xref: /openbmc/linux/drivers/dma/fsldma.c (revision 22fd411a)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
37 
38 #include "fsldma.h"
39 
40 static const char msg_ld_oom[] = "No free memory for link descriptor\n";
41 
42 static void dma_init(struct fsldma_chan *chan)
43 {
44 	/* Reset the channel */
45 	DMA_OUT(chan, &chan->regs->mr, 0, 32);
46 
47 	switch (chan->feature & FSL_DMA_IP_MASK) {
48 	case FSL_DMA_IP_85XX:
49 		/* Set the channel to below modes:
50 		 * EIE - Error interrupt enable
51 		 * EOSIE - End of segments interrupt enable (basic mode)
52 		 * EOLNIE - End of links interrupt enable
53 		 * BWC - Bandwidth sharing among channels
54 		 */
55 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
56 				| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE
57 				| FSL_DMA_MR_EOSIE, 32);
58 		break;
59 	case FSL_DMA_IP_83XX:
60 		/* Set the channel to below modes:
61 		 * EOTIE - End-of-transfer interrupt enable
62 		 * PRC_RM - PCI read multiple
63 		 */
64 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
65 				| FSL_DMA_MR_PRC_RM, 32);
66 		break;
67 	}
68 }
69 
70 static void set_sr(struct fsldma_chan *chan, u32 val)
71 {
72 	DMA_OUT(chan, &chan->regs->sr, val, 32);
73 }
74 
75 static u32 get_sr(struct fsldma_chan *chan)
76 {
77 	return DMA_IN(chan, &chan->regs->sr, 32);
78 }
79 
80 static void set_desc_cnt(struct fsldma_chan *chan,
81 				struct fsl_dma_ld_hw *hw, u32 count)
82 {
83 	hw->count = CPU_TO_DMA(chan, count, 32);
84 }
85 
86 static void set_desc_src(struct fsldma_chan *chan,
87 				struct fsl_dma_ld_hw *hw, dma_addr_t src)
88 {
89 	u64 snoop_bits;
90 
91 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
92 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
93 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
94 }
95 
96 static void set_desc_dst(struct fsldma_chan *chan,
97 				struct fsl_dma_ld_hw *hw, dma_addr_t dst)
98 {
99 	u64 snoop_bits;
100 
101 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
102 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
103 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
104 }
105 
106 static void set_desc_next(struct fsldma_chan *chan,
107 				struct fsl_dma_ld_hw *hw, dma_addr_t next)
108 {
109 	u64 snoop_bits;
110 
111 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
112 		? FSL_DMA_SNEN : 0;
113 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
114 }
115 
116 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
117 {
118 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
119 }
120 
121 static dma_addr_t get_cdar(struct fsldma_chan *chan)
122 {
123 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
124 }
125 
126 static dma_addr_t get_ndar(struct fsldma_chan *chan)
127 {
128 	return DMA_IN(chan, &chan->regs->ndar, 64);
129 }
130 
131 static u32 get_bcr(struct fsldma_chan *chan)
132 {
133 	return DMA_IN(chan, &chan->regs->bcr, 32);
134 }
135 
136 static int dma_is_idle(struct fsldma_chan *chan)
137 {
138 	u32 sr = get_sr(chan);
139 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
140 }
141 
142 static void dma_start(struct fsldma_chan *chan)
143 {
144 	u32 mode;
145 
146 	mode = DMA_IN(chan, &chan->regs->mr, 32);
147 
148 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
149 		if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
150 			DMA_OUT(chan, &chan->regs->bcr, 0, 32);
151 			mode |= FSL_DMA_MR_EMP_EN;
152 		} else {
153 			mode &= ~FSL_DMA_MR_EMP_EN;
154 		}
155 	}
156 
157 	if (chan->feature & FSL_DMA_CHAN_START_EXT)
158 		mode |= FSL_DMA_MR_EMS_EN;
159 	else
160 		mode |= FSL_DMA_MR_CS;
161 
162 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
163 }
164 
165 static void dma_halt(struct fsldma_chan *chan)
166 {
167 	u32 mode;
168 	int i;
169 
170 	mode = DMA_IN(chan, &chan->regs->mr, 32);
171 	mode |= FSL_DMA_MR_CA;
172 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
173 
174 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
175 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
176 
177 	for (i = 0; i < 100; i++) {
178 		if (dma_is_idle(chan))
179 			return;
180 
181 		udelay(10);
182 	}
183 
184 	if (!dma_is_idle(chan))
185 		dev_err(chan->dev, "DMA halt timeout!\n");
186 }
187 
188 static void set_ld_eol(struct fsldma_chan *chan,
189 			struct fsl_desc_sw *desc)
190 {
191 	u64 snoop_bits;
192 
193 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
194 		? FSL_DMA_SNEN : 0;
195 
196 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
197 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
198 			| snoop_bits, 64);
199 }
200 
201 /**
202  * fsl_chan_set_src_loop_size - Set source address hold transfer size
203  * @chan : Freescale DMA channel
204  * @size     : Address loop size, 0 for disable loop
205  *
206  * The set source address hold transfer size. The source
207  * address hold or loop transfer size is when the DMA transfer
208  * data from source address (SA), if the loop size is 4, the DMA will
209  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
210  * SA + 1 ... and so on.
211  */
212 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
213 {
214 	u32 mode;
215 
216 	mode = DMA_IN(chan, &chan->regs->mr, 32);
217 
218 	switch (size) {
219 	case 0:
220 		mode &= ~FSL_DMA_MR_SAHE;
221 		break;
222 	case 1:
223 	case 2:
224 	case 4:
225 	case 8:
226 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
227 		break;
228 	}
229 
230 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
231 }
232 
233 /**
234  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
235  * @chan : Freescale DMA channel
236  * @size     : Address loop size, 0 for disable loop
237  *
238  * The set destination address hold transfer size. The destination
239  * address hold or loop transfer size is when the DMA transfer
240  * data to destination address (TA), if the loop size is 4, the DMA will
241  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
242  * TA + 1 ... and so on.
243  */
244 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
245 {
246 	u32 mode;
247 
248 	mode = DMA_IN(chan, &chan->regs->mr, 32);
249 
250 	switch (size) {
251 	case 0:
252 		mode &= ~FSL_DMA_MR_DAHE;
253 		break;
254 	case 1:
255 	case 2:
256 	case 4:
257 	case 8:
258 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
259 		break;
260 	}
261 
262 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
263 }
264 
265 /**
266  * fsl_chan_set_request_count - Set DMA Request Count for external control
267  * @chan : Freescale DMA channel
268  * @size     : Number of bytes to transfer in a single request
269  *
270  * The Freescale DMA channel can be controlled by the external signal DREQ#.
271  * The DMA request count is how many bytes are allowed to transfer before
272  * pausing the channel, after which a new assertion of DREQ# resumes channel
273  * operation.
274  *
275  * A size of 0 disables external pause control. The maximum size is 1024.
276  */
277 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
278 {
279 	u32 mode;
280 
281 	BUG_ON(size > 1024);
282 
283 	mode = DMA_IN(chan, &chan->regs->mr, 32);
284 	mode |= (__ilog2(size) << 24) & 0x0f000000;
285 
286 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
287 }
288 
289 /**
290  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
291  * @chan : Freescale DMA channel
292  * @enable   : 0 is disabled, 1 is enabled.
293  *
294  * The Freescale DMA channel can be controlled by the external signal DREQ#.
295  * The DMA Request Count feature should be used in addition to this feature
296  * to set the number of bytes to transfer before pausing the channel.
297  */
298 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
299 {
300 	if (enable)
301 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
302 	else
303 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
304 }
305 
306 /**
307  * fsl_chan_toggle_ext_start - Toggle channel external start status
308  * @chan : Freescale DMA channel
309  * @enable   : 0 is disabled, 1 is enabled.
310  *
311  * If enable the external start, the channel can be started by an
312  * external DMA start pin. So the dma_start() does not start the
313  * transfer immediately. The DMA channel will wait for the
314  * control pin asserted.
315  */
316 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
317 {
318 	if (enable)
319 		chan->feature |= FSL_DMA_CHAN_START_EXT;
320 	else
321 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
322 }
323 
324 static void append_ld_queue(struct fsldma_chan *chan,
325 			    struct fsl_desc_sw *desc)
326 {
327 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
328 
329 	if (list_empty(&chan->ld_pending))
330 		goto out_splice;
331 
332 	/*
333 	 * Add the hardware descriptor to the chain of hardware descriptors
334 	 * that already exists in memory.
335 	 *
336 	 * This will un-set the EOL bit of the existing transaction, and the
337 	 * last link in this transaction will become the EOL descriptor.
338 	 */
339 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
340 
341 	/*
342 	 * Add the software descriptor and all children to the list
343 	 * of pending transactions
344 	 */
345 out_splice:
346 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
347 }
348 
349 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
350 {
351 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
352 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
353 	struct fsl_desc_sw *child;
354 	unsigned long flags;
355 	dma_cookie_t cookie;
356 
357 	spin_lock_irqsave(&chan->desc_lock, flags);
358 
359 	/*
360 	 * assign cookies to all of the software descriptors
361 	 * that make up this transaction
362 	 */
363 	cookie = chan->common.cookie;
364 	list_for_each_entry(child, &desc->tx_list, node) {
365 		cookie++;
366 		if (cookie < 0)
367 			cookie = 1;
368 
369 		child->async_tx.cookie = cookie;
370 	}
371 
372 	chan->common.cookie = cookie;
373 
374 	/* put this transaction onto the tail of the pending queue */
375 	append_ld_queue(chan, desc);
376 
377 	spin_unlock_irqrestore(&chan->desc_lock, flags);
378 
379 	return cookie;
380 }
381 
382 /**
383  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
384  * @chan : Freescale DMA channel
385  *
386  * Return - The descriptor allocated. NULL for failed.
387  */
388 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
389 					struct fsldma_chan *chan)
390 {
391 	struct fsl_desc_sw *desc;
392 	dma_addr_t pdesc;
393 
394 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
395 	if (!desc) {
396 		dev_dbg(chan->dev, "out of memory for link desc\n");
397 		return NULL;
398 	}
399 
400 	memset(desc, 0, sizeof(*desc));
401 	INIT_LIST_HEAD(&desc->tx_list);
402 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
403 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
404 	desc->async_tx.phys = pdesc;
405 
406 	return desc;
407 }
408 
409 
410 /**
411  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
412  * @chan : Freescale DMA channel
413  *
414  * This function will create a dma pool for descriptor allocation.
415  *
416  * Return - The number of descriptors allocated.
417  */
418 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
419 {
420 	struct fsldma_chan *chan = to_fsl_chan(dchan);
421 
422 	/* Has this channel already been allocated? */
423 	if (chan->desc_pool)
424 		return 1;
425 
426 	/*
427 	 * We need the descriptor to be aligned to 32bytes
428 	 * for meeting FSL DMA specification requirement.
429 	 */
430 	chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
431 					  chan->dev,
432 					  sizeof(struct fsl_desc_sw),
433 					  __alignof__(struct fsl_desc_sw), 0);
434 	if (!chan->desc_pool) {
435 		dev_err(chan->dev, "unable to allocate channel %d "
436 				   "descriptor pool\n", chan->id);
437 		return -ENOMEM;
438 	}
439 
440 	/* there is at least one descriptor free to be allocated */
441 	return 1;
442 }
443 
444 /**
445  * fsldma_free_desc_list - Free all descriptors in a queue
446  * @chan: Freescae DMA channel
447  * @list: the list to free
448  *
449  * LOCKING: must hold chan->desc_lock
450  */
451 static void fsldma_free_desc_list(struct fsldma_chan *chan,
452 				  struct list_head *list)
453 {
454 	struct fsl_desc_sw *desc, *_desc;
455 
456 	list_for_each_entry_safe(desc, _desc, list, node) {
457 		list_del(&desc->node);
458 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
459 	}
460 }
461 
462 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
463 					  struct list_head *list)
464 {
465 	struct fsl_desc_sw *desc, *_desc;
466 
467 	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
468 		list_del(&desc->node);
469 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
470 	}
471 }
472 
473 /**
474  * fsl_dma_free_chan_resources - Free all resources of the channel.
475  * @chan : Freescale DMA channel
476  */
477 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
478 {
479 	struct fsldma_chan *chan = to_fsl_chan(dchan);
480 	unsigned long flags;
481 
482 	dev_dbg(chan->dev, "Free all channel resources.\n");
483 	spin_lock_irqsave(&chan->desc_lock, flags);
484 	fsldma_free_desc_list(chan, &chan->ld_pending);
485 	fsldma_free_desc_list(chan, &chan->ld_running);
486 	spin_unlock_irqrestore(&chan->desc_lock, flags);
487 
488 	dma_pool_destroy(chan->desc_pool);
489 	chan->desc_pool = NULL;
490 }
491 
492 static struct dma_async_tx_descriptor *
493 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
494 {
495 	struct fsldma_chan *chan;
496 	struct fsl_desc_sw *new;
497 
498 	if (!dchan)
499 		return NULL;
500 
501 	chan = to_fsl_chan(dchan);
502 
503 	new = fsl_dma_alloc_descriptor(chan);
504 	if (!new) {
505 		dev_err(chan->dev, msg_ld_oom);
506 		return NULL;
507 	}
508 
509 	new->async_tx.cookie = -EBUSY;
510 	new->async_tx.flags = flags;
511 
512 	/* Insert the link descriptor to the LD ring */
513 	list_add_tail(&new->node, &new->tx_list);
514 
515 	/* Set End-of-link to the last link descriptor of new list*/
516 	set_ld_eol(chan, new);
517 
518 	return &new->async_tx;
519 }
520 
521 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
522 	struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src,
523 	size_t len, unsigned long flags)
524 {
525 	struct fsldma_chan *chan;
526 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
527 	size_t copy;
528 
529 	if (!dchan)
530 		return NULL;
531 
532 	if (!len)
533 		return NULL;
534 
535 	chan = to_fsl_chan(dchan);
536 
537 	do {
538 
539 		/* Allocate the link descriptor from DMA pool */
540 		new = fsl_dma_alloc_descriptor(chan);
541 		if (!new) {
542 			dev_err(chan->dev, msg_ld_oom);
543 			goto fail;
544 		}
545 #ifdef FSL_DMA_LD_DEBUG
546 		dev_dbg(chan->dev, "new link desc alloc %p\n", new);
547 #endif
548 
549 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
550 
551 		set_desc_cnt(chan, &new->hw, copy);
552 		set_desc_src(chan, &new->hw, dma_src);
553 		set_desc_dst(chan, &new->hw, dma_dst);
554 
555 		if (!first)
556 			first = new;
557 		else
558 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
559 
560 		new->async_tx.cookie = 0;
561 		async_tx_ack(&new->async_tx);
562 
563 		prev = new;
564 		len -= copy;
565 		dma_src += copy;
566 		dma_dst += copy;
567 
568 		/* Insert the link descriptor to the LD ring */
569 		list_add_tail(&new->node, &first->tx_list);
570 	} while (len);
571 
572 	new->async_tx.flags = flags; /* client is in control of this ack */
573 	new->async_tx.cookie = -EBUSY;
574 
575 	/* Set End-of-link to the last link descriptor of new list*/
576 	set_ld_eol(chan, new);
577 
578 	return &first->async_tx;
579 
580 fail:
581 	if (!first)
582 		return NULL;
583 
584 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
585 	return NULL;
586 }
587 
588 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
589 	struct scatterlist *dst_sg, unsigned int dst_nents,
590 	struct scatterlist *src_sg, unsigned int src_nents,
591 	unsigned long flags)
592 {
593 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
594 	struct fsldma_chan *chan = to_fsl_chan(dchan);
595 	size_t dst_avail, src_avail;
596 	dma_addr_t dst, src;
597 	size_t len;
598 
599 	/* basic sanity checks */
600 	if (dst_nents == 0 || src_nents == 0)
601 		return NULL;
602 
603 	if (dst_sg == NULL || src_sg == NULL)
604 		return NULL;
605 
606 	/*
607 	 * TODO: should we check that both scatterlists have the same
608 	 * TODO: number of bytes in total? Is that really an error?
609 	 */
610 
611 	/* get prepared for the loop */
612 	dst_avail = sg_dma_len(dst_sg);
613 	src_avail = sg_dma_len(src_sg);
614 
615 	/* run until we are out of scatterlist entries */
616 	while (true) {
617 
618 		/* create the largest transaction possible */
619 		len = min_t(size_t, src_avail, dst_avail);
620 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
621 		if (len == 0)
622 			goto fetch;
623 
624 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
625 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
626 
627 		/* allocate and populate the descriptor */
628 		new = fsl_dma_alloc_descriptor(chan);
629 		if (!new) {
630 			dev_err(chan->dev, msg_ld_oom);
631 			goto fail;
632 		}
633 #ifdef FSL_DMA_LD_DEBUG
634 		dev_dbg(chan->dev, "new link desc alloc %p\n", new);
635 #endif
636 
637 		set_desc_cnt(chan, &new->hw, len);
638 		set_desc_src(chan, &new->hw, src);
639 		set_desc_dst(chan, &new->hw, dst);
640 
641 		if (!first)
642 			first = new;
643 		else
644 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
645 
646 		new->async_tx.cookie = 0;
647 		async_tx_ack(&new->async_tx);
648 		prev = new;
649 
650 		/* Insert the link descriptor to the LD ring */
651 		list_add_tail(&new->node, &first->tx_list);
652 
653 		/* update metadata */
654 		dst_avail -= len;
655 		src_avail -= len;
656 
657 fetch:
658 		/* fetch the next dst scatterlist entry */
659 		if (dst_avail == 0) {
660 
661 			/* no more entries: we're done */
662 			if (dst_nents == 0)
663 				break;
664 
665 			/* fetch the next entry: if there are no more: done */
666 			dst_sg = sg_next(dst_sg);
667 			if (dst_sg == NULL)
668 				break;
669 
670 			dst_nents--;
671 			dst_avail = sg_dma_len(dst_sg);
672 		}
673 
674 		/* fetch the next src scatterlist entry */
675 		if (src_avail == 0) {
676 
677 			/* no more entries: we're done */
678 			if (src_nents == 0)
679 				break;
680 
681 			/* fetch the next entry: if there are no more: done */
682 			src_sg = sg_next(src_sg);
683 			if (src_sg == NULL)
684 				break;
685 
686 			src_nents--;
687 			src_avail = sg_dma_len(src_sg);
688 		}
689 	}
690 
691 	new->async_tx.flags = flags; /* client is in control of this ack */
692 	new->async_tx.cookie = -EBUSY;
693 
694 	/* Set End-of-link to the last link descriptor of new list */
695 	set_ld_eol(chan, new);
696 
697 	return &first->async_tx;
698 
699 fail:
700 	if (!first)
701 		return NULL;
702 
703 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
704 	return NULL;
705 }
706 
707 /**
708  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
709  * @chan: DMA channel
710  * @sgl: scatterlist to transfer to/from
711  * @sg_len: number of entries in @scatterlist
712  * @direction: DMA direction
713  * @flags: DMAEngine flags
714  *
715  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
716  * DMA_SLAVE API, this gets the device-specific information from the
717  * chan->private variable.
718  */
719 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
720 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
721 	enum dma_data_direction direction, unsigned long flags)
722 {
723 	/*
724 	 * This operation is not supported on the Freescale DMA controller
725 	 *
726 	 * However, we need to provide the function pointer to allow the
727 	 * device_control() method to work.
728 	 */
729 	return NULL;
730 }
731 
732 static int fsl_dma_device_control(struct dma_chan *dchan,
733 				  enum dma_ctrl_cmd cmd, unsigned long arg)
734 {
735 	struct dma_slave_config *config;
736 	struct fsldma_chan *chan;
737 	unsigned long flags;
738 	int size;
739 
740 	if (!dchan)
741 		return -EINVAL;
742 
743 	chan = to_fsl_chan(dchan);
744 
745 	switch (cmd) {
746 	case DMA_TERMINATE_ALL:
747 		/* Halt the DMA engine */
748 		dma_halt(chan);
749 
750 		spin_lock_irqsave(&chan->desc_lock, flags);
751 
752 		/* Remove and free all of the descriptors in the LD queue */
753 		fsldma_free_desc_list(chan, &chan->ld_pending);
754 		fsldma_free_desc_list(chan, &chan->ld_running);
755 
756 		spin_unlock_irqrestore(&chan->desc_lock, flags);
757 		return 0;
758 
759 	case DMA_SLAVE_CONFIG:
760 		config = (struct dma_slave_config *)arg;
761 
762 		/* make sure the channel supports setting burst size */
763 		if (!chan->set_request_count)
764 			return -ENXIO;
765 
766 		/* we set the controller burst size depending on direction */
767 		if (config->direction == DMA_TO_DEVICE)
768 			size = config->dst_addr_width * config->dst_maxburst;
769 		else
770 			size = config->src_addr_width * config->src_maxburst;
771 
772 		chan->set_request_count(chan, size);
773 		return 0;
774 
775 	case FSLDMA_EXTERNAL_START:
776 
777 		/* make sure the channel supports external start */
778 		if (!chan->toggle_ext_start)
779 			return -ENXIO;
780 
781 		chan->toggle_ext_start(chan, arg);
782 		return 0;
783 
784 	default:
785 		return -ENXIO;
786 	}
787 
788 	return 0;
789 }
790 
791 /**
792  * fsl_dma_update_completed_cookie - Update the completed cookie.
793  * @chan : Freescale DMA channel
794  *
795  * CONTEXT: hardirq
796  */
797 static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
798 {
799 	struct fsl_desc_sw *desc;
800 	unsigned long flags;
801 	dma_cookie_t cookie;
802 
803 	spin_lock_irqsave(&chan->desc_lock, flags);
804 
805 	if (list_empty(&chan->ld_running)) {
806 		dev_dbg(chan->dev, "no running descriptors\n");
807 		goto out_unlock;
808 	}
809 
810 	/* Get the last descriptor, update the cookie to that */
811 	desc = to_fsl_desc(chan->ld_running.prev);
812 	if (dma_is_idle(chan))
813 		cookie = desc->async_tx.cookie;
814 	else {
815 		cookie = desc->async_tx.cookie - 1;
816 		if (unlikely(cookie < DMA_MIN_COOKIE))
817 			cookie = DMA_MAX_COOKIE;
818 	}
819 
820 	chan->completed_cookie = cookie;
821 
822 out_unlock:
823 	spin_unlock_irqrestore(&chan->desc_lock, flags);
824 }
825 
826 /**
827  * fsldma_desc_status - Check the status of a descriptor
828  * @chan: Freescale DMA channel
829  * @desc: DMA SW descriptor
830  *
831  * This function will return the status of the given descriptor
832  */
833 static enum dma_status fsldma_desc_status(struct fsldma_chan *chan,
834 					  struct fsl_desc_sw *desc)
835 {
836 	return dma_async_is_complete(desc->async_tx.cookie,
837 				     chan->completed_cookie,
838 				     chan->common.cookie);
839 }
840 
841 /**
842  * fsl_chan_ld_cleanup - Clean up link descriptors
843  * @chan : Freescale DMA channel
844  *
845  * This function clean up the ld_queue of DMA channel.
846  */
847 static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
848 {
849 	struct fsl_desc_sw *desc, *_desc;
850 	unsigned long flags;
851 
852 	spin_lock_irqsave(&chan->desc_lock, flags);
853 
854 	dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie);
855 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
856 		dma_async_tx_callback callback;
857 		void *callback_param;
858 
859 		if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS)
860 			break;
861 
862 		/* Remove from the list of running transactions */
863 		list_del(&desc->node);
864 
865 		/* Run the link descriptor callback function */
866 		callback = desc->async_tx.callback;
867 		callback_param = desc->async_tx.callback_param;
868 		if (callback) {
869 			spin_unlock_irqrestore(&chan->desc_lock, flags);
870 			dev_dbg(chan->dev, "LD %p callback\n", desc);
871 			callback(callback_param);
872 			spin_lock_irqsave(&chan->desc_lock, flags);
873 		}
874 
875 		/* Run any dependencies, then free the descriptor */
876 		dma_run_dependencies(&desc->async_tx);
877 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
878 	}
879 
880 	spin_unlock_irqrestore(&chan->desc_lock, flags);
881 }
882 
883 /**
884  * fsl_chan_xfer_ld_queue - transfer any pending transactions
885  * @chan : Freescale DMA channel
886  *
887  * This will make sure that any pending transactions will be run.
888  * If the DMA controller is idle, it will be started. Otherwise,
889  * the DMA controller's interrupt handler will start any pending
890  * transactions when it becomes idle.
891  */
892 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
893 {
894 	struct fsl_desc_sw *desc;
895 	unsigned long flags;
896 
897 	spin_lock_irqsave(&chan->desc_lock, flags);
898 
899 	/*
900 	 * If the list of pending descriptors is empty, then we
901 	 * don't need to do any work at all
902 	 */
903 	if (list_empty(&chan->ld_pending)) {
904 		dev_dbg(chan->dev, "no pending LDs\n");
905 		goto out_unlock;
906 	}
907 
908 	/*
909 	 * The DMA controller is not idle, which means the interrupt
910 	 * handler will start any queued transactions when it runs
911 	 * at the end of the current transaction
912 	 */
913 	if (!dma_is_idle(chan)) {
914 		dev_dbg(chan->dev, "DMA controller still busy\n");
915 		goto out_unlock;
916 	}
917 
918 	/*
919 	 * TODO:
920 	 * make sure the dma_halt() function really un-wedges the
921 	 * controller as much as possible
922 	 */
923 	dma_halt(chan);
924 
925 	/*
926 	 * If there are some link descriptors which have not been
927 	 * transferred, we need to start the controller
928 	 */
929 
930 	/*
931 	 * Move all elements from the queue of pending transactions
932 	 * onto the list of running transactions
933 	 */
934 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
935 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
936 
937 	/*
938 	 * Program the descriptor's address into the DMA controller,
939 	 * then start the DMA transaction
940 	 */
941 	set_cdar(chan, desc->async_tx.phys);
942 	dma_start(chan);
943 
944 out_unlock:
945 	spin_unlock_irqrestore(&chan->desc_lock, flags);
946 }
947 
948 /**
949  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
950  * @chan : Freescale DMA channel
951  */
952 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
953 {
954 	struct fsldma_chan *chan = to_fsl_chan(dchan);
955 	fsl_chan_xfer_ld_queue(chan);
956 }
957 
958 /**
959  * fsl_tx_status - Determine the DMA status
960  * @chan : Freescale DMA channel
961  */
962 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
963 					dma_cookie_t cookie,
964 					struct dma_tx_state *txstate)
965 {
966 	struct fsldma_chan *chan = to_fsl_chan(dchan);
967 	dma_cookie_t last_used;
968 	dma_cookie_t last_complete;
969 
970 	fsl_chan_ld_cleanup(chan);
971 
972 	last_used = dchan->cookie;
973 	last_complete = chan->completed_cookie;
974 
975 	dma_set_tx_state(txstate, last_complete, last_used, 0);
976 
977 	return dma_async_is_complete(cookie, last_complete, last_used);
978 }
979 
980 /*----------------------------------------------------------------------------*/
981 /* Interrupt Handling                                                         */
982 /*----------------------------------------------------------------------------*/
983 
984 static irqreturn_t fsldma_chan_irq(int irq, void *data)
985 {
986 	struct fsldma_chan *chan = data;
987 	int update_cookie = 0;
988 	int xfer_ld_q = 0;
989 	u32 stat;
990 
991 	/* save and clear the status register */
992 	stat = get_sr(chan);
993 	set_sr(chan, stat);
994 	dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat);
995 
996 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
997 	if (!stat)
998 		return IRQ_NONE;
999 
1000 	if (stat & FSL_DMA_SR_TE)
1001 		dev_err(chan->dev, "Transfer Error!\n");
1002 
1003 	/*
1004 	 * Programming Error
1005 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1006 	 * triger a PE interrupt.
1007 	 */
1008 	if (stat & FSL_DMA_SR_PE) {
1009 		dev_dbg(chan->dev, "irq: Programming Error INT\n");
1010 		if (get_bcr(chan) == 0) {
1011 			/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1012 			 * Now, update the completed cookie, and continue the
1013 			 * next uncompleted transfer.
1014 			 */
1015 			update_cookie = 1;
1016 			xfer_ld_q = 1;
1017 		}
1018 		stat &= ~FSL_DMA_SR_PE;
1019 	}
1020 
1021 	/*
1022 	 * If the link descriptor segment transfer finishes,
1023 	 * we will recycle the used descriptor.
1024 	 */
1025 	if (stat & FSL_DMA_SR_EOSI) {
1026 		dev_dbg(chan->dev, "irq: End-of-segments INT\n");
1027 		dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1028 			(unsigned long long)get_cdar(chan),
1029 			(unsigned long long)get_ndar(chan));
1030 		stat &= ~FSL_DMA_SR_EOSI;
1031 		update_cookie = 1;
1032 	}
1033 
1034 	/*
1035 	 * For MPC8349, EOCDI event need to update cookie
1036 	 * and start the next transfer if it exist.
1037 	 */
1038 	if (stat & FSL_DMA_SR_EOCDI) {
1039 		dev_dbg(chan->dev, "irq: End-of-Chain link INT\n");
1040 		stat &= ~FSL_DMA_SR_EOCDI;
1041 		update_cookie = 1;
1042 		xfer_ld_q = 1;
1043 	}
1044 
1045 	/*
1046 	 * If it current transfer is the end-of-transfer,
1047 	 * we should clear the Channel Start bit for
1048 	 * prepare next transfer.
1049 	 */
1050 	if (stat & FSL_DMA_SR_EOLNI) {
1051 		dev_dbg(chan->dev, "irq: End-of-link INT\n");
1052 		stat &= ~FSL_DMA_SR_EOLNI;
1053 		xfer_ld_q = 1;
1054 	}
1055 
1056 	if (update_cookie)
1057 		fsl_dma_update_completed_cookie(chan);
1058 	if (xfer_ld_q)
1059 		fsl_chan_xfer_ld_queue(chan);
1060 	if (stat)
1061 		dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat);
1062 
1063 	dev_dbg(chan->dev, "irq: Exit\n");
1064 	tasklet_schedule(&chan->tasklet);
1065 	return IRQ_HANDLED;
1066 }
1067 
1068 static void dma_do_tasklet(unsigned long data)
1069 {
1070 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1071 	fsl_chan_ld_cleanup(chan);
1072 }
1073 
1074 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1075 {
1076 	struct fsldma_device *fdev = data;
1077 	struct fsldma_chan *chan;
1078 	unsigned int handled = 0;
1079 	u32 gsr, mask;
1080 	int i;
1081 
1082 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1083 						   : in_le32(fdev->regs);
1084 	mask = 0xff000000;
1085 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1086 
1087 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1088 		chan = fdev->chan[i];
1089 		if (!chan)
1090 			continue;
1091 
1092 		if (gsr & mask) {
1093 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1094 			fsldma_chan_irq(irq, chan);
1095 			handled++;
1096 		}
1097 
1098 		gsr &= ~mask;
1099 		mask >>= 8;
1100 	}
1101 
1102 	return IRQ_RETVAL(handled);
1103 }
1104 
1105 static void fsldma_free_irqs(struct fsldma_device *fdev)
1106 {
1107 	struct fsldma_chan *chan;
1108 	int i;
1109 
1110 	if (fdev->irq != NO_IRQ) {
1111 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1112 		free_irq(fdev->irq, fdev);
1113 		return;
1114 	}
1115 
1116 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1117 		chan = fdev->chan[i];
1118 		if (chan && chan->irq != NO_IRQ) {
1119 			dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id);
1120 			free_irq(chan->irq, chan);
1121 		}
1122 	}
1123 }
1124 
1125 static int fsldma_request_irqs(struct fsldma_device *fdev)
1126 {
1127 	struct fsldma_chan *chan;
1128 	int ret;
1129 	int i;
1130 
1131 	/* if we have a per-controller IRQ, use that */
1132 	if (fdev->irq != NO_IRQ) {
1133 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1134 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1135 				  "fsldma-controller", fdev);
1136 		return ret;
1137 	}
1138 
1139 	/* no per-controller IRQ, use the per-channel IRQs */
1140 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1141 		chan = fdev->chan[i];
1142 		if (!chan)
1143 			continue;
1144 
1145 		if (chan->irq == NO_IRQ) {
1146 			dev_err(fdev->dev, "no interrupts property defined for "
1147 					   "DMA channel %d. Please fix your "
1148 					   "device tree\n", chan->id);
1149 			ret = -ENODEV;
1150 			goto out_unwind;
1151 		}
1152 
1153 		dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id);
1154 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1155 				  "fsldma-chan", chan);
1156 		if (ret) {
1157 			dev_err(fdev->dev, "unable to request IRQ for DMA "
1158 					   "channel %d\n", chan->id);
1159 			goto out_unwind;
1160 		}
1161 	}
1162 
1163 	return 0;
1164 
1165 out_unwind:
1166 	for (/* none */; i >= 0; i--) {
1167 		chan = fdev->chan[i];
1168 		if (!chan)
1169 			continue;
1170 
1171 		if (chan->irq == NO_IRQ)
1172 			continue;
1173 
1174 		free_irq(chan->irq, chan);
1175 	}
1176 
1177 	return ret;
1178 }
1179 
1180 /*----------------------------------------------------------------------------*/
1181 /* OpenFirmware Subsystem                                                     */
1182 /*----------------------------------------------------------------------------*/
1183 
1184 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1185 	struct device_node *node, u32 feature, const char *compatible)
1186 {
1187 	struct fsldma_chan *chan;
1188 	struct resource res;
1189 	int err;
1190 
1191 	/* alloc channel */
1192 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1193 	if (!chan) {
1194 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1195 		err = -ENOMEM;
1196 		goto out_return;
1197 	}
1198 
1199 	/* ioremap registers for use */
1200 	chan->regs = of_iomap(node, 0);
1201 	if (!chan->regs) {
1202 		dev_err(fdev->dev, "unable to ioremap registers\n");
1203 		err = -ENOMEM;
1204 		goto out_free_chan;
1205 	}
1206 
1207 	err = of_address_to_resource(node, 0, &res);
1208 	if (err) {
1209 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1210 		goto out_iounmap_regs;
1211 	}
1212 
1213 	chan->feature = feature;
1214 	if (!fdev->feature)
1215 		fdev->feature = chan->feature;
1216 
1217 	/*
1218 	 * If the DMA device's feature is different than the feature
1219 	 * of its channels, report the bug
1220 	 */
1221 	WARN_ON(fdev->feature != chan->feature);
1222 
1223 	chan->dev = fdev->dev;
1224 	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1225 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1226 		dev_err(fdev->dev, "too many channels for device\n");
1227 		err = -EINVAL;
1228 		goto out_iounmap_regs;
1229 	}
1230 
1231 	fdev->chan[chan->id] = chan;
1232 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1233 
1234 	/* Initialize the channel */
1235 	dma_init(chan);
1236 
1237 	/* Clear cdar registers */
1238 	set_cdar(chan, 0);
1239 
1240 	switch (chan->feature & FSL_DMA_IP_MASK) {
1241 	case FSL_DMA_IP_85XX:
1242 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1243 	case FSL_DMA_IP_83XX:
1244 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1245 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1246 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1247 		chan->set_request_count = fsl_chan_set_request_count;
1248 	}
1249 
1250 	spin_lock_init(&chan->desc_lock);
1251 	INIT_LIST_HEAD(&chan->ld_pending);
1252 	INIT_LIST_HEAD(&chan->ld_running);
1253 
1254 	chan->common.device = &fdev->common;
1255 
1256 	/* find the IRQ line, if it exists in the device tree */
1257 	chan->irq = irq_of_parse_and_map(node, 0);
1258 
1259 	/* Add the channel to DMA device channel list */
1260 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1261 	fdev->common.chancnt++;
1262 
1263 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1264 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1265 
1266 	return 0;
1267 
1268 out_iounmap_regs:
1269 	iounmap(chan->regs);
1270 out_free_chan:
1271 	kfree(chan);
1272 out_return:
1273 	return err;
1274 }
1275 
1276 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1277 {
1278 	irq_dispose_mapping(chan->irq);
1279 	list_del(&chan->common.device_node);
1280 	iounmap(chan->regs);
1281 	kfree(chan);
1282 }
1283 
1284 static int __devinit fsldma_of_probe(struct platform_device *op,
1285 			const struct of_device_id *match)
1286 {
1287 	struct fsldma_device *fdev;
1288 	struct device_node *child;
1289 	int err;
1290 
1291 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1292 	if (!fdev) {
1293 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1294 		err = -ENOMEM;
1295 		goto out_return;
1296 	}
1297 
1298 	fdev->dev = &op->dev;
1299 	INIT_LIST_HEAD(&fdev->common.channels);
1300 
1301 	/* ioremap the registers for use */
1302 	fdev->regs = of_iomap(op->dev.of_node, 0);
1303 	if (!fdev->regs) {
1304 		dev_err(&op->dev, "unable to ioremap registers\n");
1305 		err = -ENOMEM;
1306 		goto out_free_fdev;
1307 	}
1308 
1309 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1310 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1311 
1312 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1313 	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1314 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1315 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1316 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1317 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1318 	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1319 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1320 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1321 	fdev->common.device_tx_status = fsl_tx_status;
1322 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1323 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1324 	fdev->common.device_control = fsl_dma_device_control;
1325 	fdev->common.dev = &op->dev;
1326 
1327 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1328 
1329 	dev_set_drvdata(&op->dev, fdev);
1330 
1331 	/*
1332 	 * We cannot use of_platform_bus_probe() because there is no
1333 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1334 	 * channel object.
1335 	 */
1336 	for_each_child_of_node(op->dev.of_node, child) {
1337 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1338 			fsl_dma_chan_probe(fdev, child,
1339 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1340 				"fsl,eloplus-dma-channel");
1341 		}
1342 
1343 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1344 			fsl_dma_chan_probe(fdev, child,
1345 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1346 				"fsl,elo-dma-channel");
1347 		}
1348 	}
1349 
1350 	/*
1351 	 * Hookup the IRQ handler(s)
1352 	 *
1353 	 * If we have a per-controller interrupt, we prefer that to the
1354 	 * per-channel interrupts to reduce the number of shared interrupt
1355 	 * handlers on the same IRQ line
1356 	 */
1357 	err = fsldma_request_irqs(fdev);
1358 	if (err) {
1359 		dev_err(fdev->dev, "unable to request IRQs\n");
1360 		goto out_free_fdev;
1361 	}
1362 
1363 	dma_async_device_register(&fdev->common);
1364 	return 0;
1365 
1366 out_free_fdev:
1367 	irq_dispose_mapping(fdev->irq);
1368 	kfree(fdev);
1369 out_return:
1370 	return err;
1371 }
1372 
1373 static int fsldma_of_remove(struct platform_device *op)
1374 {
1375 	struct fsldma_device *fdev;
1376 	unsigned int i;
1377 
1378 	fdev = dev_get_drvdata(&op->dev);
1379 	dma_async_device_unregister(&fdev->common);
1380 
1381 	fsldma_free_irqs(fdev);
1382 
1383 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1384 		if (fdev->chan[i])
1385 			fsl_dma_chan_remove(fdev->chan[i]);
1386 	}
1387 
1388 	iounmap(fdev->regs);
1389 	dev_set_drvdata(&op->dev, NULL);
1390 	kfree(fdev);
1391 
1392 	return 0;
1393 }
1394 
1395 static const struct of_device_id fsldma_of_ids[] = {
1396 	{ .compatible = "fsl,eloplus-dma", },
1397 	{ .compatible = "fsl,elo-dma", },
1398 	{}
1399 };
1400 
1401 static struct of_platform_driver fsldma_of_driver = {
1402 	.driver = {
1403 		.name = "fsl-elo-dma",
1404 		.owner = THIS_MODULE,
1405 		.of_match_table = fsldma_of_ids,
1406 	},
1407 	.probe = fsldma_of_probe,
1408 	.remove = fsldma_of_remove,
1409 };
1410 
1411 /*----------------------------------------------------------------------------*/
1412 /* Module Init / Exit                                                         */
1413 /*----------------------------------------------------------------------------*/
1414 
1415 static __init int fsldma_init(void)
1416 {
1417 	int ret;
1418 
1419 	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1420 
1421 	ret = of_register_platform_driver(&fsldma_of_driver);
1422 	if (ret)
1423 		pr_err("fsldma: failed to register platform driver\n");
1424 
1425 	return ret;
1426 }
1427 
1428 static void __exit fsldma_exit(void)
1429 {
1430 	of_unregister_platform_driver(&fsldma_of_driver);
1431 }
1432 
1433 subsys_initcall(fsldma_init);
1434 module_exit(fsldma_exit);
1435 
1436 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1437 MODULE_LICENSE("GPL");
1438