xref: /openbmc/linux/drivers/dma/fsldma.c (revision 07934481)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA contorller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/interrupt.h>
31 #include <linux/dmaengine.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmapool.h>
35 #include <linux/of_platform.h>
36 
37 #include <asm/fsldma.h>
38 #include "fsldma.h"
39 
40 static void dma_init(struct fsldma_chan *chan)
41 {
42 	/* Reset the channel */
43 	DMA_OUT(chan, &chan->regs->mr, 0, 32);
44 
45 	switch (chan->feature & FSL_DMA_IP_MASK) {
46 	case FSL_DMA_IP_85XX:
47 		/* Set the channel to below modes:
48 		 * EIE - Error interrupt enable
49 		 * EOSIE - End of segments interrupt enable (basic mode)
50 		 * EOLNIE - End of links interrupt enable
51 		 */
52 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EIE
53 				| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
54 		break;
55 	case FSL_DMA_IP_83XX:
56 		/* Set the channel to below modes:
57 		 * EOTIE - End-of-transfer interrupt enable
58 		 * PRC_RM - PCI read multiple
59 		 */
60 		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
61 				| FSL_DMA_MR_PRC_RM, 32);
62 		break;
63 	}
64 }
65 
66 static void set_sr(struct fsldma_chan *chan, u32 val)
67 {
68 	DMA_OUT(chan, &chan->regs->sr, val, 32);
69 }
70 
71 static u32 get_sr(struct fsldma_chan *chan)
72 {
73 	return DMA_IN(chan, &chan->regs->sr, 32);
74 }
75 
76 static void set_desc_cnt(struct fsldma_chan *chan,
77 				struct fsl_dma_ld_hw *hw, u32 count)
78 {
79 	hw->count = CPU_TO_DMA(chan, count, 32);
80 }
81 
82 static void set_desc_src(struct fsldma_chan *chan,
83 				struct fsl_dma_ld_hw *hw, dma_addr_t src)
84 {
85 	u64 snoop_bits;
86 
87 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
88 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
89 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
90 }
91 
92 static void set_desc_dst(struct fsldma_chan *chan,
93 				struct fsl_dma_ld_hw *hw, dma_addr_t dst)
94 {
95 	u64 snoop_bits;
96 
97 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
98 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
99 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
100 }
101 
102 static void set_desc_next(struct fsldma_chan *chan,
103 				struct fsl_dma_ld_hw *hw, dma_addr_t next)
104 {
105 	u64 snoop_bits;
106 
107 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
108 		? FSL_DMA_SNEN : 0;
109 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
110 }
111 
112 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
113 {
114 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
115 }
116 
117 static dma_addr_t get_cdar(struct fsldma_chan *chan)
118 {
119 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
120 }
121 
122 static dma_addr_t get_ndar(struct fsldma_chan *chan)
123 {
124 	return DMA_IN(chan, &chan->regs->ndar, 64);
125 }
126 
127 static u32 get_bcr(struct fsldma_chan *chan)
128 {
129 	return DMA_IN(chan, &chan->regs->bcr, 32);
130 }
131 
132 static int dma_is_idle(struct fsldma_chan *chan)
133 {
134 	u32 sr = get_sr(chan);
135 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
136 }
137 
138 static void dma_start(struct fsldma_chan *chan)
139 {
140 	u32 mode;
141 
142 	mode = DMA_IN(chan, &chan->regs->mr, 32);
143 
144 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
145 		if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
146 			DMA_OUT(chan, &chan->regs->bcr, 0, 32);
147 			mode |= FSL_DMA_MR_EMP_EN;
148 		} else {
149 			mode &= ~FSL_DMA_MR_EMP_EN;
150 		}
151 	}
152 
153 	if (chan->feature & FSL_DMA_CHAN_START_EXT)
154 		mode |= FSL_DMA_MR_EMS_EN;
155 	else
156 		mode |= FSL_DMA_MR_CS;
157 
158 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
159 }
160 
161 static void dma_halt(struct fsldma_chan *chan)
162 {
163 	u32 mode;
164 	int i;
165 
166 	mode = DMA_IN(chan, &chan->regs->mr, 32);
167 	mode |= FSL_DMA_MR_CA;
168 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
169 
170 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
171 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
172 
173 	for (i = 0; i < 100; i++) {
174 		if (dma_is_idle(chan))
175 			return;
176 
177 		udelay(10);
178 	}
179 
180 	if (!dma_is_idle(chan))
181 		dev_err(chan->dev, "DMA halt timeout!\n");
182 }
183 
184 static void set_ld_eol(struct fsldma_chan *chan,
185 			struct fsl_desc_sw *desc)
186 {
187 	u64 snoop_bits;
188 
189 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
190 		? FSL_DMA_SNEN : 0;
191 
192 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
193 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
194 			| snoop_bits, 64);
195 }
196 
197 /**
198  * fsl_chan_set_src_loop_size - Set source address hold transfer size
199  * @chan : Freescale DMA channel
200  * @size     : Address loop size, 0 for disable loop
201  *
202  * The set source address hold transfer size. The source
203  * address hold or loop transfer size is when the DMA transfer
204  * data from source address (SA), if the loop size is 4, the DMA will
205  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
206  * SA + 1 ... and so on.
207  */
208 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
209 {
210 	u32 mode;
211 
212 	mode = DMA_IN(chan, &chan->regs->mr, 32);
213 
214 	switch (size) {
215 	case 0:
216 		mode &= ~FSL_DMA_MR_SAHE;
217 		break;
218 	case 1:
219 	case 2:
220 	case 4:
221 	case 8:
222 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
223 		break;
224 	}
225 
226 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
227 }
228 
229 /**
230  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
231  * @chan : Freescale DMA channel
232  * @size     : Address loop size, 0 for disable loop
233  *
234  * The set destination address hold transfer size. The destination
235  * address hold or loop transfer size is when the DMA transfer
236  * data to destination address (TA), if the loop size is 4, the DMA will
237  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
238  * TA + 1 ... and so on.
239  */
240 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
241 {
242 	u32 mode;
243 
244 	mode = DMA_IN(chan, &chan->regs->mr, 32);
245 
246 	switch (size) {
247 	case 0:
248 		mode &= ~FSL_DMA_MR_DAHE;
249 		break;
250 	case 1:
251 	case 2:
252 	case 4:
253 	case 8:
254 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
255 		break;
256 	}
257 
258 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
259 }
260 
261 /**
262  * fsl_chan_set_request_count - Set DMA Request Count for external control
263  * @chan : Freescale DMA channel
264  * @size     : Number of bytes to transfer in a single request
265  *
266  * The Freescale DMA channel can be controlled by the external signal DREQ#.
267  * The DMA request count is how many bytes are allowed to transfer before
268  * pausing the channel, after which a new assertion of DREQ# resumes channel
269  * operation.
270  *
271  * A size of 0 disables external pause control. The maximum size is 1024.
272  */
273 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
274 {
275 	u32 mode;
276 
277 	BUG_ON(size > 1024);
278 
279 	mode = DMA_IN(chan, &chan->regs->mr, 32);
280 	mode |= (__ilog2(size) << 24) & 0x0f000000;
281 
282 	DMA_OUT(chan, &chan->regs->mr, mode, 32);
283 }
284 
285 /**
286  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
287  * @chan : Freescale DMA channel
288  * @enable   : 0 is disabled, 1 is enabled.
289  *
290  * The Freescale DMA channel can be controlled by the external signal DREQ#.
291  * The DMA Request Count feature should be used in addition to this feature
292  * to set the number of bytes to transfer before pausing the channel.
293  */
294 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
295 {
296 	if (enable)
297 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
298 	else
299 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
300 }
301 
302 /**
303  * fsl_chan_toggle_ext_start - Toggle channel external start status
304  * @chan : Freescale DMA channel
305  * @enable   : 0 is disabled, 1 is enabled.
306  *
307  * If enable the external start, the channel can be started by an
308  * external DMA start pin. So the dma_start() does not start the
309  * transfer immediately. The DMA channel will wait for the
310  * control pin asserted.
311  */
312 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
313 {
314 	if (enable)
315 		chan->feature |= FSL_DMA_CHAN_START_EXT;
316 	else
317 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
318 }
319 
320 static void append_ld_queue(struct fsldma_chan *chan,
321 			    struct fsl_desc_sw *desc)
322 {
323 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
324 
325 	if (list_empty(&chan->ld_pending))
326 		goto out_splice;
327 
328 	/*
329 	 * Add the hardware descriptor to the chain of hardware descriptors
330 	 * that already exists in memory.
331 	 *
332 	 * This will un-set the EOL bit of the existing transaction, and the
333 	 * last link in this transaction will become the EOL descriptor.
334 	 */
335 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
336 
337 	/*
338 	 * Add the software descriptor and all children to the list
339 	 * of pending transactions
340 	 */
341 out_splice:
342 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
343 }
344 
345 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
346 {
347 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
348 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
349 	struct fsl_desc_sw *child;
350 	unsigned long flags;
351 	dma_cookie_t cookie;
352 
353 	spin_lock_irqsave(&chan->desc_lock, flags);
354 
355 	/*
356 	 * assign cookies to all of the software descriptors
357 	 * that make up this transaction
358 	 */
359 	cookie = chan->common.cookie;
360 	list_for_each_entry(child, &desc->tx_list, node) {
361 		cookie++;
362 		if (cookie < 0)
363 			cookie = 1;
364 
365 		child->async_tx.cookie = cookie;
366 	}
367 
368 	chan->common.cookie = cookie;
369 
370 	/* put this transaction onto the tail of the pending queue */
371 	append_ld_queue(chan, desc);
372 
373 	spin_unlock_irqrestore(&chan->desc_lock, flags);
374 
375 	return cookie;
376 }
377 
378 /**
379  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
380  * @chan : Freescale DMA channel
381  *
382  * Return - The descriptor allocated. NULL for failed.
383  */
384 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
385 					struct fsldma_chan *chan)
386 {
387 	struct fsl_desc_sw *desc;
388 	dma_addr_t pdesc;
389 
390 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
391 	if (!desc) {
392 		dev_dbg(chan->dev, "out of memory for link desc\n");
393 		return NULL;
394 	}
395 
396 	memset(desc, 0, sizeof(*desc));
397 	INIT_LIST_HEAD(&desc->tx_list);
398 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
399 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
400 	desc->async_tx.phys = pdesc;
401 
402 	return desc;
403 }
404 
405 
406 /**
407  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
408  * @chan : Freescale DMA channel
409  *
410  * This function will create a dma pool for descriptor allocation.
411  *
412  * Return - The number of descriptors allocated.
413  */
414 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
415 {
416 	struct fsldma_chan *chan = to_fsl_chan(dchan);
417 
418 	/* Has this channel already been allocated? */
419 	if (chan->desc_pool)
420 		return 1;
421 
422 	/*
423 	 * We need the descriptor to be aligned to 32bytes
424 	 * for meeting FSL DMA specification requirement.
425 	 */
426 	chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
427 					  chan->dev,
428 					  sizeof(struct fsl_desc_sw),
429 					  __alignof__(struct fsl_desc_sw), 0);
430 	if (!chan->desc_pool) {
431 		dev_err(chan->dev, "unable to allocate channel %d "
432 				   "descriptor pool\n", chan->id);
433 		return -ENOMEM;
434 	}
435 
436 	/* there is at least one descriptor free to be allocated */
437 	return 1;
438 }
439 
440 /**
441  * fsldma_free_desc_list - Free all descriptors in a queue
442  * @chan: Freescae DMA channel
443  * @list: the list to free
444  *
445  * LOCKING: must hold chan->desc_lock
446  */
447 static void fsldma_free_desc_list(struct fsldma_chan *chan,
448 				  struct list_head *list)
449 {
450 	struct fsl_desc_sw *desc, *_desc;
451 
452 	list_for_each_entry_safe(desc, _desc, list, node) {
453 		list_del(&desc->node);
454 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
455 	}
456 }
457 
458 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
459 					  struct list_head *list)
460 {
461 	struct fsl_desc_sw *desc, *_desc;
462 
463 	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
464 		list_del(&desc->node);
465 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
466 	}
467 }
468 
469 /**
470  * fsl_dma_free_chan_resources - Free all resources of the channel.
471  * @chan : Freescale DMA channel
472  */
473 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
474 {
475 	struct fsldma_chan *chan = to_fsl_chan(dchan);
476 	unsigned long flags;
477 
478 	dev_dbg(chan->dev, "Free all channel resources.\n");
479 	spin_lock_irqsave(&chan->desc_lock, flags);
480 	fsldma_free_desc_list(chan, &chan->ld_pending);
481 	fsldma_free_desc_list(chan, &chan->ld_running);
482 	spin_unlock_irqrestore(&chan->desc_lock, flags);
483 
484 	dma_pool_destroy(chan->desc_pool);
485 	chan->desc_pool = NULL;
486 }
487 
488 static struct dma_async_tx_descriptor *
489 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
490 {
491 	struct fsldma_chan *chan;
492 	struct fsl_desc_sw *new;
493 
494 	if (!dchan)
495 		return NULL;
496 
497 	chan = to_fsl_chan(dchan);
498 
499 	new = fsl_dma_alloc_descriptor(chan);
500 	if (!new) {
501 		dev_err(chan->dev, "No free memory for link descriptor\n");
502 		return NULL;
503 	}
504 
505 	new->async_tx.cookie = -EBUSY;
506 	new->async_tx.flags = flags;
507 
508 	/* Insert the link descriptor to the LD ring */
509 	list_add_tail(&new->node, &new->tx_list);
510 
511 	/* Set End-of-link to the last link descriptor of new list*/
512 	set_ld_eol(chan, new);
513 
514 	return &new->async_tx;
515 }
516 
517 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
518 	struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src,
519 	size_t len, unsigned long flags)
520 {
521 	struct fsldma_chan *chan;
522 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
523 	size_t copy;
524 
525 	if (!dchan)
526 		return NULL;
527 
528 	if (!len)
529 		return NULL;
530 
531 	chan = to_fsl_chan(dchan);
532 
533 	do {
534 
535 		/* Allocate the link descriptor from DMA pool */
536 		new = fsl_dma_alloc_descriptor(chan);
537 		if (!new) {
538 			dev_err(chan->dev,
539 					"No free memory for link descriptor\n");
540 			goto fail;
541 		}
542 #ifdef FSL_DMA_LD_DEBUG
543 		dev_dbg(chan->dev, "new link desc alloc %p\n", new);
544 #endif
545 
546 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
547 
548 		set_desc_cnt(chan, &new->hw, copy);
549 		set_desc_src(chan, &new->hw, dma_src);
550 		set_desc_dst(chan, &new->hw, dma_dst);
551 
552 		if (!first)
553 			first = new;
554 		else
555 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
556 
557 		new->async_tx.cookie = 0;
558 		async_tx_ack(&new->async_tx);
559 
560 		prev = new;
561 		len -= copy;
562 		dma_src += copy;
563 		dma_dst += copy;
564 
565 		/* Insert the link descriptor to the LD ring */
566 		list_add_tail(&new->node, &first->tx_list);
567 	} while (len);
568 
569 	new->async_tx.flags = flags; /* client is in control of this ack */
570 	new->async_tx.cookie = -EBUSY;
571 
572 	/* Set End-of-link to the last link descriptor of new list*/
573 	set_ld_eol(chan, new);
574 
575 	return &first->async_tx;
576 
577 fail:
578 	if (!first)
579 		return NULL;
580 
581 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
582 	return NULL;
583 }
584 
585 /**
586  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
587  * @chan: DMA channel
588  * @sgl: scatterlist to transfer to/from
589  * @sg_len: number of entries in @scatterlist
590  * @direction: DMA direction
591  * @flags: DMAEngine flags
592  *
593  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
594  * DMA_SLAVE API, this gets the device-specific information from the
595  * chan->private variable.
596  */
597 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
598 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
599 	enum dma_data_direction direction, unsigned long flags)
600 {
601 	struct fsldma_chan *chan;
602 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
603 	struct fsl_dma_slave *slave;
604 	size_t copy;
605 
606 	int i;
607 	struct scatterlist *sg;
608 	size_t sg_used;
609 	size_t hw_used;
610 	struct fsl_dma_hw_addr *hw;
611 	dma_addr_t dma_dst, dma_src;
612 
613 	if (!dchan)
614 		return NULL;
615 
616 	if (!dchan->private)
617 		return NULL;
618 
619 	chan = to_fsl_chan(dchan);
620 	slave = dchan->private;
621 
622 	if (list_empty(&slave->addresses))
623 		return NULL;
624 
625 	hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
626 	hw_used = 0;
627 
628 	/*
629 	 * Build the hardware transaction to copy from the scatterlist to
630 	 * the hardware, or from the hardware to the scatterlist
631 	 *
632 	 * If you are copying from the hardware to the scatterlist and it
633 	 * takes two hardware entries to fill an entire page, then both
634 	 * hardware entries will be coalesced into the same page
635 	 *
636 	 * If you are copying from the scatterlist to the hardware and a
637 	 * single page can fill two hardware entries, then the data will
638 	 * be read out of the page into the first hardware entry, and so on
639 	 */
640 	for_each_sg(sgl, sg, sg_len, i) {
641 		sg_used = 0;
642 
643 		/* Loop until the entire scatterlist entry is used */
644 		while (sg_used < sg_dma_len(sg)) {
645 
646 			/*
647 			 * If we've used up the current hardware address/length
648 			 * pair, we need to load a new one
649 			 *
650 			 * This is done in a while loop so that descriptors with
651 			 * length == 0 will be skipped
652 			 */
653 			while (hw_used >= hw->length) {
654 
655 				/*
656 				 * If the current hardware entry is the last
657 				 * entry in the list, we're finished
658 				 */
659 				if (list_is_last(&hw->entry, &slave->addresses))
660 					goto finished;
661 
662 				/* Get the next hardware address/length pair */
663 				hw = list_entry(hw->entry.next,
664 						struct fsl_dma_hw_addr, entry);
665 				hw_used = 0;
666 			}
667 
668 			/* Allocate the link descriptor from DMA pool */
669 			new = fsl_dma_alloc_descriptor(chan);
670 			if (!new) {
671 				dev_err(chan->dev, "No free memory for "
672 						       "link descriptor\n");
673 				goto fail;
674 			}
675 #ifdef FSL_DMA_LD_DEBUG
676 			dev_dbg(chan->dev, "new link desc alloc %p\n", new);
677 #endif
678 
679 			/*
680 			 * Calculate the maximum number of bytes to transfer,
681 			 * making sure it is less than the DMA controller limit
682 			 */
683 			copy = min_t(size_t, sg_dma_len(sg) - sg_used,
684 					     hw->length - hw_used);
685 			copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
686 
687 			/*
688 			 * DMA_FROM_DEVICE
689 			 * from the hardware to the scatterlist
690 			 *
691 			 * DMA_TO_DEVICE
692 			 * from the scatterlist to the hardware
693 			 */
694 			if (direction == DMA_FROM_DEVICE) {
695 				dma_src = hw->address + hw_used;
696 				dma_dst = sg_dma_address(sg) + sg_used;
697 			} else {
698 				dma_src = sg_dma_address(sg) + sg_used;
699 				dma_dst = hw->address + hw_used;
700 			}
701 
702 			/* Fill in the descriptor */
703 			set_desc_cnt(chan, &new->hw, copy);
704 			set_desc_src(chan, &new->hw, dma_src);
705 			set_desc_dst(chan, &new->hw, dma_dst);
706 
707 			/*
708 			 * If this is not the first descriptor, chain the
709 			 * current descriptor after the previous descriptor
710 			 */
711 			if (!first) {
712 				first = new;
713 			} else {
714 				set_desc_next(chan, &prev->hw,
715 					      new->async_tx.phys);
716 			}
717 
718 			new->async_tx.cookie = 0;
719 			async_tx_ack(&new->async_tx);
720 
721 			prev = new;
722 			sg_used += copy;
723 			hw_used += copy;
724 
725 			/* Insert the link descriptor into the LD ring */
726 			list_add_tail(&new->node, &first->tx_list);
727 		}
728 	}
729 
730 finished:
731 
732 	/* All of the hardware address/length pairs had length == 0 */
733 	if (!first || !new)
734 		return NULL;
735 
736 	new->async_tx.flags = flags;
737 	new->async_tx.cookie = -EBUSY;
738 
739 	/* Set End-of-link to the last link descriptor of new list */
740 	set_ld_eol(chan, new);
741 
742 	/* Enable extra controller features */
743 	if (chan->set_src_loop_size)
744 		chan->set_src_loop_size(chan, slave->src_loop_size);
745 
746 	if (chan->set_dst_loop_size)
747 		chan->set_dst_loop_size(chan, slave->dst_loop_size);
748 
749 	if (chan->toggle_ext_start)
750 		chan->toggle_ext_start(chan, slave->external_start);
751 
752 	if (chan->toggle_ext_pause)
753 		chan->toggle_ext_pause(chan, slave->external_pause);
754 
755 	if (chan->set_request_count)
756 		chan->set_request_count(chan, slave->request_count);
757 
758 	return &first->async_tx;
759 
760 fail:
761 	/* If first was not set, then we failed to allocate the very first
762 	 * descriptor, and we're done */
763 	if (!first)
764 		return NULL;
765 
766 	/*
767 	 * First is set, so all of the descriptors we allocated have been added
768 	 * to first->tx_list, INCLUDING "first" itself. Therefore we
769 	 * must traverse the list backwards freeing each descriptor in turn
770 	 *
771 	 * We're re-using variables for the loop, oh well
772 	 */
773 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
774 	return NULL;
775 }
776 
777 static int fsl_dma_device_control(struct dma_chan *dchan,
778 				  enum dma_ctrl_cmd cmd)
779 {
780 	struct fsldma_chan *chan;
781 	unsigned long flags;
782 
783 	/* Only supports DMA_TERMINATE_ALL */
784 	if (cmd != DMA_TERMINATE_ALL)
785 		return -ENXIO;
786 
787 	if (!dchan)
788 		return -EINVAL;
789 
790 	chan = to_fsl_chan(dchan);
791 
792 	/* Halt the DMA engine */
793 	dma_halt(chan);
794 
795 	spin_lock_irqsave(&chan->desc_lock, flags);
796 
797 	/* Remove and free all of the descriptors in the LD queue */
798 	fsldma_free_desc_list(chan, &chan->ld_pending);
799 	fsldma_free_desc_list(chan, &chan->ld_running);
800 
801 	spin_unlock_irqrestore(&chan->desc_lock, flags);
802 
803 	return 0;
804 }
805 
806 /**
807  * fsl_dma_update_completed_cookie - Update the completed cookie.
808  * @chan : Freescale DMA channel
809  *
810  * CONTEXT: hardirq
811  */
812 static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
813 {
814 	struct fsl_desc_sw *desc;
815 	unsigned long flags;
816 	dma_cookie_t cookie;
817 
818 	spin_lock_irqsave(&chan->desc_lock, flags);
819 
820 	if (list_empty(&chan->ld_running)) {
821 		dev_dbg(chan->dev, "no running descriptors\n");
822 		goto out_unlock;
823 	}
824 
825 	/* Get the last descriptor, update the cookie to that */
826 	desc = to_fsl_desc(chan->ld_running.prev);
827 	if (dma_is_idle(chan))
828 		cookie = desc->async_tx.cookie;
829 	else {
830 		cookie = desc->async_tx.cookie - 1;
831 		if (unlikely(cookie < DMA_MIN_COOKIE))
832 			cookie = DMA_MAX_COOKIE;
833 	}
834 
835 	chan->completed_cookie = cookie;
836 
837 out_unlock:
838 	spin_unlock_irqrestore(&chan->desc_lock, flags);
839 }
840 
841 /**
842  * fsldma_desc_status - Check the status of a descriptor
843  * @chan: Freescale DMA channel
844  * @desc: DMA SW descriptor
845  *
846  * This function will return the status of the given descriptor
847  */
848 static enum dma_status fsldma_desc_status(struct fsldma_chan *chan,
849 					  struct fsl_desc_sw *desc)
850 {
851 	return dma_async_is_complete(desc->async_tx.cookie,
852 				     chan->completed_cookie,
853 				     chan->common.cookie);
854 }
855 
856 /**
857  * fsl_chan_ld_cleanup - Clean up link descriptors
858  * @chan : Freescale DMA channel
859  *
860  * This function clean up the ld_queue of DMA channel.
861  */
862 static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
863 {
864 	struct fsl_desc_sw *desc, *_desc;
865 	unsigned long flags;
866 
867 	spin_lock_irqsave(&chan->desc_lock, flags);
868 
869 	dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie);
870 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
871 		dma_async_tx_callback callback;
872 		void *callback_param;
873 
874 		if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS)
875 			break;
876 
877 		/* Remove from the list of running transactions */
878 		list_del(&desc->node);
879 
880 		/* Run the link descriptor callback function */
881 		callback = desc->async_tx.callback;
882 		callback_param = desc->async_tx.callback_param;
883 		if (callback) {
884 			spin_unlock_irqrestore(&chan->desc_lock, flags);
885 			dev_dbg(chan->dev, "LD %p callback\n", desc);
886 			callback(callback_param);
887 			spin_lock_irqsave(&chan->desc_lock, flags);
888 		}
889 
890 		/* Run any dependencies, then free the descriptor */
891 		dma_run_dependencies(&desc->async_tx);
892 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
893 	}
894 
895 	spin_unlock_irqrestore(&chan->desc_lock, flags);
896 }
897 
898 /**
899  * fsl_chan_xfer_ld_queue - transfer any pending transactions
900  * @chan : Freescale DMA channel
901  *
902  * This will make sure that any pending transactions will be run.
903  * If the DMA controller is idle, it will be started. Otherwise,
904  * the DMA controller's interrupt handler will start any pending
905  * transactions when it becomes idle.
906  */
907 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
908 {
909 	struct fsl_desc_sw *desc;
910 	unsigned long flags;
911 
912 	spin_lock_irqsave(&chan->desc_lock, flags);
913 
914 	/*
915 	 * If the list of pending descriptors is empty, then we
916 	 * don't need to do any work at all
917 	 */
918 	if (list_empty(&chan->ld_pending)) {
919 		dev_dbg(chan->dev, "no pending LDs\n");
920 		goto out_unlock;
921 	}
922 
923 	/*
924 	 * The DMA controller is not idle, which means the interrupt
925 	 * handler will start any queued transactions when it runs
926 	 * at the end of the current transaction
927 	 */
928 	if (!dma_is_idle(chan)) {
929 		dev_dbg(chan->dev, "DMA controller still busy\n");
930 		goto out_unlock;
931 	}
932 
933 	/*
934 	 * TODO:
935 	 * make sure the dma_halt() function really un-wedges the
936 	 * controller as much as possible
937 	 */
938 	dma_halt(chan);
939 
940 	/*
941 	 * If there are some link descriptors which have not been
942 	 * transferred, we need to start the controller
943 	 */
944 
945 	/*
946 	 * Move all elements from the queue of pending transactions
947 	 * onto the list of running transactions
948 	 */
949 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
950 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
951 
952 	/*
953 	 * Program the descriptor's address into the DMA controller,
954 	 * then start the DMA transaction
955 	 */
956 	set_cdar(chan, desc->async_tx.phys);
957 	dma_start(chan);
958 
959 out_unlock:
960 	spin_unlock_irqrestore(&chan->desc_lock, flags);
961 }
962 
963 /**
964  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
965  * @chan : Freescale DMA channel
966  */
967 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
968 {
969 	struct fsldma_chan *chan = to_fsl_chan(dchan);
970 	fsl_chan_xfer_ld_queue(chan);
971 }
972 
973 /**
974  * fsl_tx_status - Determine the DMA status
975  * @chan : Freescale DMA channel
976  */
977 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
978 					dma_cookie_t cookie,
979 					struct dma_tx_state *txstate)
980 {
981 	struct fsldma_chan *chan = to_fsl_chan(dchan);
982 	dma_cookie_t last_used;
983 	dma_cookie_t last_complete;
984 
985 	fsl_chan_ld_cleanup(chan);
986 
987 	last_used = dchan->cookie;
988 	last_complete = chan->completed_cookie;
989 
990 	if (txstate) {
991 		txstate->last = last_complete;
992 		txstate->used = last_used;
993 		txstate->residue = 0;
994 	}
995 
996 	return dma_async_is_complete(cookie, last_complete, last_used);
997 }
998 
999 /*----------------------------------------------------------------------------*/
1000 /* Interrupt Handling                                                         */
1001 /*----------------------------------------------------------------------------*/
1002 
1003 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1004 {
1005 	struct fsldma_chan *chan = data;
1006 	int update_cookie = 0;
1007 	int xfer_ld_q = 0;
1008 	u32 stat;
1009 
1010 	/* save and clear the status register */
1011 	stat = get_sr(chan);
1012 	set_sr(chan, stat);
1013 	dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat);
1014 
1015 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1016 	if (!stat)
1017 		return IRQ_NONE;
1018 
1019 	if (stat & FSL_DMA_SR_TE)
1020 		dev_err(chan->dev, "Transfer Error!\n");
1021 
1022 	/*
1023 	 * Programming Error
1024 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1025 	 * triger a PE interrupt.
1026 	 */
1027 	if (stat & FSL_DMA_SR_PE) {
1028 		dev_dbg(chan->dev, "irq: Programming Error INT\n");
1029 		if (get_bcr(chan) == 0) {
1030 			/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1031 			 * Now, update the completed cookie, and continue the
1032 			 * next uncompleted transfer.
1033 			 */
1034 			update_cookie = 1;
1035 			xfer_ld_q = 1;
1036 		}
1037 		stat &= ~FSL_DMA_SR_PE;
1038 	}
1039 
1040 	/*
1041 	 * If the link descriptor segment transfer finishes,
1042 	 * we will recycle the used descriptor.
1043 	 */
1044 	if (stat & FSL_DMA_SR_EOSI) {
1045 		dev_dbg(chan->dev, "irq: End-of-segments INT\n");
1046 		dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1047 			(unsigned long long)get_cdar(chan),
1048 			(unsigned long long)get_ndar(chan));
1049 		stat &= ~FSL_DMA_SR_EOSI;
1050 		update_cookie = 1;
1051 	}
1052 
1053 	/*
1054 	 * For MPC8349, EOCDI event need to update cookie
1055 	 * and start the next transfer if it exist.
1056 	 */
1057 	if (stat & FSL_DMA_SR_EOCDI) {
1058 		dev_dbg(chan->dev, "irq: End-of-Chain link INT\n");
1059 		stat &= ~FSL_DMA_SR_EOCDI;
1060 		update_cookie = 1;
1061 		xfer_ld_q = 1;
1062 	}
1063 
1064 	/*
1065 	 * If it current transfer is the end-of-transfer,
1066 	 * we should clear the Channel Start bit for
1067 	 * prepare next transfer.
1068 	 */
1069 	if (stat & FSL_DMA_SR_EOLNI) {
1070 		dev_dbg(chan->dev, "irq: End-of-link INT\n");
1071 		stat &= ~FSL_DMA_SR_EOLNI;
1072 		xfer_ld_q = 1;
1073 	}
1074 
1075 	if (update_cookie)
1076 		fsl_dma_update_completed_cookie(chan);
1077 	if (xfer_ld_q)
1078 		fsl_chan_xfer_ld_queue(chan);
1079 	if (stat)
1080 		dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat);
1081 
1082 	dev_dbg(chan->dev, "irq: Exit\n");
1083 	tasklet_schedule(&chan->tasklet);
1084 	return IRQ_HANDLED;
1085 }
1086 
1087 static void dma_do_tasklet(unsigned long data)
1088 {
1089 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1090 	fsl_chan_ld_cleanup(chan);
1091 }
1092 
1093 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1094 {
1095 	struct fsldma_device *fdev = data;
1096 	struct fsldma_chan *chan;
1097 	unsigned int handled = 0;
1098 	u32 gsr, mask;
1099 	int i;
1100 
1101 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1102 						   : in_le32(fdev->regs);
1103 	mask = 0xff000000;
1104 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1105 
1106 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1107 		chan = fdev->chan[i];
1108 		if (!chan)
1109 			continue;
1110 
1111 		if (gsr & mask) {
1112 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1113 			fsldma_chan_irq(irq, chan);
1114 			handled++;
1115 		}
1116 
1117 		gsr &= ~mask;
1118 		mask >>= 8;
1119 	}
1120 
1121 	return IRQ_RETVAL(handled);
1122 }
1123 
1124 static void fsldma_free_irqs(struct fsldma_device *fdev)
1125 {
1126 	struct fsldma_chan *chan;
1127 	int i;
1128 
1129 	if (fdev->irq != NO_IRQ) {
1130 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1131 		free_irq(fdev->irq, fdev);
1132 		return;
1133 	}
1134 
1135 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1136 		chan = fdev->chan[i];
1137 		if (chan && chan->irq != NO_IRQ) {
1138 			dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id);
1139 			free_irq(chan->irq, chan);
1140 		}
1141 	}
1142 }
1143 
1144 static int fsldma_request_irqs(struct fsldma_device *fdev)
1145 {
1146 	struct fsldma_chan *chan;
1147 	int ret;
1148 	int i;
1149 
1150 	/* if we have a per-controller IRQ, use that */
1151 	if (fdev->irq != NO_IRQ) {
1152 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1153 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1154 				  "fsldma-controller", fdev);
1155 		return ret;
1156 	}
1157 
1158 	/* no per-controller IRQ, use the per-channel IRQs */
1159 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1160 		chan = fdev->chan[i];
1161 		if (!chan)
1162 			continue;
1163 
1164 		if (chan->irq == NO_IRQ) {
1165 			dev_err(fdev->dev, "no interrupts property defined for "
1166 					   "DMA channel %d. Please fix your "
1167 					   "device tree\n", chan->id);
1168 			ret = -ENODEV;
1169 			goto out_unwind;
1170 		}
1171 
1172 		dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id);
1173 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1174 				  "fsldma-chan", chan);
1175 		if (ret) {
1176 			dev_err(fdev->dev, "unable to request IRQ for DMA "
1177 					   "channel %d\n", chan->id);
1178 			goto out_unwind;
1179 		}
1180 	}
1181 
1182 	return 0;
1183 
1184 out_unwind:
1185 	for (/* none */; i >= 0; i--) {
1186 		chan = fdev->chan[i];
1187 		if (!chan)
1188 			continue;
1189 
1190 		if (chan->irq == NO_IRQ)
1191 			continue;
1192 
1193 		free_irq(chan->irq, chan);
1194 	}
1195 
1196 	return ret;
1197 }
1198 
1199 /*----------------------------------------------------------------------------*/
1200 /* OpenFirmware Subsystem                                                     */
1201 /*----------------------------------------------------------------------------*/
1202 
1203 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1204 	struct device_node *node, u32 feature, const char *compatible)
1205 {
1206 	struct fsldma_chan *chan;
1207 	struct resource res;
1208 	int err;
1209 
1210 	/* alloc channel */
1211 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1212 	if (!chan) {
1213 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1214 		err = -ENOMEM;
1215 		goto out_return;
1216 	}
1217 
1218 	/* ioremap registers for use */
1219 	chan->regs = of_iomap(node, 0);
1220 	if (!chan->regs) {
1221 		dev_err(fdev->dev, "unable to ioremap registers\n");
1222 		err = -ENOMEM;
1223 		goto out_free_chan;
1224 	}
1225 
1226 	err = of_address_to_resource(node, 0, &res);
1227 	if (err) {
1228 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1229 		goto out_iounmap_regs;
1230 	}
1231 
1232 	chan->feature = feature;
1233 	if (!fdev->feature)
1234 		fdev->feature = chan->feature;
1235 
1236 	/*
1237 	 * If the DMA device's feature is different than the feature
1238 	 * of its channels, report the bug
1239 	 */
1240 	WARN_ON(fdev->feature != chan->feature);
1241 
1242 	chan->dev = fdev->dev;
1243 	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1244 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1245 		dev_err(fdev->dev, "too many channels for device\n");
1246 		err = -EINVAL;
1247 		goto out_iounmap_regs;
1248 	}
1249 
1250 	fdev->chan[chan->id] = chan;
1251 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1252 
1253 	/* Initialize the channel */
1254 	dma_init(chan);
1255 
1256 	/* Clear cdar registers */
1257 	set_cdar(chan, 0);
1258 
1259 	switch (chan->feature & FSL_DMA_IP_MASK) {
1260 	case FSL_DMA_IP_85XX:
1261 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1262 	case FSL_DMA_IP_83XX:
1263 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1264 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1265 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1266 		chan->set_request_count = fsl_chan_set_request_count;
1267 	}
1268 
1269 	spin_lock_init(&chan->desc_lock);
1270 	INIT_LIST_HEAD(&chan->ld_pending);
1271 	INIT_LIST_HEAD(&chan->ld_running);
1272 
1273 	chan->common.device = &fdev->common;
1274 
1275 	/* find the IRQ line, if it exists in the device tree */
1276 	chan->irq = irq_of_parse_and_map(node, 0);
1277 
1278 	/* Add the channel to DMA device channel list */
1279 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1280 	fdev->common.chancnt++;
1281 
1282 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1283 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1284 
1285 	return 0;
1286 
1287 out_iounmap_regs:
1288 	iounmap(chan->regs);
1289 out_free_chan:
1290 	kfree(chan);
1291 out_return:
1292 	return err;
1293 }
1294 
1295 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1296 {
1297 	irq_dispose_mapping(chan->irq);
1298 	list_del(&chan->common.device_node);
1299 	iounmap(chan->regs);
1300 	kfree(chan);
1301 }
1302 
1303 static int __devinit fsldma_of_probe(struct of_device *op,
1304 			const struct of_device_id *match)
1305 {
1306 	struct fsldma_device *fdev;
1307 	struct device_node *child;
1308 	int err;
1309 
1310 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1311 	if (!fdev) {
1312 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1313 		err = -ENOMEM;
1314 		goto out_return;
1315 	}
1316 
1317 	fdev->dev = &op->dev;
1318 	INIT_LIST_HEAD(&fdev->common.channels);
1319 
1320 	/* ioremap the registers for use */
1321 	fdev->regs = of_iomap(op->node, 0);
1322 	if (!fdev->regs) {
1323 		dev_err(&op->dev, "unable to ioremap registers\n");
1324 		err = -ENOMEM;
1325 		goto out_free_fdev;
1326 	}
1327 
1328 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1329 	fdev->irq = irq_of_parse_and_map(op->node, 0);
1330 
1331 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1332 	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1333 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1334 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1335 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1336 	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1337 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1338 	fdev->common.device_tx_status = fsl_tx_status;
1339 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1340 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1341 	fdev->common.device_control = fsl_dma_device_control;
1342 	fdev->common.dev = &op->dev;
1343 
1344 	dev_set_drvdata(&op->dev, fdev);
1345 
1346 	/*
1347 	 * We cannot use of_platform_bus_probe() because there is no
1348 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1349 	 * channel object.
1350 	 */
1351 	for_each_child_of_node(op->node, child) {
1352 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1353 			fsl_dma_chan_probe(fdev, child,
1354 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1355 				"fsl,eloplus-dma-channel");
1356 		}
1357 
1358 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1359 			fsl_dma_chan_probe(fdev, child,
1360 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1361 				"fsl,elo-dma-channel");
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * Hookup the IRQ handler(s)
1367 	 *
1368 	 * If we have a per-controller interrupt, we prefer that to the
1369 	 * per-channel interrupts to reduce the number of shared interrupt
1370 	 * handlers on the same IRQ line
1371 	 */
1372 	err = fsldma_request_irqs(fdev);
1373 	if (err) {
1374 		dev_err(fdev->dev, "unable to request IRQs\n");
1375 		goto out_free_fdev;
1376 	}
1377 
1378 	dma_async_device_register(&fdev->common);
1379 	return 0;
1380 
1381 out_free_fdev:
1382 	irq_dispose_mapping(fdev->irq);
1383 	kfree(fdev);
1384 out_return:
1385 	return err;
1386 }
1387 
1388 static int fsldma_of_remove(struct of_device *op)
1389 {
1390 	struct fsldma_device *fdev;
1391 	unsigned int i;
1392 
1393 	fdev = dev_get_drvdata(&op->dev);
1394 	dma_async_device_unregister(&fdev->common);
1395 
1396 	fsldma_free_irqs(fdev);
1397 
1398 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1399 		if (fdev->chan[i])
1400 			fsl_dma_chan_remove(fdev->chan[i]);
1401 	}
1402 
1403 	iounmap(fdev->regs);
1404 	dev_set_drvdata(&op->dev, NULL);
1405 	kfree(fdev);
1406 
1407 	return 0;
1408 }
1409 
1410 static const struct of_device_id fsldma_of_ids[] = {
1411 	{ .compatible = "fsl,eloplus-dma", },
1412 	{ .compatible = "fsl,elo-dma", },
1413 	{}
1414 };
1415 
1416 static struct of_platform_driver fsldma_of_driver = {
1417 	.name		= "fsl-elo-dma",
1418 	.match_table	= fsldma_of_ids,
1419 	.probe		= fsldma_of_probe,
1420 	.remove		= fsldma_of_remove,
1421 };
1422 
1423 /*----------------------------------------------------------------------------*/
1424 /* Module Init / Exit                                                         */
1425 /*----------------------------------------------------------------------------*/
1426 
1427 static __init int fsldma_init(void)
1428 {
1429 	int ret;
1430 
1431 	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1432 
1433 	ret = of_register_platform_driver(&fsldma_of_driver);
1434 	if (ret)
1435 		pr_err("fsldma: failed to register platform driver\n");
1436 
1437 	return ret;
1438 }
1439 
1440 static void __exit fsldma_exit(void)
1441 {
1442 	of_unregister_platform_driver(&fsldma_of_driver);
1443 }
1444 
1445 subsys_initcall(fsldma_init);
1446 module_exit(fsldma_exit);
1447 
1448 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1449 MODULE_LICENSE("GPL");
1450