1 /* 2 * Freescale MPC85xx, MPC83xx DMA Engine support 3 * 4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved. 5 * 6 * Author: 7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 9 * 10 * Description: 11 * DMA engine driver for Freescale MPC8540 DMA controller, which is 12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. 13 * The support for MPC8349 DMA contorller is also added. 14 * 15 * This is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 * 20 */ 21 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/pci.h> 25 #include <linux/interrupt.h> 26 #include <linux/dmaengine.h> 27 #include <linux/delay.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/dmapool.h> 30 #include <linux/of_platform.h> 31 32 #include "fsldma.h" 33 34 static void dma_init(struct fsl_dma_chan *fsl_chan) 35 { 36 /* Reset the channel */ 37 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32); 38 39 switch (fsl_chan->feature & FSL_DMA_IP_MASK) { 40 case FSL_DMA_IP_85XX: 41 /* Set the channel to below modes: 42 * EIE - Error interrupt enable 43 * EOSIE - End of segments interrupt enable (basic mode) 44 * EOLNIE - End of links interrupt enable 45 */ 46 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE 47 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32); 48 break; 49 case FSL_DMA_IP_83XX: 50 /* Set the channel to below modes: 51 * EOTIE - End-of-transfer interrupt enable 52 */ 53 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE, 54 32); 55 break; 56 } 57 58 } 59 60 static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val) 61 { 62 DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32); 63 } 64 65 static u32 get_sr(struct fsl_dma_chan *fsl_chan) 66 { 67 return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32); 68 } 69 70 static void set_desc_cnt(struct fsl_dma_chan *fsl_chan, 71 struct fsl_dma_ld_hw *hw, u32 count) 72 { 73 hw->count = CPU_TO_DMA(fsl_chan, count, 32); 74 } 75 76 static void set_desc_src(struct fsl_dma_chan *fsl_chan, 77 struct fsl_dma_ld_hw *hw, dma_addr_t src) 78 { 79 u64 snoop_bits; 80 81 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 82 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; 83 hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64); 84 } 85 86 static void set_desc_dest(struct fsl_dma_chan *fsl_chan, 87 struct fsl_dma_ld_hw *hw, dma_addr_t dest) 88 { 89 u64 snoop_bits; 90 91 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) 92 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; 93 hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64); 94 } 95 96 static void set_desc_next(struct fsl_dma_chan *fsl_chan, 97 struct fsl_dma_ld_hw *hw, dma_addr_t next) 98 { 99 u64 snoop_bits; 100 101 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) 102 ? FSL_DMA_SNEN : 0; 103 hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64); 104 } 105 106 static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) 107 { 108 DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64); 109 } 110 111 static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan) 112 { 113 return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN; 114 } 115 116 static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr) 117 { 118 DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64); 119 } 120 121 static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan) 122 { 123 return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64); 124 } 125 126 static u32 get_bcr(struct fsl_dma_chan *fsl_chan) 127 { 128 return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32); 129 } 130 131 static int dma_is_idle(struct fsl_dma_chan *fsl_chan) 132 { 133 u32 sr = get_sr(fsl_chan); 134 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); 135 } 136 137 static void dma_start(struct fsl_dma_chan *fsl_chan) 138 { 139 u32 mr_set = 0;; 140 141 if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { 142 DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32); 143 mr_set |= FSL_DMA_MR_EMP_EN; 144 } else 145 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 146 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 147 & ~FSL_DMA_MR_EMP_EN, 32); 148 149 if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT) 150 mr_set |= FSL_DMA_MR_EMS_EN; 151 else 152 mr_set |= FSL_DMA_MR_CS; 153 154 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 155 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 156 | mr_set, 32); 157 } 158 159 static void dma_halt(struct fsl_dma_chan *fsl_chan) 160 { 161 int i = 0; 162 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 163 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA, 164 32); 165 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 166 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS 167 | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32); 168 169 while (!dma_is_idle(fsl_chan) && (i++ < 100)) 170 udelay(10); 171 if (i >= 100 && !dma_is_idle(fsl_chan)) 172 dev_err(fsl_chan->dev, "DMA halt timeout!\n"); 173 } 174 175 static void set_ld_eol(struct fsl_dma_chan *fsl_chan, 176 struct fsl_desc_sw *desc) 177 { 178 desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, 179 DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL, 180 64); 181 } 182 183 static void append_ld_queue(struct fsl_dma_chan *fsl_chan, 184 struct fsl_desc_sw *new_desc) 185 { 186 struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev); 187 188 if (list_empty(&fsl_chan->ld_queue)) 189 return; 190 191 /* Link to the new descriptor physical address and 192 * Enable End-of-segment interrupt for 193 * the last link descriptor. 194 * (the previous node's next link descriptor) 195 * 196 * For FSL_DMA_IP_83xx, the snoop enable bit need be set. 197 */ 198 queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan, 199 new_desc->async_tx.phys | FSL_DMA_EOSIE | 200 (((fsl_chan->feature & FSL_DMA_IP_MASK) 201 == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64); 202 } 203 204 /** 205 * fsl_chan_set_src_loop_size - Set source address hold transfer size 206 * @fsl_chan : Freescale DMA channel 207 * @size : Address loop size, 0 for disable loop 208 * 209 * The set source address hold transfer size. The source 210 * address hold or loop transfer size is when the DMA transfer 211 * data from source address (SA), if the loop size is 4, the DMA will 212 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, 213 * SA + 1 ... and so on. 214 */ 215 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size) 216 { 217 switch (size) { 218 case 0: 219 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 220 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & 221 (~FSL_DMA_MR_SAHE), 32); 222 break; 223 case 1: 224 case 2: 225 case 4: 226 case 8: 227 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 228 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | 229 FSL_DMA_MR_SAHE | (__ilog2(size) << 14), 230 32); 231 break; 232 } 233 } 234 235 /** 236 * fsl_chan_set_dest_loop_size - Set destination address hold transfer size 237 * @fsl_chan : Freescale DMA channel 238 * @size : Address loop size, 0 for disable loop 239 * 240 * The set destination address hold transfer size. The destination 241 * address hold or loop transfer size is when the DMA transfer 242 * data to destination address (TA), if the loop size is 4, the DMA will 243 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, 244 * TA + 1 ... and so on. 245 */ 246 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size) 247 { 248 switch (size) { 249 case 0: 250 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 251 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & 252 (~FSL_DMA_MR_DAHE), 32); 253 break; 254 case 1: 255 case 2: 256 case 4: 257 case 8: 258 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 259 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | 260 FSL_DMA_MR_DAHE | (__ilog2(size) << 16), 261 32); 262 break; 263 } 264 } 265 266 /** 267 * fsl_chan_toggle_ext_pause - Toggle channel external pause status 268 * @fsl_chan : Freescale DMA channel 269 * @size : Pause control size, 0 for disable external pause control. 270 * The maximum is 1024. 271 * 272 * The Freescale DMA channel can be controlled by the external 273 * signal DREQ#. The pause control size is how many bytes are allowed 274 * to transfer before pausing the channel, after which a new assertion 275 * of DREQ# resumes channel operation. 276 */ 277 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size) 278 { 279 if (size > 1024) 280 return; 281 282 if (size) { 283 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 284 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) 285 | ((__ilog2(size) << 24) & 0x0f000000), 286 32); 287 fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; 288 } else 289 fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; 290 } 291 292 /** 293 * fsl_chan_toggle_ext_start - Toggle channel external start status 294 * @fsl_chan : Freescale DMA channel 295 * @enable : 0 is disabled, 1 is enabled. 296 * 297 * If enable the external start, the channel can be started by an 298 * external DMA start pin. So the dma_start() does not start the 299 * transfer immediately. The DMA channel will wait for the 300 * control pin asserted. 301 */ 302 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable) 303 { 304 if (enable) 305 fsl_chan->feature |= FSL_DMA_CHAN_START_EXT; 306 else 307 fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT; 308 } 309 310 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) 311 { 312 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); 313 struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan); 314 unsigned long flags; 315 dma_cookie_t cookie; 316 317 /* cookie increment and adding to ld_queue must be atomic */ 318 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 319 320 cookie = fsl_chan->common.cookie; 321 cookie++; 322 if (cookie < 0) 323 cookie = 1; 324 desc->async_tx.cookie = cookie; 325 fsl_chan->common.cookie = desc->async_tx.cookie; 326 327 append_ld_queue(fsl_chan, desc); 328 list_splice_init(&desc->async_tx.tx_list, fsl_chan->ld_queue.prev); 329 330 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 331 332 return cookie; 333 } 334 335 /** 336 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. 337 * @fsl_chan : Freescale DMA channel 338 * 339 * Return - The descriptor allocated. NULL for failed. 340 */ 341 static struct fsl_desc_sw *fsl_dma_alloc_descriptor( 342 struct fsl_dma_chan *fsl_chan) 343 { 344 dma_addr_t pdesc; 345 struct fsl_desc_sw *desc_sw; 346 347 desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc); 348 if (desc_sw) { 349 memset(desc_sw, 0, sizeof(struct fsl_desc_sw)); 350 dma_async_tx_descriptor_init(&desc_sw->async_tx, 351 &fsl_chan->common); 352 desc_sw->async_tx.tx_submit = fsl_dma_tx_submit; 353 INIT_LIST_HEAD(&desc_sw->async_tx.tx_list); 354 desc_sw->async_tx.phys = pdesc; 355 } 356 357 return desc_sw; 358 } 359 360 361 /** 362 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. 363 * @fsl_chan : Freescale DMA channel 364 * 365 * This function will create a dma pool for descriptor allocation. 366 * 367 * Return - The number of descriptors allocated. 368 */ 369 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan) 370 { 371 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 372 LIST_HEAD(tmp_list); 373 374 /* We need the descriptor to be aligned to 32bytes 375 * for meeting FSL DMA specification requirement. 376 */ 377 fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool", 378 fsl_chan->dev, sizeof(struct fsl_desc_sw), 379 32, 0); 380 if (!fsl_chan->desc_pool) { 381 dev_err(fsl_chan->dev, "No memory for channel %d " 382 "descriptor dma pool.\n", fsl_chan->id); 383 return 0; 384 } 385 386 return 1; 387 } 388 389 /** 390 * fsl_dma_free_chan_resources - Free all resources of the channel. 391 * @fsl_chan : Freescale DMA channel 392 */ 393 static void fsl_dma_free_chan_resources(struct dma_chan *chan) 394 { 395 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 396 struct fsl_desc_sw *desc, *_desc; 397 unsigned long flags; 398 399 dev_dbg(fsl_chan->dev, "Free all channel resources.\n"); 400 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 401 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { 402 #ifdef FSL_DMA_LD_DEBUG 403 dev_dbg(fsl_chan->dev, 404 "LD %p will be released.\n", desc); 405 #endif 406 list_del(&desc->node); 407 /* free link descriptor */ 408 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); 409 } 410 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 411 dma_pool_destroy(fsl_chan->desc_pool); 412 } 413 414 static struct dma_async_tx_descriptor * 415 fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags) 416 { 417 struct fsl_dma_chan *fsl_chan; 418 struct fsl_desc_sw *new; 419 420 if (!chan) 421 return NULL; 422 423 fsl_chan = to_fsl_chan(chan); 424 425 new = fsl_dma_alloc_descriptor(fsl_chan); 426 if (!new) { 427 dev_err(fsl_chan->dev, "No free memory for link descriptor\n"); 428 return NULL; 429 } 430 431 new->async_tx.cookie = -EBUSY; 432 new->async_tx.flags = flags; 433 434 /* Insert the link descriptor to the LD ring */ 435 list_add_tail(&new->node, &new->async_tx.tx_list); 436 437 /* Set End-of-link to the last link descriptor of new list*/ 438 set_ld_eol(fsl_chan, new); 439 440 return &new->async_tx; 441 } 442 443 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy( 444 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, 445 size_t len, unsigned long flags) 446 { 447 struct fsl_dma_chan *fsl_chan; 448 struct fsl_desc_sw *first = NULL, *prev = NULL, *new; 449 size_t copy; 450 LIST_HEAD(link_chain); 451 452 if (!chan) 453 return NULL; 454 455 if (!len) 456 return NULL; 457 458 fsl_chan = to_fsl_chan(chan); 459 460 do { 461 462 /* Allocate the link descriptor from DMA pool */ 463 new = fsl_dma_alloc_descriptor(fsl_chan); 464 if (!new) { 465 dev_err(fsl_chan->dev, 466 "No free memory for link descriptor\n"); 467 return NULL; 468 } 469 #ifdef FSL_DMA_LD_DEBUG 470 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new); 471 #endif 472 473 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); 474 475 set_desc_cnt(fsl_chan, &new->hw, copy); 476 set_desc_src(fsl_chan, &new->hw, dma_src); 477 set_desc_dest(fsl_chan, &new->hw, dma_dest); 478 479 if (!first) 480 first = new; 481 else 482 set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys); 483 484 new->async_tx.cookie = 0; 485 async_tx_ack(&new->async_tx); 486 487 prev = new; 488 len -= copy; 489 dma_src += copy; 490 dma_dest += copy; 491 492 /* Insert the link descriptor to the LD ring */ 493 list_add_tail(&new->node, &first->async_tx.tx_list); 494 } while (len); 495 496 new->async_tx.flags = flags; /* client is in control of this ack */ 497 new->async_tx.cookie = -EBUSY; 498 499 /* Set End-of-link to the last link descriptor of new list*/ 500 set_ld_eol(fsl_chan, new); 501 502 return first ? &first->async_tx : NULL; 503 } 504 505 /** 506 * fsl_dma_update_completed_cookie - Update the completed cookie. 507 * @fsl_chan : Freescale DMA channel 508 */ 509 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan) 510 { 511 struct fsl_desc_sw *cur_desc, *desc; 512 dma_addr_t ld_phy; 513 514 ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK; 515 516 if (ld_phy) { 517 cur_desc = NULL; 518 list_for_each_entry(desc, &fsl_chan->ld_queue, node) 519 if (desc->async_tx.phys == ld_phy) { 520 cur_desc = desc; 521 break; 522 } 523 524 if (cur_desc && cur_desc->async_tx.cookie) { 525 if (dma_is_idle(fsl_chan)) 526 fsl_chan->completed_cookie = 527 cur_desc->async_tx.cookie; 528 else 529 fsl_chan->completed_cookie = 530 cur_desc->async_tx.cookie - 1; 531 } 532 } 533 } 534 535 /** 536 * fsl_chan_ld_cleanup - Clean up link descriptors 537 * @fsl_chan : Freescale DMA channel 538 * 539 * This function clean up the ld_queue of DMA channel. 540 * If 'in_intr' is set, the function will move the link descriptor to 541 * the recycle list. Otherwise, free it directly. 542 */ 543 static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan) 544 { 545 struct fsl_desc_sw *desc, *_desc; 546 unsigned long flags; 547 548 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 549 550 dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n", 551 fsl_chan->completed_cookie); 552 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) { 553 dma_async_tx_callback callback; 554 void *callback_param; 555 556 if (dma_async_is_complete(desc->async_tx.cookie, 557 fsl_chan->completed_cookie, fsl_chan->common.cookie) 558 == DMA_IN_PROGRESS) 559 break; 560 561 callback = desc->async_tx.callback; 562 callback_param = desc->async_tx.callback_param; 563 564 /* Remove from ld_queue list */ 565 list_del(&desc->node); 566 567 dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n", 568 desc); 569 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys); 570 571 /* Run the link descriptor callback function */ 572 if (callback) { 573 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 574 dev_dbg(fsl_chan->dev, "link descriptor %p callback\n", 575 desc); 576 callback(callback_param); 577 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 578 } 579 } 580 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 581 } 582 583 /** 584 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue. 585 * @fsl_chan : Freescale DMA channel 586 */ 587 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan) 588 { 589 struct list_head *ld_node; 590 dma_addr_t next_dest_addr; 591 unsigned long flags; 592 593 if (!dma_is_idle(fsl_chan)) 594 return; 595 596 dma_halt(fsl_chan); 597 598 /* If there are some link descriptors 599 * not transfered in queue. We need to start it. 600 */ 601 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 602 603 /* Find the first un-transfer desciptor */ 604 for (ld_node = fsl_chan->ld_queue.next; 605 (ld_node != &fsl_chan->ld_queue) 606 && (dma_async_is_complete( 607 to_fsl_desc(ld_node)->async_tx.cookie, 608 fsl_chan->completed_cookie, 609 fsl_chan->common.cookie) == DMA_SUCCESS); 610 ld_node = ld_node->next); 611 612 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 613 614 if (ld_node != &fsl_chan->ld_queue) { 615 /* Get the ld start address from ld_queue */ 616 next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys; 617 dev_dbg(fsl_chan->dev, "xfer LDs staring from %p\n", 618 (void *)next_dest_addr); 619 set_cdar(fsl_chan, next_dest_addr); 620 dma_start(fsl_chan); 621 } else { 622 set_cdar(fsl_chan, 0); 623 set_ndar(fsl_chan, 0); 624 } 625 } 626 627 /** 628 * fsl_dma_memcpy_issue_pending - Issue the DMA start command 629 * @fsl_chan : Freescale DMA channel 630 */ 631 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan) 632 { 633 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 634 635 #ifdef FSL_DMA_LD_DEBUG 636 struct fsl_desc_sw *ld; 637 unsigned long flags; 638 639 spin_lock_irqsave(&fsl_chan->desc_lock, flags); 640 if (list_empty(&fsl_chan->ld_queue)) { 641 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 642 return; 643 } 644 645 dev_dbg(fsl_chan->dev, "--memcpy issue--\n"); 646 list_for_each_entry(ld, &fsl_chan->ld_queue, node) { 647 int i; 648 dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n", 649 fsl_chan->id, ld->async_tx.phys); 650 for (i = 0; i < 8; i++) 651 dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n", 652 i, *(((u32 *)&ld->hw) + i)); 653 } 654 dev_dbg(fsl_chan->dev, "----------------\n"); 655 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags); 656 #endif 657 658 fsl_chan_xfer_ld_queue(fsl_chan); 659 } 660 661 /** 662 * fsl_dma_is_complete - Determine the DMA status 663 * @fsl_chan : Freescale DMA channel 664 */ 665 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan, 666 dma_cookie_t cookie, 667 dma_cookie_t *done, 668 dma_cookie_t *used) 669 { 670 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan); 671 dma_cookie_t last_used; 672 dma_cookie_t last_complete; 673 674 fsl_chan_ld_cleanup(fsl_chan); 675 676 last_used = chan->cookie; 677 last_complete = fsl_chan->completed_cookie; 678 679 if (done) 680 *done = last_complete; 681 682 if (used) 683 *used = last_used; 684 685 return dma_async_is_complete(cookie, last_complete, last_used); 686 } 687 688 static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data) 689 { 690 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; 691 u32 stat; 692 int update_cookie = 0; 693 int xfer_ld_q = 0; 694 695 stat = get_sr(fsl_chan); 696 dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n", 697 fsl_chan->id, stat); 698 set_sr(fsl_chan, stat); /* Clear the event register */ 699 700 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); 701 if (!stat) 702 return IRQ_NONE; 703 704 if (stat & FSL_DMA_SR_TE) 705 dev_err(fsl_chan->dev, "Transfer Error!\n"); 706 707 /* Programming Error 708 * The DMA_INTERRUPT async_tx is a NULL transfer, which will 709 * triger a PE interrupt. 710 */ 711 if (stat & FSL_DMA_SR_PE) { 712 dev_dbg(fsl_chan->dev, "event: Programming Error INT\n"); 713 if (get_bcr(fsl_chan) == 0) { 714 /* BCR register is 0, this is a DMA_INTERRUPT async_tx. 715 * Now, update the completed cookie, and continue the 716 * next uncompleted transfer. 717 */ 718 update_cookie = 1; 719 xfer_ld_q = 1; 720 } 721 stat &= ~FSL_DMA_SR_PE; 722 } 723 724 /* If the link descriptor segment transfer finishes, 725 * we will recycle the used descriptor. 726 */ 727 if (stat & FSL_DMA_SR_EOSI) { 728 dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n"); 729 dev_dbg(fsl_chan->dev, "event: clndar %p, nlndar %p\n", 730 (void *)get_cdar(fsl_chan), (void *)get_ndar(fsl_chan)); 731 stat &= ~FSL_DMA_SR_EOSI; 732 update_cookie = 1; 733 } 734 735 /* For MPC8349, EOCDI event need to update cookie 736 * and start the next transfer if it exist. 737 */ 738 if (stat & FSL_DMA_SR_EOCDI) { 739 dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n"); 740 stat &= ~FSL_DMA_SR_EOCDI; 741 update_cookie = 1; 742 xfer_ld_q = 1; 743 } 744 745 /* If it current transfer is the end-of-transfer, 746 * we should clear the Channel Start bit for 747 * prepare next transfer. 748 */ 749 if (stat & FSL_DMA_SR_EOLNI) { 750 dev_dbg(fsl_chan->dev, "event: End-of-link INT\n"); 751 stat &= ~FSL_DMA_SR_EOLNI; 752 xfer_ld_q = 1; 753 } 754 755 if (update_cookie) 756 fsl_dma_update_completed_cookie(fsl_chan); 757 if (xfer_ld_q) 758 fsl_chan_xfer_ld_queue(fsl_chan); 759 if (stat) 760 dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n", 761 stat); 762 763 dev_dbg(fsl_chan->dev, "event: Exit\n"); 764 tasklet_schedule(&fsl_chan->tasklet); 765 return IRQ_HANDLED; 766 } 767 768 static irqreturn_t fsl_dma_do_interrupt(int irq, void *data) 769 { 770 struct fsl_dma_device *fdev = (struct fsl_dma_device *)data; 771 u32 gsr; 772 int ch_nr; 773 774 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base) 775 : in_le32(fdev->reg_base); 776 ch_nr = (32 - ffs(gsr)) / 8; 777 778 return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq, 779 fdev->chan[ch_nr]) : IRQ_NONE; 780 } 781 782 static void dma_do_tasklet(unsigned long data) 783 { 784 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data; 785 fsl_chan_ld_cleanup(fsl_chan); 786 } 787 788 static void fsl_dma_callback_test(void *param) 789 { 790 struct fsl_dma_chan *fsl_chan = param; 791 if (fsl_chan) 792 dev_dbg(fsl_chan->dev, "selftest: callback is ok!\n"); 793 } 794 795 static int fsl_dma_self_test(struct fsl_dma_chan *fsl_chan) 796 { 797 struct dma_chan *chan; 798 int err = 0; 799 dma_addr_t dma_dest, dma_src; 800 dma_cookie_t cookie; 801 u8 *src, *dest; 802 int i; 803 size_t test_size; 804 struct dma_async_tx_descriptor *tx1, *tx2, *tx3; 805 806 test_size = 4096; 807 808 src = kmalloc(test_size * 2, GFP_KERNEL); 809 if (!src) { 810 dev_err(fsl_chan->dev, 811 "selftest: Cannot alloc memory for test!\n"); 812 err = -ENOMEM; 813 goto out; 814 } 815 816 dest = src + test_size; 817 818 for (i = 0; i < test_size; i++) 819 src[i] = (u8) i; 820 821 chan = &fsl_chan->common; 822 823 if (fsl_dma_alloc_chan_resources(chan) < 1) { 824 dev_err(fsl_chan->dev, 825 "selftest: Cannot alloc resources for DMA\n"); 826 err = -ENODEV; 827 goto out; 828 } 829 830 /* TX 1 */ 831 dma_src = dma_map_single(fsl_chan->dev, src, test_size / 2, 832 DMA_TO_DEVICE); 833 dma_dest = dma_map_single(fsl_chan->dev, dest, test_size / 2, 834 DMA_FROM_DEVICE); 835 tx1 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 2, 0); 836 async_tx_ack(tx1); 837 838 cookie = fsl_dma_tx_submit(tx1); 839 fsl_dma_memcpy_issue_pending(chan); 840 msleep(2); 841 842 if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) { 843 dev_err(fsl_chan->dev, "selftest: Time out!\n"); 844 err = -ENODEV; 845 goto out; 846 } 847 848 /* Test free and re-alloc channel resources */ 849 fsl_dma_free_chan_resources(chan); 850 851 if (fsl_dma_alloc_chan_resources(chan) < 1) { 852 dev_err(fsl_chan->dev, 853 "selftest: Cannot alloc resources for DMA\n"); 854 err = -ENODEV; 855 goto free_resources; 856 } 857 858 /* Continue to test 859 * TX 2 860 */ 861 dma_src = dma_map_single(fsl_chan->dev, src + test_size / 2, 862 test_size / 4, DMA_TO_DEVICE); 863 dma_dest = dma_map_single(fsl_chan->dev, dest + test_size / 2, 864 test_size / 4, DMA_FROM_DEVICE); 865 tx2 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0); 866 async_tx_ack(tx2); 867 868 /* TX 3 */ 869 dma_src = dma_map_single(fsl_chan->dev, src + test_size * 3 / 4, 870 test_size / 4, DMA_TO_DEVICE); 871 dma_dest = dma_map_single(fsl_chan->dev, dest + test_size * 3 / 4, 872 test_size / 4, DMA_FROM_DEVICE); 873 tx3 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0); 874 async_tx_ack(tx3); 875 876 /* Interrupt tx test */ 877 tx1 = fsl_dma_prep_interrupt(chan, 0); 878 async_tx_ack(tx1); 879 cookie = fsl_dma_tx_submit(tx1); 880 881 /* Test exchanging the prepared tx sort */ 882 cookie = fsl_dma_tx_submit(tx3); 883 cookie = fsl_dma_tx_submit(tx2); 884 885 if (dma_has_cap(DMA_INTERRUPT, ((struct fsl_dma_device *) 886 dev_get_drvdata(fsl_chan->dev->parent))->common.cap_mask)) { 887 tx3->callback = fsl_dma_callback_test; 888 tx3->callback_param = fsl_chan; 889 } 890 fsl_dma_memcpy_issue_pending(chan); 891 msleep(2); 892 893 if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) { 894 dev_err(fsl_chan->dev, "selftest: Time out!\n"); 895 err = -ENODEV; 896 goto free_resources; 897 } 898 899 err = memcmp(src, dest, test_size); 900 if (err) { 901 for (i = 0; (*(src + i) == *(dest + i)) && (i < test_size); 902 i++); 903 dev_err(fsl_chan->dev, "selftest: Test failed, data %d/%ld is " 904 "error! src 0x%x, dest 0x%x\n", 905 i, (long)test_size, *(src + i), *(dest + i)); 906 } 907 908 free_resources: 909 fsl_dma_free_chan_resources(chan); 910 out: 911 kfree(src); 912 return err; 913 } 914 915 static int __devinit of_fsl_dma_chan_probe(struct of_device *dev, 916 const struct of_device_id *match) 917 { 918 struct fsl_dma_device *fdev; 919 struct fsl_dma_chan *new_fsl_chan; 920 int err; 921 922 fdev = dev_get_drvdata(dev->dev.parent); 923 BUG_ON(!fdev); 924 925 /* alloc channel */ 926 new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL); 927 if (!new_fsl_chan) { 928 dev_err(&dev->dev, "No free memory for allocating " 929 "dma channels!\n"); 930 err = -ENOMEM; 931 goto err; 932 } 933 934 /* get dma channel register base */ 935 err = of_address_to_resource(dev->node, 0, &new_fsl_chan->reg); 936 if (err) { 937 dev_err(&dev->dev, "Can't get %s property 'reg'\n", 938 dev->node->full_name); 939 goto err; 940 } 941 942 new_fsl_chan->feature = *(u32 *)match->data; 943 944 if (!fdev->feature) 945 fdev->feature = new_fsl_chan->feature; 946 947 /* If the DMA device's feature is different than its channels', 948 * report the bug. 949 */ 950 WARN_ON(fdev->feature != new_fsl_chan->feature); 951 952 new_fsl_chan->dev = &dev->dev; 953 new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start, 954 new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1); 955 956 new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7; 957 if (new_fsl_chan->id > FSL_DMA_MAX_CHANS_PER_DEVICE) { 958 dev_err(&dev->dev, "There is no %d channel!\n", 959 new_fsl_chan->id); 960 err = -EINVAL; 961 goto err; 962 } 963 fdev->chan[new_fsl_chan->id] = new_fsl_chan; 964 tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet, 965 (unsigned long)new_fsl_chan); 966 967 /* Init the channel */ 968 dma_init(new_fsl_chan); 969 970 /* Clear cdar registers */ 971 set_cdar(new_fsl_chan, 0); 972 973 switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) { 974 case FSL_DMA_IP_85XX: 975 new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start; 976 new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; 977 case FSL_DMA_IP_83XX: 978 new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size; 979 new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size; 980 } 981 982 spin_lock_init(&new_fsl_chan->desc_lock); 983 INIT_LIST_HEAD(&new_fsl_chan->ld_queue); 984 985 new_fsl_chan->common.device = &fdev->common; 986 987 /* Add the channel to DMA device channel list */ 988 list_add_tail(&new_fsl_chan->common.device_node, 989 &fdev->common.channels); 990 fdev->common.chancnt++; 991 992 new_fsl_chan->irq = irq_of_parse_and_map(dev->node, 0); 993 if (new_fsl_chan->irq != NO_IRQ) { 994 err = request_irq(new_fsl_chan->irq, 995 &fsl_dma_chan_do_interrupt, IRQF_SHARED, 996 "fsldma-channel", new_fsl_chan); 997 if (err) { 998 dev_err(&dev->dev, "DMA channel %s request_irq error " 999 "with return %d\n", dev->node->full_name, err); 1000 goto err; 1001 } 1002 } 1003 1004 err = fsl_dma_self_test(new_fsl_chan); 1005 if (err) 1006 goto err; 1007 1008 dev_info(&dev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id, 1009 match->compatible, new_fsl_chan->irq); 1010 1011 return 0; 1012 err: 1013 dma_halt(new_fsl_chan); 1014 iounmap(new_fsl_chan->reg_base); 1015 free_irq(new_fsl_chan->irq, new_fsl_chan); 1016 list_del(&new_fsl_chan->common.device_node); 1017 kfree(new_fsl_chan); 1018 return err; 1019 } 1020 1021 const u32 mpc8540_dma_ip_feature = FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN; 1022 const u32 mpc8349_dma_ip_feature = FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN; 1023 1024 static struct of_device_id of_fsl_dma_chan_ids[] = { 1025 { 1026 .compatible = "fsl,eloplus-dma-channel", 1027 .data = (void *)&mpc8540_dma_ip_feature, 1028 }, 1029 { 1030 .compatible = "fsl,elo-dma-channel", 1031 .data = (void *)&mpc8349_dma_ip_feature, 1032 }, 1033 {} 1034 }; 1035 1036 static struct of_platform_driver of_fsl_dma_chan_driver = { 1037 .name = "of-fsl-dma-channel", 1038 .match_table = of_fsl_dma_chan_ids, 1039 .probe = of_fsl_dma_chan_probe, 1040 }; 1041 1042 static __init int of_fsl_dma_chan_init(void) 1043 { 1044 return of_register_platform_driver(&of_fsl_dma_chan_driver); 1045 } 1046 1047 static int __devinit of_fsl_dma_probe(struct of_device *dev, 1048 const struct of_device_id *match) 1049 { 1050 int err; 1051 unsigned int irq; 1052 struct fsl_dma_device *fdev; 1053 1054 fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL); 1055 if (!fdev) { 1056 dev_err(&dev->dev, "No enough memory for 'priv'\n"); 1057 err = -ENOMEM; 1058 goto err; 1059 } 1060 fdev->dev = &dev->dev; 1061 INIT_LIST_HEAD(&fdev->common.channels); 1062 1063 /* get DMA controller register base */ 1064 err = of_address_to_resource(dev->node, 0, &fdev->reg); 1065 if (err) { 1066 dev_err(&dev->dev, "Can't get %s property 'reg'\n", 1067 dev->node->full_name); 1068 goto err; 1069 } 1070 1071 dev_info(&dev->dev, "Probe the Freescale DMA driver for %s " 1072 "controller at %p...\n", 1073 match->compatible, (void *)fdev->reg.start); 1074 fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end 1075 - fdev->reg.start + 1); 1076 1077 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); 1078 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask); 1079 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; 1080 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; 1081 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; 1082 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; 1083 fdev->common.device_is_tx_complete = fsl_dma_is_complete; 1084 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; 1085 fdev->common.dev = &dev->dev; 1086 1087 irq = irq_of_parse_and_map(dev->node, 0); 1088 if (irq != NO_IRQ) { 1089 err = request_irq(irq, &fsl_dma_do_interrupt, IRQF_SHARED, 1090 "fsldma-device", fdev); 1091 if (err) { 1092 dev_err(&dev->dev, "DMA device request_irq error " 1093 "with return %d\n", err); 1094 goto err; 1095 } 1096 } 1097 1098 dev_set_drvdata(&(dev->dev), fdev); 1099 of_platform_bus_probe(dev->node, of_fsl_dma_chan_ids, &dev->dev); 1100 1101 dma_async_device_register(&fdev->common); 1102 return 0; 1103 1104 err: 1105 iounmap(fdev->reg_base); 1106 kfree(fdev); 1107 return err; 1108 } 1109 1110 static struct of_device_id of_fsl_dma_ids[] = { 1111 { .compatible = "fsl,eloplus-dma", }, 1112 { .compatible = "fsl,elo-dma", }, 1113 {} 1114 }; 1115 1116 static struct of_platform_driver of_fsl_dma_driver = { 1117 .name = "of-fsl-dma", 1118 .match_table = of_fsl_dma_ids, 1119 .probe = of_fsl_dma_probe, 1120 }; 1121 1122 static __init int of_fsl_dma_init(void) 1123 { 1124 return of_register_platform_driver(&of_fsl_dma_driver); 1125 } 1126 1127 subsys_initcall(of_fsl_dma_chan_init); 1128 subsys_initcall(of_fsl_dma_init); 1129