /* OpenFirmware Subsystem                                                     */
1103 /*----------------------------------------------------------------------------*/
1104 
1105 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1106 	struct device_node *node, u32 feature, const char *compatible)
1107 {
1108 	struct fsldma_chan *chan;
1109 	struct resource res;
1110 	int err;
1111 
1112 	/* alloc channel */
1113 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1114 	if (!chan) {
1115 		err = -ENOMEM;
1116 		goto out_return;
1117 	}
1118 
1119 	/* ioremap registers for use */
1120 	chan->regs = of_iomap(node, 0);
1121 	if (!chan->regs) {
1122 		dev_err(fdev->dev, "unable to ioremap registers\n");
1123 		err = -ENOMEM;
1124 		goto out_free_chan;
1125 	}
1126 
1127 	err = of_address_to_resource(node, 0, &res);
1128 	if (err) {
1129 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1130 		goto out_iounmap_regs;
1131 	}
1132 
1133 	chan->feature = feature;
1134 	if (!fdev->feature)
1135 		fdev->feature = chan->feature;
1136 
1137 	/*
1138 	 * If the DMA device's feature is different than the feature
1139 	 * of its channels, report the bug
1140 	 */
1141 	WARN_ON(fdev->feature != chan->feature);
1142 
1143 	chan->dev = fdev->dev;
1144 	chan->id = (res.start & 0xfff) < 0x300 ?
1145 		   ((res.start - 0x100) & 0xfff) >> 7 :
1146 		   ((res.start - 0x200) & 0xfff) >> 7;
1147 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1148 		dev_err(fdev->dev, "too many channels for device\n");
1149 		err = -EINVAL;
1150 		goto out_iounmap_regs;
1151 	}
1152 
1153 	fdev->chan[chan->id] = chan;
1154 	tasklet_setup(&chan->tasklet, dma_do_tasklet);
1155 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1156 
1157 	/* Initialize the channel */
1158 	dma_init(chan);
1159 
1160 	/* Clear cdar registers */
1161 	set_cdar(chan, 0);
1162 
1163 	switch (chan->feature & FSL_DMA_IP_MASK) {
1164 	case FSL_DMA_IP_85XX:
1165 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1166 		fallthrough;
1167 	case FSL_DMA_IP_83XX:
1168 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1169 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1170 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1171 		chan->set_request_count = fsl_chan_set_request_count;
1172 	}
1173 
1174 	spin_lock_init(&chan->desc_lock);
1175 	INIT_LIST_HEAD(&chan->ld_pending);
1176 	INIT_LIST_HEAD(&chan->ld_running);
1177 	INIT_LIST_HEAD(&chan->ld_completed);
1178 	chan->idle = true;
1179 #ifdef CONFIG_PM
1180 	chan->pm_state = RUNNING;
1181 #endif
1182 
1183 	chan->common.device = &fdev->common;
1184 	dma_cookie_init(&chan->common);
1185 
1186 	/* find the IRQ line, if it exists in the device tree */
1187 	chan->irq = irq_of_parse_and_map(node, 0);
1188 
1189 	/* Add the channel to DMA device channel list */
1190 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1191 
1192 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1193 		 chan->irq ? chan->irq : fdev->irq);
1194 
1195 	return 0;
1196 
1197 out_iounmap_regs:
1198 	iounmap(chan->regs);
1199 out_free_chan:
1200 	kfree(chan);
1201 out_return:
1202 	return err;
1203 }
1204 
1205 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1206 {
1207 	irq_dispose_mapping(chan->irq);
1208 	list_del(&chan->common.device_node);
1209 	iounmap(chan->regs);
1210 	kfree(chan);
1211 }
1212 
1213 static int fsldma_of_probe(struct platform_device *op)
1214 {
1215 	struct fsldma_device *fdev;
1216 	struct device_node *child;
1217 	unsigned int i;
1218 	int err;
1219 
1220 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1221 	if (!fdev) {
1222 		err = -ENOMEM;
1223 		goto out_return;
1224 	}
1225 
1226 	fdev->dev = &op->dev;
1227 	INIT_LIST_HEAD(&fdev->common.channels);
1228 
1229 	/* ioremap the registers for use */
1230 	fdev->regs = of_iomap(op->dev.of_node, 0);
1231 	if (!fdev->regs) {
1232 		dev_err(&op->dev, "unable to ioremap registers\n");
1233 		err = -ENOMEM;
1234 		goto out_free;
1235 	}
1236 
1237 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1238 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1239 
1240 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1241 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1242 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1243 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1244 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1245 	fdev->common.device_tx_status = fsl_tx_status;
1246 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1247 	fdev->common.device_config = fsl_dma_device_config;
1248 	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1249 	fdev->common.dev = &op->dev;
1250 
1251 	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1252 	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1253 	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1254 	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1255 
1256 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1257 
1258 	platform_set_drvdata(op, fdev);
1259 
1260 	/*
1261 	 * We cannot use of_platform_bus_probe() because there is no
1262 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1263 	 * channel object.
1264 	 */
1265 	for_each_child_of_node(op->dev.of_node, child) {
1266 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1267 			fsl_dma_chan_probe(fdev, child,
1268 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1269 				"fsl,eloplus-dma-channel");
1270 		}
1271 
1272 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1273 			fsl_dma_chan_probe(fdev, child,
1274 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1275 				"fsl,elo-dma-channel");
1276 		}
1277 	}
1278 
1279 	/*
1280 	 * Hookup the IRQ handler(s)
1281 	 *
1282 	 * If we have a per-controller interrupt, we prefer that to the
1283 	 * per-channel interrupts to reduce the number of shared interrupt
1284 	 * handlers on the same IRQ line
1285 	 */
1286 	err = fsldma_request_irqs(fdev);
1287 	if (err) {
1288 		dev_err(fdev->dev, "unable to request IRQs\n");
1289 		goto out_free_fdev;
1290 	}
1291 
1292 	dma_async_device_register(&fdev->common);
1293 	return 0;
1294 
1295 out_free_fdev:
1296 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1297 		if (fdev->chan[i])
1298 			fsl_dma_chan_remove(fdev->chan[i]);
1299 	}
1300 	irq_dispose_mapping(fdev->irq);
1301 	iounmap(fdev->regs);
1302 out_free:
1303 	kfree(fdev);
1304 out_return:
1305 	return err;
1306 }
1307 
1308 static int fsldma_of_remove(struct platform_device *op)
1309 {
1310 	struct fsldma_device *fdev;
1311 	unsigned int i;
1312 
1313 	fdev = platform_get_drvdata(op);
1314 	dma_async_device_unregister(&fdev->common);
1315 
1316 	fsldma_free_irqs(fdev);
1317 
1318 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1319 		if (fdev->chan[i])
1320 			fsl_dma_chan_remove(fdev->chan[i]);
1321 	}
1322 	irq_dispose_mapping(fdev->irq);
1323 
1324 	iounmap(fdev->regs);
1325 	kfree(fdev);
1326 
1327 	return 0;
1328 }
1329 
1330 #ifdef CONFIG_PM
1331 static int fsldma_suspend_late(struct device *dev)
1332 {
1333 	struct fsldma_device *fdev = dev_get_drvdata(dev);
1334 	struct fsldma_chan *chan;
1335 	int i;
1336 
1337 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1338 		chan = fdev->chan[i];
1339 		if (!chan)
1340 			continue;
1341 
1342 		spin_lock_bh(&chan->desc_lock);
1343 		if (unlikely(!chan->idle))
1344 			goto out;
1345 		chan->regs_save.mr = get_mr(chan);
1346 		chan->pm_state = SUSPENDED;
1347 		spin_unlock_bh(&chan->desc_lock);
1348 	}
1349 	return 0;
1350 
1351 out:
1352 	for (; i >= 0; i--) {
1353 		chan = fdev->chan[i];
1354 		if (!chan)
1355 			continue;
1356 		chan->pm_state = RUNNING;
1357 		spin_unlock_bh(&chan->desc_lock);
1358 	}
1359 	return -EBUSY;
1360 }
1361 
1362 static int fsldma_resume_early(struct device *dev)
1363 {
1364 	struct fsldma_device *fdev = dev_get_drvdata(dev);
1365 	struct fsldma_chan *chan;
1366 	u32 mode;
1367 	int i;
1368 
1369 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1370 		chan = fdev->chan[i];
1371 		if (!chan)
1372 			continue;
1373 
1374 		spin_lock_bh(&chan->desc_lock);
1375 		mode = chan->regs_save.mr
1376 			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1377 		set_mr(chan, mode);
1378 		chan->pm_state = RUNNING;
1379 		spin_unlock_bh(&chan->desc_lock);
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 static const struct dev_pm_ops fsldma_pm_ops = {
1386 	.suspend_late	= fsldma_suspend_late,
1387 	.resume_early	= fsldma_resume_early,
1388 };
1389 #endif
1390 
1391 static const struct of_device_id fsldma_of_ids[] = {
1392 	{ .compatible = "fsl,elo3-dma", },
1393 	{ .compatible = "fsl,eloplus-dma", },
1394 	{ .compatible = "fsl,elo-dma", },
1395 	{}
1396 };
1397 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1398 
1399 static struct platform_driver fsldma_of_driver = {
1400 	.driver = {
1401 		.name = "fsl-elo-dma",
1402 		.of_match_table = fsldma_of_ids,
1403 #ifdef CONFIG_PM
1404 		.pm = &fsldma_pm_ops,
1405 #endif
1406 	},
1407 	.probe = fsldma_of_probe,
1408 	.remove = fsldma_of_remove,
1409 };
1410 
1411 /*----------------------------------------------------------------------------*/
1412 /* Module Init / Exit                                                         */
1413 /*----------------------------------------------------------------------------*/
1414 
1415 static __init int fsldma_init(void)
1416 {
1417 	pr_info("Freescale Elo series DMA driver\n");
1418 	return platform_driver_register(&fsldma_of_driver);
1419 }
1420 
1421 static void __exit fsldma_exit(void)
1422 {
1423 	platform_driver_unregister(&fsldma_of_driver);
1424 }
1425 
1426 subsys_initcall(fsldma_init);
1427 module_exit(fsldma_exit);
1428 
1429 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1430 MODULE_LICENSE("GPL");
1431