xref: /openbmc/linux/drivers/dma/fsldma.c (revision 06ed5c2b)
1 /*
2  * Freescale MPC85xx, MPC83xx DMA Engine support
3  *
4  * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5  *
6  * Author:
7  *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8  *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9  *
10  * Description:
11  *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12  *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13  *   The support for MPC8349 DMA controller is also added.
14  *
15  * This driver instructs the DMA controller to issue the PCI Read Multiple
16  * command for PCI read operations, instead of using the default PCI Read Line
17  * command. Please be aware that this setting may result in read pre-fetching
18  * on some platforms.
19  *
20  * This is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  */
26 
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 
40 #include "dmaengine.h"
41 #include "fsldma.h"
42 
43 #define chan_dbg(chan, fmt, arg...)					\
44 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...)					\
46 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47 
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49 
50 /*
51  * Register Helpers
52  */
53 
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 	DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58 
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 	return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63 
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 	DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68 
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 	return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73 
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78 
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83 
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 	DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88 
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 	return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93 
94 /*
95  * Descriptor Helpers
96  */
97 
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 				struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 	hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103 
104 static void set_desc_src(struct fsldma_chan *chan,
105 			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 	u64 snoop_bits;
108 
109 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113 
114 static void set_desc_dst(struct fsldma_chan *chan,
115 			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 	u64 snoop_bits;
118 
119 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123 
124 static void set_desc_next(struct fsldma_chan *chan,
125 			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 	u64 snoop_bits;
128 
129 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 		? FSL_DMA_SNEN : 0;
131 	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133 
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 	u64 snoop_bits;
137 
138 	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 		? FSL_DMA_SNEN : 0;
140 
141 	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 			| snoop_bits, 64);
144 }
145 
146 /*
147  * DMA Engine Hardware Control Helpers
148  */
149 
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 	/* Reset the channel */
153 	set_mr(chan, 0);
154 
155 	switch (chan->feature & FSL_DMA_IP_MASK) {
156 	case FSL_DMA_IP_85XX:
157 		/* Set the channel to below modes:
158 		 * EIE - Error interrupt enable
159 		 * EOLNIE - End of links interrupt enable
160 		 * BWC - Bandwidth sharing among channels
161 		 */
162 		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 			| FSL_DMA_MR_EOLNIE);
164 		break;
165 	case FSL_DMA_IP_83XX:
166 		/* Set the channel to below modes:
167 		 * EOTIE - End-of-transfer interrupt enable
168 		 * PRC_RM - PCI read multiple
169 		 */
170 		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 		break;
172 	}
173 }
174 
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 	u32 sr = get_sr(chan);
178 	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180 
181 /*
182  * Start the DMA controller
183  *
184  * Preconditions:
185  * - the CDAR register must point to the start descriptor
186  * - the MRn[CS] bit must be cleared
187  */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 	u32 mode;
191 
192 	mode = get_mr(chan);
193 
194 	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 		set_bcr(chan, 0);
196 		mode |= FSL_DMA_MR_EMP_EN;
197 	} else {
198 		mode &= ~FSL_DMA_MR_EMP_EN;
199 	}
200 
201 	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 		mode |= FSL_DMA_MR_EMS_EN;
203 	} else {
204 		mode &= ~FSL_DMA_MR_EMS_EN;
205 		mode |= FSL_DMA_MR_CS;
206 	}
207 
208 	set_mr(chan, mode);
209 }
210 
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 	u32 mode;
214 	int i;
215 
216 	/* read the mode register */
217 	mode = get_mr(chan);
218 
219 	/*
220 	 * The 85xx controller supports channel abort, which will stop
221 	 * the current transfer. On 83xx, this bit is the transfer error
222 	 * mask bit, which should not be changed.
223 	 */
224 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 		mode |= FSL_DMA_MR_CA;
226 		set_mr(chan, mode);
227 
228 		mode &= ~FSL_DMA_MR_CA;
229 	}
230 
231 	/* stop the DMA controller */
232 	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 	set_mr(chan, mode);
234 
235 	/* wait for the DMA controller to become idle */
236 	for (i = 0; i < 100; i++) {
237 		if (dma_is_idle(chan))
238 			return;
239 
240 		udelay(10);
241 	}
242 
243 	if (!dma_is_idle(chan))
244 		chan_err(chan, "DMA halt timeout!\n");
245 }
246 
247 /**
248  * fsl_chan_set_src_loop_size - Set source address hold transfer size
249  * @chan : Freescale DMA channel
250  * @size     : Address loop size, 0 for disable loop
251  *
252  * The set source address hold transfer size. The source
253  * address hold or loop transfer size is when the DMA transfer
254  * data from source address (SA), if the loop size is 4, the DMA will
255  * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256  * SA + 1 ... and so on.
257  */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 	u32 mode;
261 
262 	mode = get_mr(chan);
263 
264 	switch (size) {
265 	case 0:
266 		mode &= ~FSL_DMA_MR_SAHE;
267 		break;
268 	case 1:
269 	case 2:
270 	case 4:
271 	case 8:
272 		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 		break;
274 	}
275 
276 	set_mr(chan, mode);
277 }
278 
279 /**
280  * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281  * @chan : Freescale DMA channel
282  * @size     : Address loop size, 0 for disable loop
283  *
284  * The set destination address hold transfer size. The destination
285  * address hold or loop transfer size is when the DMA transfer
286  * data to destination address (TA), if the loop size is 4, the DMA will
287  * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288  * TA + 1 ... and so on.
289  */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292 	u32 mode;
293 
294 	mode = get_mr(chan);
295 
296 	switch (size) {
297 	case 0:
298 		mode &= ~FSL_DMA_MR_DAHE;
299 		break;
300 	case 1:
301 	case 2:
302 	case 4:
303 	case 8:
304 		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 		break;
306 	}
307 
308 	set_mr(chan, mode);
309 }
310 
311 /**
312  * fsl_chan_set_request_count - Set DMA Request Count for external control
313  * @chan : Freescale DMA channel
314  * @size     : Number of bytes to transfer in a single request
315  *
316  * The Freescale DMA channel can be controlled by the external signal DREQ#.
317  * The DMA request count is how many bytes are allowed to transfer before
318  * pausing the channel, after which a new assertion of DREQ# resumes channel
319  * operation.
320  *
321  * A size of 0 disables external pause control. The maximum size is 1024.
322  */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325 	u32 mode;
326 
327 	BUG_ON(size > 1024);
328 
329 	mode = get_mr(chan);
330 	mode |= (__ilog2(size) << 24) & 0x0f000000;
331 
332 	set_mr(chan, mode);
333 }
334 
335 /**
336  * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337  * @chan : Freescale DMA channel
338  * @enable   : 0 is disabled, 1 is enabled.
339  *
340  * The Freescale DMA channel can be controlled by the external signal DREQ#.
341  * The DMA Request Count feature should be used in addition to this feature
342  * to set the number of bytes to transfer before pausing the channel.
343  */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346 	if (enable)
347 		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 	else
349 		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351 
352 /**
353  * fsl_chan_toggle_ext_start - Toggle channel external start status
354  * @chan : Freescale DMA channel
355  * @enable   : 0 is disabled, 1 is enabled.
356  *
357  * If enable the external start, the channel can be started by an
358  * external DMA start pin. So the dma_start() does not start the
359  * transfer immediately. The DMA channel will wait for the
360  * control pin asserted.
361  */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364 	if (enable)
365 		chan->feature |= FSL_DMA_CHAN_START_EXT;
366 	else
367 		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369 
370 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
371 {
372 	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
373 
374 	if (list_empty(&chan->ld_pending))
375 		goto out_splice;
376 
377 	/*
378 	 * Add the hardware descriptor to the chain of hardware descriptors
379 	 * that already exists in memory.
380 	 *
381 	 * This will un-set the EOL bit of the existing transaction, and the
382 	 * last link in this transaction will become the EOL descriptor.
383 	 */
384 	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
385 
386 	/*
387 	 * Add the software descriptor and all children to the list
388 	 * of pending transactions
389 	 */
390 out_splice:
391 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
392 }
393 
394 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
395 {
396 	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
397 	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
398 	struct fsl_desc_sw *child;
399 	dma_cookie_t cookie = -EINVAL;
400 
401 	spin_lock_bh(&chan->desc_lock);
402 
403 #ifdef CONFIG_PM
404 	if (unlikely(chan->pm_state != RUNNING)) {
405 		chan_dbg(chan, "cannot submit due to suspend\n");
406 		spin_unlock_bh(&chan->desc_lock);
407 		return -1;
408 	}
409 #endif
410 
411 	/*
412 	 * assign cookies to all of the software descriptors
413 	 * that make up this transaction
414 	 */
415 	list_for_each_entry(child, &desc->tx_list, node) {
416 		cookie = dma_cookie_assign(&child->async_tx);
417 	}
418 
419 	/* put this transaction onto the tail of the pending queue */
420 	append_ld_queue(chan, desc);
421 
422 	spin_unlock_bh(&chan->desc_lock);
423 
424 	return cookie;
425 }
426 
427 /**
428  * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
429  * @chan : Freescale DMA channel
430  * @desc: descriptor to be freed
431  */
432 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
433 		struct fsl_desc_sw *desc)
434 {
435 	list_del(&desc->node);
436 	chan_dbg(chan, "LD %p free\n", desc);
437 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
438 }
439 
440 /**
441  * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
442  * @chan : Freescale DMA channel
443  *
444  * Return - The descriptor allocated. NULL for failed.
445  */
446 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
447 {
448 	struct fsl_desc_sw *desc;
449 	dma_addr_t pdesc;
450 
451 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
452 	if (!desc) {
453 		chan_dbg(chan, "out of memory for link descriptor\n");
454 		return NULL;
455 	}
456 
457 	memset(desc, 0, sizeof(*desc));
458 	INIT_LIST_HEAD(&desc->tx_list);
459 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
460 	desc->async_tx.tx_submit = fsl_dma_tx_submit;
461 	desc->async_tx.phys = pdesc;
462 
463 	chan_dbg(chan, "LD %p allocated\n", desc);
464 
465 	return desc;
466 }
467 
468 /**
469  * fsldma_clean_completed_descriptor - free all descriptors which
470  * has been completed and acked
471  * @chan: Freescale DMA channel
472  *
473  * This function is used on all completed and acked descriptors.
474  * All descriptors should only be freed in this function.
475  */
476 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
477 {
478 	struct fsl_desc_sw *desc, *_desc;
479 
480 	/* Run the callback for each descriptor, in order */
481 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
482 		if (async_tx_test_ack(&desc->async_tx))
483 			fsl_dma_free_descriptor(chan, desc);
484 }
485 
486 /**
487  * fsldma_run_tx_complete_actions - cleanup a single link descriptor
488  * @chan: Freescale DMA channel
489  * @desc: descriptor to cleanup and free
490  * @cookie: Freescale DMA transaction identifier
491  *
492  * This function is used on a descriptor which has been executed by the DMA
493  * controller. It will run any callbacks, submit any dependencies.
494  */
495 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
496 		struct fsl_desc_sw *desc, dma_cookie_t cookie)
497 {
498 	struct dma_async_tx_descriptor *txd = &desc->async_tx;
499 	dma_cookie_t ret = cookie;
500 
501 	BUG_ON(txd->cookie < 0);
502 
503 	if (txd->cookie > 0) {
504 		ret = txd->cookie;
505 
506 		/* Run the link descriptor callback function */
507 		if (txd->callback) {
508 			chan_dbg(chan, "LD %p callback\n", desc);
509 			txd->callback(txd->callback_param);
510 		}
511 	}
512 
513 	/* Run any dependencies */
514 	dma_run_dependencies(txd);
515 
516 	return ret;
517 }
518 
519 /**
520  * fsldma_clean_running_descriptor - move the completed descriptor from
521  * ld_running to ld_completed
522  * @chan: Freescale DMA channel
523  * @desc: the descriptor which is completed
524  *
525  * Free the descriptor directly if acked by async_tx api, or move it to
526  * queue ld_completed.
527  */
528 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
529 		struct fsl_desc_sw *desc)
530 {
531 	/* Remove from the list of transactions */
532 	list_del(&desc->node);
533 
534 	/*
535 	 * the client is allowed to attach dependent operations
536 	 * until 'ack' is set
537 	 */
538 	if (!async_tx_test_ack(&desc->async_tx)) {
539 		/*
540 		 * Move this descriptor to the list of descriptors which is
541 		 * completed, but still awaiting the 'ack' bit to be set.
542 		 */
543 		list_add_tail(&desc->node, &chan->ld_completed);
544 		return;
545 	}
546 
547 	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
548 }
549 
550 /**
551  * fsl_chan_xfer_ld_queue - transfer any pending transactions
552  * @chan : Freescale DMA channel
553  *
554  * HARDWARE STATE: idle
555  * LOCKING: must hold chan->desc_lock
556  */
557 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
558 {
559 	struct fsl_desc_sw *desc;
560 
561 	/*
562 	 * If the list of pending descriptors is empty, then we
563 	 * don't need to do any work at all
564 	 */
565 	if (list_empty(&chan->ld_pending)) {
566 		chan_dbg(chan, "no pending LDs\n");
567 		return;
568 	}
569 
570 	/*
571 	 * The DMA controller is not idle, which means that the interrupt
572 	 * handler will start any queued transactions when it runs after
573 	 * this transaction finishes
574 	 */
575 	if (!chan->idle) {
576 		chan_dbg(chan, "DMA controller still busy\n");
577 		return;
578 	}
579 
580 	/*
581 	 * If there are some link descriptors which have not been
582 	 * transferred, we need to start the controller
583 	 */
584 
585 	/*
586 	 * Move all elements from the queue of pending transactions
587 	 * onto the list of running transactions
588 	 */
589 	chan_dbg(chan, "idle, starting controller\n");
590 	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
591 	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
592 
593 	/*
594 	 * The 85xx DMA controller doesn't clear the channel start bit
595 	 * automatically at the end of a transfer. Therefore we must clear
596 	 * it in software before starting the transfer.
597 	 */
598 	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
599 		u32 mode;
600 
601 		mode = get_mr(chan);
602 		mode &= ~FSL_DMA_MR_CS;
603 		set_mr(chan, mode);
604 	}
605 
606 	/*
607 	 * Program the descriptor's address into the DMA controller,
608 	 * then start the DMA transaction
609 	 */
610 	set_cdar(chan, desc->async_tx.phys);
611 	get_cdar(chan);
612 
613 	dma_start(chan);
614 	chan->idle = false;
615 }
616 
617 /**
618  * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
619  * and move them to ld_completed to free until flag 'ack' is set
620  * @chan: Freescale DMA channel
621  *
622  * This function is used on descriptors which have been executed by the DMA
623  * controller. It will run any callbacks, submit any dependencies, then
624  * free these descriptors if flag 'ack' is set.
625  */
626 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
627 {
628 	struct fsl_desc_sw *desc, *_desc;
629 	dma_cookie_t cookie = 0;
630 	dma_addr_t curr_phys = get_cdar(chan);
631 	int seen_current = 0;
632 
633 	fsldma_clean_completed_descriptor(chan);
634 
635 	/* Run the callback for each descriptor, in order */
636 	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
637 		/*
638 		 * do not advance past the current descriptor loaded into the
639 		 * hardware channel, subsequent descriptors are either in
640 		 * process or have not been submitted
641 		 */
642 		if (seen_current)
643 			break;
644 
645 		/*
646 		 * stop the search if we reach the current descriptor and the
647 		 * channel is busy
648 		 */
649 		if (desc->async_tx.phys == curr_phys) {
650 			seen_current = 1;
651 			if (!dma_is_idle(chan))
652 				break;
653 		}
654 
655 		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
656 
657 		fsldma_clean_running_descriptor(chan, desc);
658 	}
659 
660 	/*
661 	 * Start any pending transactions automatically
662 	 *
663 	 * In the ideal case, we keep the DMA controller busy while we go
664 	 * ahead and free the descriptors below.
665 	 */
666 	fsl_chan_xfer_ld_queue(chan);
667 
668 	if (cookie > 0)
669 		chan->common.completed_cookie = cookie;
670 }
671 
672 /**
673  * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
674  * @chan : Freescale DMA channel
675  *
676  * This function will create a dma pool for descriptor allocation.
677  *
678  * Return - The number of descriptors allocated.
679  */
680 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
681 {
682 	struct fsldma_chan *chan = to_fsl_chan(dchan);
683 
684 	/* Has this channel already been allocated? */
685 	if (chan->desc_pool)
686 		return 1;
687 
688 	/*
689 	 * We need the descriptor to be aligned to 32bytes
690 	 * for meeting FSL DMA specification requirement.
691 	 */
692 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
693 					  sizeof(struct fsl_desc_sw),
694 					  __alignof__(struct fsl_desc_sw), 0);
695 	if (!chan->desc_pool) {
696 		chan_err(chan, "unable to allocate descriptor pool\n");
697 		return -ENOMEM;
698 	}
699 
700 	/* there is at least one descriptor free to be allocated */
701 	return 1;
702 }
703 
704 /**
705  * fsldma_free_desc_list - Free all descriptors in a queue
706  * @chan: Freescae DMA channel
707  * @list: the list to free
708  *
709  * LOCKING: must hold chan->desc_lock
710  */
711 static void fsldma_free_desc_list(struct fsldma_chan *chan,
712 				  struct list_head *list)
713 {
714 	struct fsl_desc_sw *desc, *_desc;
715 
716 	list_for_each_entry_safe(desc, _desc, list, node)
717 		fsl_dma_free_descriptor(chan, desc);
718 }
719 
720 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
721 					  struct list_head *list)
722 {
723 	struct fsl_desc_sw *desc, *_desc;
724 
725 	list_for_each_entry_safe_reverse(desc, _desc, list, node)
726 		fsl_dma_free_descriptor(chan, desc);
727 }
728 
729 /**
730  * fsl_dma_free_chan_resources - Free all resources of the channel.
731  * @chan : Freescale DMA channel
732  */
733 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
734 {
735 	struct fsldma_chan *chan = to_fsl_chan(dchan);
736 
737 	chan_dbg(chan, "free all channel resources\n");
738 	spin_lock_bh(&chan->desc_lock);
739 	fsldma_cleanup_descriptors(chan);
740 	fsldma_free_desc_list(chan, &chan->ld_pending);
741 	fsldma_free_desc_list(chan, &chan->ld_running);
742 	fsldma_free_desc_list(chan, &chan->ld_completed);
743 	spin_unlock_bh(&chan->desc_lock);
744 
745 	dma_pool_destroy(chan->desc_pool);
746 	chan->desc_pool = NULL;
747 }
748 
749 static struct dma_async_tx_descriptor *
750 fsl_dma_prep_memcpy(struct dma_chan *dchan,
751 	dma_addr_t dma_dst, dma_addr_t dma_src,
752 	size_t len, unsigned long flags)
753 {
754 	struct fsldma_chan *chan;
755 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
756 	size_t copy;
757 
758 	if (!dchan)
759 		return NULL;
760 
761 	if (!len)
762 		return NULL;
763 
764 	chan = to_fsl_chan(dchan);
765 
766 	do {
767 
768 		/* Allocate the link descriptor from DMA pool */
769 		new = fsl_dma_alloc_descriptor(chan);
770 		if (!new) {
771 			chan_err(chan, "%s\n", msg_ld_oom);
772 			goto fail;
773 		}
774 
775 		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
776 
777 		set_desc_cnt(chan, &new->hw, copy);
778 		set_desc_src(chan, &new->hw, dma_src);
779 		set_desc_dst(chan, &new->hw, dma_dst);
780 
781 		if (!first)
782 			first = new;
783 		else
784 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
785 
786 		new->async_tx.cookie = 0;
787 		async_tx_ack(&new->async_tx);
788 
789 		prev = new;
790 		len -= copy;
791 		dma_src += copy;
792 		dma_dst += copy;
793 
794 		/* Insert the link descriptor to the LD ring */
795 		list_add_tail(&new->node, &first->tx_list);
796 	} while (len);
797 
798 	new->async_tx.flags = flags; /* client is in control of this ack */
799 	new->async_tx.cookie = -EBUSY;
800 
801 	/* Set End-of-link to the last link descriptor of new list */
802 	set_ld_eol(chan, new);
803 
804 	return &first->async_tx;
805 
806 fail:
807 	if (!first)
808 		return NULL;
809 
810 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
811 	return NULL;
812 }
813 
814 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
815 	struct scatterlist *dst_sg, unsigned int dst_nents,
816 	struct scatterlist *src_sg, unsigned int src_nents,
817 	unsigned long flags)
818 {
819 	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
820 	struct fsldma_chan *chan = to_fsl_chan(dchan);
821 	size_t dst_avail, src_avail;
822 	dma_addr_t dst, src;
823 	size_t len;
824 
825 	/* basic sanity checks */
826 	if (dst_nents == 0 || src_nents == 0)
827 		return NULL;
828 
829 	if (dst_sg == NULL || src_sg == NULL)
830 		return NULL;
831 
832 	/*
833 	 * TODO: should we check that both scatterlists have the same
834 	 * TODO: number of bytes in total? Is that really an error?
835 	 */
836 
837 	/* get prepared for the loop */
838 	dst_avail = sg_dma_len(dst_sg);
839 	src_avail = sg_dma_len(src_sg);
840 
841 	/* run until we are out of scatterlist entries */
842 	while (true) {
843 
844 		/* create the largest transaction possible */
845 		len = min_t(size_t, src_avail, dst_avail);
846 		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
847 		if (len == 0)
848 			goto fetch;
849 
850 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
851 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
852 
853 		/* allocate and populate the descriptor */
854 		new = fsl_dma_alloc_descriptor(chan);
855 		if (!new) {
856 			chan_err(chan, "%s\n", msg_ld_oom);
857 			goto fail;
858 		}
859 
860 		set_desc_cnt(chan, &new->hw, len);
861 		set_desc_src(chan, &new->hw, src);
862 		set_desc_dst(chan, &new->hw, dst);
863 
864 		if (!first)
865 			first = new;
866 		else
867 			set_desc_next(chan, &prev->hw, new->async_tx.phys);
868 
869 		new->async_tx.cookie = 0;
870 		async_tx_ack(&new->async_tx);
871 		prev = new;
872 
873 		/* Insert the link descriptor to the LD ring */
874 		list_add_tail(&new->node, &first->tx_list);
875 
876 		/* update metadata */
877 		dst_avail -= len;
878 		src_avail -= len;
879 
880 fetch:
881 		/* fetch the next dst scatterlist entry */
882 		if (dst_avail == 0) {
883 
884 			/* no more entries: we're done */
885 			if (dst_nents == 0)
886 				break;
887 
888 			/* fetch the next entry: if there are no more: done */
889 			dst_sg = sg_next(dst_sg);
890 			if (dst_sg == NULL)
891 				break;
892 
893 			dst_nents--;
894 			dst_avail = sg_dma_len(dst_sg);
895 		}
896 
897 		/* fetch the next src scatterlist entry */
898 		if (src_avail == 0) {
899 
900 			/* no more entries: we're done */
901 			if (src_nents == 0)
902 				break;
903 
904 			/* fetch the next entry: if there are no more: done */
905 			src_sg = sg_next(src_sg);
906 			if (src_sg == NULL)
907 				break;
908 
909 			src_nents--;
910 			src_avail = sg_dma_len(src_sg);
911 		}
912 	}
913 
914 	new->async_tx.flags = flags; /* client is in control of this ack */
915 	new->async_tx.cookie = -EBUSY;
916 
917 	/* Set End-of-link to the last link descriptor of new list */
918 	set_ld_eol(chan, new);
919 
920 	return &first->async_tx;
921 
922 fail:
923 	if (!first)
924 		return NULL;
925 
926 	fsldma_free_desc_list_reverse(chan, &first->tx_list);
927 	return NULL;
928 }
929 
930 /**
931  * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
932  * @chan: DMA channel
933  * @sgl: scatterlist to transfer to/from
934  * @sg_len: number of entries in @scatterlist
935  * @direction: DMA direction
936  * @flags: DMAEngine flags
937  * @context: transaction context (ignored)
938  *
939  * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
940  * DMA_SLAVE API, this gets the device-specific information from the
941  * chan->private variable.
942  */
943 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
944 	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
945 	enum dma_transfer_direction direction, unsigned long flags,
946 	void *context)
947 {
948 	/*
949 	 * This operation is not supported on the Freescale DMA controller
950 	 *
951 	 * However, we need to provide the function pointer to allow the
952 	 * device_control() method to work.
953 	 */
954 	return NULL;
955 }
956 
957 static int fsl_dma_device_control(struct dma_chan *dchan,
958 				  enum dma_ctrl_cmd cmd, unsigned long arg)
959 {
960 	struct dma_slave_config *config;
961 	struct fsldma_chan *chan;
962 	int size;
963 
964 	if (!dchan)
965 		return -EINVAL;
966 
967 	chan = to_fsl_chan(dchan);
968 
969 	switch (cmd) {
970 	case DMA_TERMINATE_ALL:
971 		spin_lock_bh(&chan->desc_lock);
972 
973 		/* Halt the DMA engine */
974 		dma_halt(chan);
975 
976 		/* Remove and free all of the descriptors in the LD queue */
977 		fsldma_free_desc_list(chan, &chan->ld_pending);
978 		fsldma_free_desc_list(chan, &chan->ld_running);
979 		fsldma_free_desc_list(chan, &chan->ld_completed);
980 		chan->idle = true;
981 
982 		spin_unlock_bh(&chan->desc_lock);
983 		return 0;
984 
985 	case DMA_SLAVE_CONFIG:
986 		config = (struct dma_slave_config *)arg;
987 
988 		/* make sure the channel supports setting burst size */
989 		if (!chan->set_request_count)
990 			return -ENXIO;
991 
992 		/* we set the controller burst size depending on direction */
993 		if (config->direction == DMA_MEM_TO_DEV)
994 			size = config->dst_addr_width * config->dst_maxburst;
995 		else
996 			size = config->src_addr_width * config->src_maxburst;
997 
998 		chan->set_request_count(chan, size);
999 		return 0;
1000 
1001 	case FSLDMA_EXTERNAL_START:
1002 
1003 		/* make sure the channel supports external start */
1004 		if (!chan->toggle_ext_start)
1005 			return -ENXIO;
1006 
1007 		chan->toggle_ext_start(chan, arg);
1008 		return 0;
1009 
1010 	default:
1011 		return -ENXIO;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 /**
1018  * fsl_dma_memcpy_issue_pending - Issue the DMA start command
1019  * @chan : Freescale DMA channel
1020  */
1021 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1022 {
1023 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1024 
1025 	spin_lock_bh(&chan->desc_lock);
1026 	fsl_chan_xfer_ld_queue(chan);
1027 	spin_unlock_bh(&chan->desc_lock);
1028 }
1029 
1030 /**
1031  * fsl_tx_status - Determine the DMA status
1032  * @chan : Freescale DMA channel
1033  */
1034 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1035 					dma_cookie_t cookie,
1036 					struct dma_tx_state *txstate)
1037 {
1038 	struct fsldma_chan *chan = to_fsl_chan(dchan);
1039 	enum dma_status ret;
1040 
1041 	ret = dma_cookie_status(dchan, cookie, txstate);
1042 	if (ret == DMA_COMPLETE)
1043 		return ret;
1044 
1045 	spin_lock_bh(&chan->desc_lock);
1046 	fsldma_cleanup_descriptors(chan);
1047 	spin_unlock_bh(&chan->desc_lock);
1048 
1049 	return dma_cookie_status(dchan, cookie, txstate);
1050 }
1051 
1052 /*----------------------------------------------------------------------------*/
1053 /* Interrupt Handling                                                         */
1054 /*----------------------------------------------------------------------------*/
1055 
1056 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1057 {
1058 	struct fsldma_chan *chan = data;
1059 	u32 stat;
1060 
1061 	/* save and clear the status register */
1062 	stat = get_sr(chan);
1063 	set_sr(chan, stat);
1064 	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1065 
1066 	/* check that this was really our device */
1067 	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1068 	if (!stat)
1069 		return IRQ_NONE;
1070 
1071 	if (stat & FSL_DMA_SR_TE)
1072 		chan_err(chan, "Transfer Error!\n");
1073 
1074 	/*
1075 	 * Programming Error
1076 	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1077 	 * trigger a PE interrupt.
1078 	 */
1079 	if (stat & FSL_DMA_SR_PE) {
1080 		chan_dbg(chan, "irq: Programming Error INT\n");
1081 		stat &= ~FSL_DMA_SR_PE;
1082 		if (get_bcr(chan) != 0)
1083 			chan_err(chan, "Programming Error!\n");
1084 	}
1085 
1086 	/*
1087 	 * For MPC8349, EOCDI event need to update cookie
1088 	 * and start the next transfer if it exist.
1089 	 */
1090 	if (stat & FSL_DMA_SR_EOCDI) {
1091 		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1092 		stat &= ~FSL_DMA_SR_EOCDI;
1093 	}
1094 
1095 	/*
1096 	 * If it current transfer is the end-of-transfer,
1097 	 * we should clear the Channel Start bit for
1098 	 * prepare next transfer.
1099 	 */
1100 	if (stat & FSL_DMA_SR_EOLNI) {
1101 		chan_dbg(chan, "irq: End-of-link INT\n");
1102 		stat &= ~FSL_DMA_SR_EOLNI;
1103 	}
1104 
1105 	/* check that the DMA controller is really idle */
1106 	if (!dma_is_idle(chan))
1107 		chan_err(chan, "irq: controller not idle!\n");
1108 
1109 	/* check that we handled all of the bits */
1110 	if (stat)
1111 		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1112 
1113 	/*
1114 	 * Schedule the tasklet to handle all cleanup of the current
1115 	 * transaction. It will start a new transaction if there is
1116 	 * one pending.
1117 	 */
1118 	tasklet_schedule(&chan->tasklet);
1119 	chan_dbg(chan, "irq: Exit\n");
1120 	return IRQ_HANDLED;
1121 }
1122 
1123 static void dma_do_tasklet(unsigned long data)
1124 {
1125 	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1126 
1127 	chan_dbg(chan, "tasklet entry\n");
1128 
1129 	spin_lock_bh(&chan->desc_lock);
1130 
1131 	/* the hardware is now idle and ready for more */
1132 	chan->idle = true;
1133 
1134 	/* Run all cleanup for descriptors which have been completed */
1135 	fsldma_cleanup_descriptors(chan);
1136 
1137 	spin_unlock_bh(&chan->desc_lock);
1138 
1139 	chan_dbg(chan, "tasklet exit\n");
1140 }
1141 
1142 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1143 {
1144 	struct fsldma_device *fdev = data;
1145 	struct fsldma_chan *chan;
1146 	unsigned int handled = 0;
1147 	u32 gsr, mask;
1148 	int i;
1149 
1150 	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1151 						   : in_le32(fdev->regs);
1152 	mask = 0xff000000;
1153 	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1154 
1155 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1156 		chan = fdev->chan[i];
1157 		if (!chan)
1158 			continue;
1159 
1160 		if (gsr & mask) {
1161 			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1162 			fsldma_chan_irq(irq, chan);
1163 			handled++;
1164 		}
1165 
1166 		gsr &= ~mask;
1167 		mask >>= 8;
1168 	}
1169 
1170 	return IRQ_RETVAL(handled);
1171 }
1172 
1173 static void fsldma_free_irqs(struct fsldma_device *fdev)
1174 {
1175 	struct fsldma_chan *chan;
1176 	int i;
1177 
1178 	if (fdev->irq != NO_IRQ) {
1179 		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1180 		free_irq(fdev->irq, fdev);
1181 		return;
1182 	}
1183 
1184 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1185 		chan = fdev->chan[i];
1186 		if (chan && chan->irq != NO_IRQ) {
1187 			chan_dbg(chan, "free per-channel IRQ\n");
1188 			free_irq(chan->irq, chan);
1189 		}
1190 	}
1191 }
1192 
1193 static int fsldma_request_irqs(struct fsldma_device *fdev)
1194 {
1195 	struct fsldma_chan *chan;
1196 	int ret;
1197 	int i;
1198 
1199 	/* if we have a per-controller IRQ, use that */
1200 	if (fdev->irq != NO_IRQ) {
1201 		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1202 		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1203 				  "fsldma-controller", fdev);
1204 		return ret;
1205 	}
1206 
1207 	/* no per-controller IRQ, use the per-channel IRQs */
1208 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1209 		chan = fdev->chan[i];
1210 		if (!chan)
1211 			continue;
1212 
1213 		if (chan->irq == NO_IRQ) {
1214 			chan_err(chan, "interrupts property missing in device tree\n");
1215 			ret = -ENODEV;
1216 			goto out_unwind;
1217 		}
1218 
1219 		chan_dbg(chan, "request per-channel IRQ\n");
1220 		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1221 				  "fsldma-chan", chan);
1222 		if (ret) {
1223 			chan_err(chan, "unable to request per-channel IRQ\n");
1224 			goto out_unwind;
1225 		}
1226 	}
1227 
1228 	return 0;
1229 
1230 out_unwind:
1231 	for (/* none */; i >= 0; i--) {
1232 		chan = fdev->chan[i];
1233 		if (!chan)
1234 			continue;
1235 
1236 		if (chan->irq == NO_IRQ)
1237 			continue;
1238 
1239 		free_irq(chan->irq, chan);
1240 	}
1241 
1242 	return ret;
1243 }
1244 
1245 /*----------------------------------------------------------------------------*/
1246 /* OpenFirmware Subsystem                                                     */
1247 /*----------------------------------------------------------------------------*/
1248 
1249 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1250 	struct device_node *node, u32 feature, const char *compatible)
1251 {
1252 	struct fsldma_chan *chan;
1253 	struct resource res;
1254 	int err;
1255 
1256 	/* alloc channel */
1257 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1258 	if (!chan) {
1259 		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1260 		err = -ENOMEM;
1261 		goto out_return;
1262 	}
1263 
1264 	/* ioremap registers for use */
1265 	chan->regs = of_iomap(node, 0);
1266 	if (!chan->regs) {
1267 		dev_err(fdev->dev, "unable to ioremap registers\n");
1268 		err = -ENOMEM;
1269 		goto out_free_chan;
1270 	}
1271 
1272 	err = of_address_to_resource(node, 0, &res);
1273 	if (err) {
1274 		dev_err(fdev->dev, "unable to find 'reg' property\n");
1275 		goto out_iounmap_regs;
1276 	}
1277 
1278 	chan->feature = feature;
1279 	if (!fdev->feature)
1280 		fdev->feature = chan->feature;
1281 
1282 	/*
1283 	 * If the DMA device's feature is different than the feature
1284 	 * of its channels, report the bug
1285 	 */
1286 	WARN_ON(fdev->feature != chan->feature);
1287 
1288 	chan->dev = fdev->dev;
1289 	chan->id = (res.start & 0xfff) < 0x300 ?
1290 		   ((res.start - 0x100) & 0xfff) >> 7 :
1291 		   ((res.start - 0x200) & 0xfff) >> 7;
1292 	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1293 		dev_err(fdev->dev, "too many channels for device\n");
1294 		err = -EINVAL;
1295 		goto out_iounmap_regs;
1296 	}
1297 
1298 	fdev->chan[chan->id] = chan;
1299 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1300 	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1301 
1302 	/* Initialize the channel */
1303 	dma_init(chan);
1304 
1305 	/* Clear cdar registers */
1306 	set_cdar(chan, 0);
1307 
1308 	switch (chan->feature & FSL_DMA_IP_MASK) {
1309 	case FSL_DMA_IP_85XX:
1310 		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1311 	case FSL_DMA_IP_83XX:
1312 		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1313 		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1314 		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1315 		chan->set_request_count = fsl_chan_set_request_count;
1316 	}
1317 
1318 	spin_lock_init(&chan->desc_lock);
1319 	INIT_LIST_HEAD(&chan->ld_pending);
1320 	INIT_LIST_HEAD(&chan->ld_running);
1321 	INIT_LIST_HEAD(&chan->ld_completed);
1322 	chan->idle = true;
1323 #ifdef CONFIG_PM
1324 	chan->pm_state = RUNNING;
1325 #endif
1326 
1327 	chan->common.device = &fdev->common;
1328 	dma_cookie_init(&chan->common);
1329 
1330 	/* find the IRQ line, if it exists in the device tree */
1331 	chan->irq = irq_of_parse_and_map(node, 0);
1332 
1333 	/* Add the channel to DMA device channel list */
1334 	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1335 	fdev->common.chancnt++;
1336 
1337 	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1338 		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1339 
1340 	return 0;
1341 
1342 out_iounmap_regs:
1343 	iounmap(chan->regs);
1344 out_free_chan:
1345 	kfree(chan);
1346 out_return:
1347 	return err;
1348 }
1349 
1350 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1351 {
1352 	irq_dispose_mapping(chan->irq);
1353 	list_del(&chan->common.device_node);
1354 	iounmap(chan->regs);
1355 	kfree(chan);
1356 }
1357 
1358 static int fsldma_of_probe(struct platform_device *op)
1359 {
1360 	struct fsldma_device *fdev;
1361 	struct device_node *child;
1362 	int err;
1363 
1364 	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1365 	if (!fdev) {
1366 		dev_err(&op->dev, "No enough memory for 'priv'\n");
1367 		err = -ENOMEM;
1368 		goto out_return;
1369 	}
1370 
1371 	fdev->dev = &op->dev;
1372 	INIT_LIST_HEAD(&fdev->common.channels);
1373 
1374 	/* ioremap the registers for use */
1375 	fdev->regs = of_iomap(op->dev.of_node, 0);
1376 	if (!fdev->regs) {
1377 		dev_err(&op->dev, "unable to ioremap registers\n");
1378 		err = -ENOMEM;
1379 		goto out_free_fdev;
1380 	}
1381 
1382 	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1383 	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1384 
1385 	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1386 	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1387 	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1388 	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1389 	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1390 	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1391 	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1392 	fdev->common.device_tx_status = fsl_tx_status;
1393 	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1394 	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1395 	fdev->common.device_control = fsl_dma_device_control;
1396 	fdev->common.dev = &op->dev;
1397 
1398 	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1399 
1400 	platform_set_drvdata(op, fdev);
1401 
1402 	/*
1403 	 * We cannot use of_platform_bus_probe() because there is no
1404 	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1405 	 * channel object.
1406 	 */
1407 	for_each_child_of_node(op->dev.of_node, child) {
1408 		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1409 			fsl_dma_chan_probe(fdev, child,
1410 				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1411 				"fsl,eloplus-dma-channel");
1412 		}
1413 
1414 		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1415 			fsl_dma_chan_probe(fdev, child,
1416 				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1417 				"fsl,elo-dma-channel");
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * Hookup the IRQ handler(s)
1423 	 *
1424 	 * If we have a per-controller interrupt, we prefer that to the
1425 	 * per-channel interrupts to reduce the number of shared interrupt
1426 	 * handlers on the same IRQ line
1427 	 */
1428 	err = fsldma_request_irqs(fdev);
1429 	if (err) {
1430 		dev_err(fdev->dev, "unable to request IRQs\n");
1431 		goto out_free_fdev;
1432 	}
1433 
1434 	dma_async_device_register(&fdev->common);
1435 	return 0;
1436 
1437 out_free_fdev:
1438 	irq_dispose_mapping(fdev->irq);
1439 	kfree(fdev);
1440 out_return:
1441 	return err;
1442 }
1443 
1444 static int fsldma_of_remove(struct platform_device *op)
1445 {
1446 	struct fsldma_device *fdev;
1447 	unsigned int i;
1448 
1449 	fdev = platform_get_drvdata(op);
1450 	dma_async_device_unregister(&fdev->common);
1451 
1452 	fsldma_free_irqs(fdev);
1453 
1454 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1455 		if (fdev->chan[i])
1456 			fsl_dma_chan_remove(fdev->chan[i]);
1457 	}
1458 
1459 	iounmap(fdev->regs);
1460 	kfree(fdev);
1461 
1462 	return 0;
1463 }
1464 
1465 #ifdef CONFIG_PM
1466 static int fsldma_suspend_late(struct device *dev)
1467 {
1468 	struct platform_device *pdev = to_platform_device(dev);
1469 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1470 	struct fsldma_chan *chan;
1471 	int i;
1472 
1473 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1474 		chan = fdev->chan[i];
1475 		if (!chan)
1476 			continue;
1477 
1478 		spin_lock_bh(&chan->desc_lock);
1479 		if (unlikely(!chan->idle))
1480 			goto out;
1481 		chan->regs_save.mr = get_mr(chan);
1482 		chan->pm_state = SUSPENDED;
1483 		spin_unlock_bh(&chan->desc_lock);
1484 	}
1485 	return 0;
1486 
1487 out:
1488 	for (; i >= 0; i--) {
1489 		chan = fdev->chan[i];
1490 		if (!chan)
1491 			continue;
1492 		chan->pm_state = RUNNING;
1493 		spin_unlock_bh(&chan->desc_lock);
1494 	}
1495 	return -EBUSY;
1496 }
1497 
1498 static int fsldma_resume_early(struct device *dev)
1499 {
1500 	struct platform_device *pdev = to_platform_device(dev);
1501 	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1502 	struct fsldma_chan *chan;
1503 	u32 mode;
1504 	int i;
1505 
1506 	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1507 		chan = fdev->chan[i];
1508 		if (!chan)
1509 			continue;
1510 
1511 		spin_lock_bh(&chan->desc_lock);
1512 		mode = chan->regs_save.mr
1513 			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1514 		set_mr(chan, mode);
1515 		chan->pm_state = RUNNING;
1516 		spin_unlock_bh(&chan->desc_lock);
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static const struct dev_pm_ops fsldma_pm_ops = {
1523 	.suspend_late	= fsldma_suspend_late,
1524 	.resume_early	= fsldma_resume_early,
1525 };
1526 #endif
1527 
1528 static const struct of_device_id fsldma_of_ids[] = {
1529 	{ .compatible = "fsl,elo3-dma", },
1530 	{ .compatible = "fsl,eloplus-dma", },
1531 	{ .compatible = "fsl,elo-dma", },
1532 	{}
1533 };
1534 
1535 static struct platform_driver fsldma_of_driver = {
1536 	.driver = {
1537 		.name = "fsl-elo-dma",
1538 		.owner = THIS_MODULE,
1539 		.of_match_table = fsldma_of_ids,
1540 #ifdef CONFIG_PM
1541 		.pm = &fsldma_pm_ops,
1542 #endif
1543 	},
1544 	.probe = fsldma_of_probe,
1545 	.remove = fsldma_of_remove,
1546 };
1547 
1548 /*----------------------------------------------------------------------------*/
1549 /* Module Init / Exit                                                         */
1550 /*----------------------------------------------------------------------------*/
1551 
1552 static __init int fsldma_init(void)
1553 {
1554 	pr_info("Freescale Elo series DMA driver\n");
1555 	return platform_driver_register(&fsldma_of_driver);
1556 }
1557 
1558 static void __exit fsldma_exit(void)
1559 {
1560 	platform_driver_unregister(&fsldma_of_driver);
1561 }
1562 
1563 subsys_initcall(fsldma_init);
1564 module_exit(fsldma_exit);
1565 
1566 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1567 MODULE_LICENSE("GPL");
1568