xref: /openbmc/linux/drivers/dma/fsl_raid.c (revision e2f1cf25)
1 /*
2  * drivers/dma/fsl_raid.c
3  *
4  * Freescale RAID Engine device driver
5  *
6  * Author:
7  *	Harninder Rai <harninder.rai@freescale.com>
8  *	Naveen Burmi <naveenburmi@freescale.com>
9  *
10  * Rewrite:
11  *	Xuelin Shi <xuelin.shi@freescale.com>
12  *
13  * Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions are met:
17  *     * Redistributions of source code must retain the above copyright
18  *       notice, this list of conditions and the following disclaimer.
19  *     * Redistributions in binary form must reproduce the above copyright
20  *       notice, this list of conditions and the following disclaimer in the
21  *       documentation and/or other materials provided with the distribution.
22  *     * Neither the name of Freescale Semiconductor nor the
23  *       names of its contributors may be used to endorse or promote products
24  *       derived from this software without specific prior written permission.
25  *
26  * ALTERNATIVELY, this software may be distributed under the terms of the
27  * GNU General Public License ("GPL") as published by the Free Software
28  * Foundation, either version 2 of that License or (at your option) any
29  * later version.
30  *
31  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
32  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
34  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
35  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
40  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  *
42  * Theory of operation:
43  *
44  * General capabilities:
45  *	RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
46  *	calculations required in RAID5 and RAID6 operations. RE driver
47  *	registers with Linux's ASYNC layer as dma driver. RE hardware
48  *	maintains strict ordering of the requests through chained
49  *	command queueing.
50  *
51  * Data flow:
52  *	Software RAID layer of Linux (MD layer) maintains RAID partitions,
53  *	strips, stripes etc. It sends requests to the underlying ASYNC layer
54  *	which further passes it to RE driver. ASYNC layer decides which request
55  *	goes to which job ring of RE hardware. For every request processed by
56  *	RAID Engine, driver gets an interrupt unless coalescing is set. The
57  *	per job ring interrupt handler checks the status register for errors,
58  *	clears the interrupt and leave the post interrupt processing to the irq
59  *	thread.
60  */
61 #include <linux/interrupt.h>
62 #include <linux/module.h>
63 #include <linux/of_irq.h>
64 #include <linux/of_address.h>
65 #include <linux/of_platform.h>
66 #include <linux/dma-mapping.h>
67 #include <linux/dmapool.h>
68 #include <linux/dmaengine.h>
69 #include <linux/io.h>
70 #include <linux/spinlock.h>
71 #include <linux/slab.h>
72 
73 #include "dmaengine.h"
74 #include "fsl_raid.h"
75 
76 #define FSL_RE_MAX_XOR_SRCS	16
77 #define FSL_RE_MAX_PQ_SRCS	16
78 #define FSL_RE_MIN_DESCS	256
79 #define FSL_RE_MAX_DESCS	(4 * FSL_RE_MIN_DESCS)
80 #define FSL_RE_FRAME_FORMAT	0x1
81 #define FSL_RE_MAX_DATA_LEN	(1024*1024)
82 
83 #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
84 
85 /* Add descriptors into per chan software queue - submit_q */
86 static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
87 {
88 	struct fsl_re_desc *desc;
89 	struct fsl_re_chan *re_chan;
90 	dma_cookie_t cookie;
91 	unsigned long flags;
92 
93 	desc = to_fsl_re_dma_desc(tx);
94 	re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
95 
96 	spin_lock_irqsave(&re_chan->desc_lock, flags);
97 	cookie = dma_cookie_assign(tx);
98 	list_add_tail(&desc->node, &re_chan->submit_q);
99 	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
100 
101 	return cookie;
102 }
103 
104 /* Copy descriptor from per chan software queue into hardware job ring */
105 static void fsl_re_issue_pending(struct dma_chan *chan)
106 {
107 	struct fsl_re_chan *re_chan;
108 	int avail;
109 	struct fsl_re_desc *desc, *_desc;
110 	unsigned long flags;
111 
112 	re_chan = container_of(chan, struct fsl_re_chan, chan);
113 
114 	spin_lock_irqsave(&re_chan->desc_lock, flags);
115 	avail = FSL_RE_SLOT_AVAIL(
116 		in_be32(&re_chan->jrregs->inbring_slot_avail));
117 
118 	list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
119 		if (!avail)
120 			break;
121 
122 		list_move_tail(&desc->node, &re_chan->active_q);
123 
124 		memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
125 		       &desc->hwdesc, sizeof(struct fsl_re_hw_desc));
126 
127 		re_chan->inb_count = (re_chan->inb_count + 1) &
128 						FSL_RE_RING_SIZE_MASK;
129 		out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
130 		avail--;
131 	}
132 	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
133 }
134 
135 static void fsl_re_desc_done(struct fsl_re_desc *desc)
136 {
137 	dma_async_tx_callback callback;
138 	void *callback_param;
139 
140 	dma_cookie_complete(&desc->async_tx);
141 
142 	callback = desc->async_tx.callback;
143 	callback_param = desc->async_tx.callback_param;
144 	if (callback)
145 		callback(callback_param);
146 
147 	dma_descriptor_unmap(&desc->async_tx);
148 }
149 
150 static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
151 {
152 	struct fsl_re_desc *desc, *_desc;
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&re_chan->desc_lock, flags);
156 	list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
157 		if (async_tx_test_ack(&desc->async_tx))
158 			list_move_tail(&desc->node, &re_chan->free_q);
159 	}
160 	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
161 
162 	fsl_re_issue_pending(&re_chan->chan);
163 }
164 
165 static void fsl_re_dequeue(unsigned long data)
166 {
167 	struct fsl_re_chan *re_chan;
168 	struct fsl_re_desc *desc, *_desc;
169 	struct fsl_re_hw_desc *hwdesc;
170 	unsigned long flags;
171 	unsigned int count, oub_count;
172 	int found;
173 
174 	re_chan = dev_get_drvdata((struct device *)data);
175 
176 	fsl_re_cleanup_descs(re_chan);
177 
178 	spin_lock_irqsave(&re_chan->desc_lock, flags);
179 	count =	FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
180 	while (count--) {
181 		found = 0;
182 		hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
183 		list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
184 					 node) {
185 			/* compare the hw dma addr to find the completed */
186 			if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
187 			    desc->hwdesc.addr_low == hwdesc->addr_low) {
188 				found = 1;
189 				break;
190 			}
191 		}
192 
193 		if (found) {
194 			fsl_re_desc_done(desc);
195 			list_move_tail(&desc->node, &re_chan->ack_q);
196 		} else {
197 			dev_err(re_chan->dev,
198 				"found hwdesc not in sw queue, discard it\n");
199 		}
200 
201 		oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
202 		re_chan->oub_count = oub_count;
203 
204 		out_be32(&re_chan->jrregs->oubring_job_rmvd,
205 			 FSL_RE_RMVD_JOB(1));
206 	}
207 	spin_unlock_irqrestore(&re_chan->desc_lock, flags);
208 }
209 
210 /* Per Job Ring interrupt handler */
211 static irqreturn_t fsl_re_isr(int irq, void *data)
212 {
213 	struct fsl_re_chan *re_chan;
214 	u32 irqstate, status;
215 
216 	re_chan = dev_get_drvdata((struct device *)data);
217 
218 	irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
219 	if (!irqstate)
220 		return IRQ_NONE;
221 
222 	/*
223 	 * There's no way in upper layer (read MD layer) to recover from
224 	 * error conditions except restart everything. In long term we
225 	 * need to do something more than just crashing
226 	 */
227 	if (irqstate & FSL_RE_ERROR) {
228 		status = in_be32(&re_chan->jrregs->jr_status);
229 		dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
230 			irqstate, status);
231 	}
232 
233 	/* Clear interrupt */
234 	out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
235 
236 	tasklet_schedule(&re_chan->irqtask);
237 
238 	return IRQ_HANDLED;
239 }
240 
241 static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
242 					dma_cookie_t cookie,
243 					struct dma_tx_state *txstate)
244 {
245 	return dma_cookie_status(chan, cookie, txstate);
246 }
247 
248 static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
249 			   size_t length, dma_addr_t addr, bool final)
250 {
251 	u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
252 
253 	efrl |= final << FSL_RE_CF_FINAL_SHIFT;
254 	cf[index].efrl32 = efrl;
255 	cf[index].addr_high = upper_32_bits(addr);
256 	cf[index].addr_low = lower_32_bits(addr);
257 }
258 
259 static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
260 					    struct fsl_re_desc *desc,
261 					    void *cf, dma_addr_t paddr)
262 {
263 	desc->re_chan = re_chan;
264 	desc->async_tx.tx_submit = fsl_re_tx_submit;
265 	dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
266 	INIT_LIST_HEAD(&desc->node);
267 
268 	desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
269 	desc->hwdesc.lbea32 = upper_32_bits(paddr);
270 	desc->hwdesc.addr_low = lower_32_bits(paddr);
271 	desc->cf_addr = cf;
272 	desc->cf_paddr = paddr;
273 
274 	desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
275 	desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
276 
277 	return desc;
278 }
279 
280 static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
281 						  unsigned long flags)
282 {
283 	struct fsl_re_desc *desc = NULL;
284 	void *cf;
285 	dma_addr_t paddr;
286 	unsigned long lock_flag;
287 
288 	fsl_re_cleanup_descs(re_chan);
289 
290 	spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
291 	if (!list_empty(&re_chan->free_q)) {
292 		/* take one desc from free_q */
293 		desc = list_first_entry(&re_chan->free_q,
294 					struct fsl_re_desc, node);
295 		list_del(&desc->node);
296 
297 		desc->async_tx.flags = flags;
298 	}
299 	spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
300 
301 	if (!desc) {
302 		desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
303 		if (!desc)
304 			return NULL;
305 
306 		cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
307 				    &paddr);
308 		if (!cf) {
309 			kfree(desc);
310 			return NULL;
311 		}
312 
313 		desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
314 		desc->async_tx.flags = flags;
315 
316 		spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
317 		re_chan->alloc_count++;
318 		spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
319 	}
320 
321 	return desc;
322 }
323 
324 static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
325 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
326 		unsigned int src_cnt, const unsigned char *scf, size_t len,
327 		unsigned long flags)
328 {
329 	struct fsl_re_chan *re_chan;
330 	struct fsl_re_desc *desc;
331 	struct fsl_re_xor_cdb *xor;
332 	struct fsl_re_cmpnd_frame *cf;
333 	u32 cdb;
334 	unsigned int i, j;
335 	unsigned int save_src_cnt = src_cnt;
336 	int cont_q = 0;
337 
338 	re_chan = container_of(chan, struct fsl_re_chan, chan);
339 	if (len > FSL_RE_MAX_DATA_LEN) {
340 		dev_err(re_chan->dev, "genq tx length %lu, max length %d\n",
341 			len, FSL_RE_MAX_DATA_LEN);
342 		return NULL;
343 	}
344 
345 	desc = fsl_re_chan_alloc_desc(re_chan, flags);
346 	if (desc <= 0)
347 		return NULL;
348 
349 	if (scf && (flags & DMA_PREP_CONTINUE)) {
350 		cont_q = 1;
351 		src_cnt += 1;
352 	}
353 
354 	/* Filling xor CDB */
355 	cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
356 	cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
357 	cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
358 	cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
359 	cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
360 	xor = desc->cdb_addr;
361 	xor->cdb32 = cdb;
362 
363 	if (scf) {
364 		/* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
365 		for (i = 0; i < save_src_cnt; i++)
366 			xor->gfm[i] = scf[i];
367 		if (cont_q)
368 			xor->gfm[i++] = 1;
369 	} else {
370 		/* compute P, that is XOR all srcs */
371 		for (i = 0; i < src_cnt; i++)
372 			xor->gfm[i] = 1;
373 	}
374 
375 	/* Filling frame 0 of compound frame descriptor with CDB */
376 	cf = desc->cf_addr;
377 	fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
378 
379 	/* Fill CFD's 1st frame with dest buffer */
380 	fill_cfd_frame(cf, 1, len, dest, 0);
381 
382 	/* Fill CFD's rest of the frames with source buffers */
383 	for (i = 2, j = 0; j < save_src_cnt; i++, j++)
384 		fill_cfd_frame(cf, i, len, src[j], 0);
385 
386 	if (cont_q)
387 		fill_cfd_frame(cf, i++, len, dest, 0);
388 
389 	/* Setting the final bit in the last source buffer frame in CFD */
390 	cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
391 
392 	return &desc->async_tx;
393 }
394 
395 /*
396  * Prep function for P parity calculation.In RAID Engine terminology,
397  * XOR calculation is called GenQ calculation done through GenQ command
398  */
399 static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
400 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
401 		unsigned int src_cnt, size_t len, unsigned long flags)
402 {
403 	/* NULL let genq take all coef as 1 */
404 	return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
405 }
406 
407 /*
408  * Prep function for P/Q parity calculation.In RAID Engine terminology,
409  * P/Q calculation is called GenQQ done through GenQQ command
410  */
411 static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
412 		struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
413 		unsigned int src_cnt, const unsigned char *scf, size_t len,
414 		unsigned long flags)
415 {
416 	struct fsl_re_chan *re_chan;
417 	struct fsl_re_desc *desc;
418 	struct fsl_re_pq_cdb *pq;
419 	struct fsl_re_cmpnd_frame *cf;
420 	u32 cdb;
421 	u8 *p;
422 	int gfmq_len, i, j;
423 	unsigned int save_src_cnt = src_cnt;
424 
425 	re_chan = container_of(chan, struct fsl_re_chan, chan);
426 	if (len > FSL_RE_MAX_DATA_LEN) {
427 		dev_err(re_chan->dev, "pq tx length is %lu, max length is %d\n",
428 			len, FSL_RE_MAX_DATA_LEN);
429 		return NULL;
430 	}
431 
432 	/*
433 	 * RE requires at least 2 sources, if given only one source, we pass the
434 	 * second source same as the first one.
435 	 * With only one source, generating P is meaningless, only generate Q.
436 	 */
437 	if (src_cnt == 1) {
438 		struct dma_async_tx_descriptor *tx;
439 		dma_addr_t dma_src[2];
440 		unsigned char coef[2];
441 
442 		dma_src[0] = *src;
443 		coef[0] = *scf;
444 		dma_src[1] = *src;
445 		coef[1] = 0;
446 		tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
447 					  flags);
448 		if (tx)
449 			desc = to_fsl_re_dma_desc(tx);
450 
451 		return tx;
452 	}
453 
454 	/*
455 	 * During RAID6 array creation, Linux's MD layer gets P and Q
456 	 * calculated separately in two steps. But our RAID Engine has
457 	 * the capability to calculate both P and Q with a single command
458 	 * Hence to merge well with MD layer, we need to provide a hook
459 	 * here and call re_jq_prep_dma_genq() function
460 	 */
461 
462 	if (flags & DMA_PREP_PQ_DISABLE_P)
463 		return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
464 				scf, len, flags);
465 
466 	if (flags & DMA_PREP_CONTINUE)
467 		src_cnt += 3;
468 
469 	desc = fsl_re_chan_alloc_desc(re_chan, flags);
470 	if (desc <= 0)
471 		return NULL;
472 
473 	/* Filling GenQQ CDB */
474 	cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
475 	cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
476 	cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
477 	cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
478 	cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
479 
480 	pq = desc->cdb_addr;
481 	pq->cdb32 = cdb;
482 
483 	p = pq->gfm_q1;
484 	/* Init gfm_q1[] */
485 	for (i = 0; i < src_cnt; i++)
486 		p[i] = 1;
487 
488 	/* Align gfm[] to 32bit */
489 	gfmq_len = ALIGN(src_cnt, 4);
490 
491 	/* Init gfm_q2[] */
492 	p += gfmq_len;
493 	for (i = 0; i < src_cnt; i++)
494 		p[i] = scf[i];
495 
496 	/* Filling frame 0 of compound frame descriptor with CDB */
497 	cf = desc->cf_addr;
498 	fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
499 
500 	/* Fill CFD's 1st & 2nd frame with dest buffers */
501 	for (i = 1, j = 0; i < 3; i++, j++)
502 		fill_cfd_frame(cf, i, len, dest[j], 0);
503 
504 	/* Fill CFD's rest of the frames with source buffers */
505 	for (i = 3, j = 0; j < save_src_cnt; i++, j++)
506 		fill_cfd_frame(cf, i, len, src[j], 0);
507 
508 	/* PQ computation continuation */
509 	if (flags & DMA_PREP_CONTINUE) {
510 		if (src_cnt - save_src_cnt == 3) {
511 			p[save_src_cnt] = 0;
512 			p[save_src_cnt + 1] = 0;
513 			p[save_src_cnt + 2] = 1;
514 			fill_cfd_frame(cf, i++, len, dest[0], 0);
515 			fill_cfd_frame(cf, i++, len, dest[1], 0);
516 			fill_cfd_frame(cf, i++, len, dest[1], 0);
517 		} else {
518 			dev_err(re_chan->dev, "PQ tx continuation error!\n");
519 			return NULL;
520 		}
521 	}
522 
523 	/* Setting the final bit in the last source buffer frame in CFD */
524 	cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
525 
526 	return &desc->async_tx;
527 }
528 
529 /*
530  * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
531  * command. Logic of this function will need to be modified once multipage
532  * support is added in Linux's MD/ASYNC Layer
533  */
534 static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
535 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
536 		size_t len, unsigned long flags)
537 {
538 	struct fsl_re_chan *re_chan;
539 	struct fsl_re_desc *desc;
540 	size_t length;
541 	struct fsl_re_cmpnd_frame *cf;
542 	struct fsl_re_move_cdb *move;
543 	u32 cdb;
544 
545 	re_chan = container_of(chan, struct fsl_re_chan, chan);
546 
547 	if (len > FSL_RE_MAX_DATA_LEN) {
548 		dev_err(re_chan->dev, "cp tx length is %lu, max length is %d\n",
549 			len, FSL_RE_MAX_DATA_LEN);
550 		return NULL;
551 	}
552 
553 	desc = fsl_re_chan_alloc_desc(re_chan, flags);
554 	if (desc <= 0)
555 		return NULL;
556 
557 	/* Filling move CDB */
558 	cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
559 	cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
560 	cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
561 	cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
562 
563 	move = desc->cdb_addr;
564 	move->cdb32 = cdb;
565 
566 	/* Filling frame 0 of CFD with move CDB */
567 	cf = desc->cf_addr;
568 	fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
569 
570 	length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
571 
572 	/* Fill CFD's 1st frame with dest buffer */
573 	fill_cfd_frame(cf, 1, length, dest, 0);
574 
575 	/* Fill CFD's 2nd frame with src buffer */
576 	fill_cfd_frame(cf, 2, length, src, 1);
577 
578 	return &desc->async_tx;
579 }
580 
581 static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
582 {
583 	struct fsl_re_chan *re_chan;
584 	struct fsl_re_desc *desc;
585 	void *cf;
586 	dma_addr_t paddr;
587 	int i;
588 
589 	re_chan = container_of(chan, struct fsl_re_chan, chan);
590 	for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
591 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
592 		if (!desc)
593 			break;
594 
595 		cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
596 				    &paddr);
597 		if (!cf) {
598 			kfree(desc);
599 			break;
600 		}
601 
602 		INIT_LIST_HEAD(&desc->node);
603 		fsl_re_init_desc(re_chan, desc, cf, paddr);
604 
605 		list_add_tail(&desc->node, &re_chan->free_q);
606 		re_chan->alloc_count++;
607 	}
608 	return re_chan->alloc_count;
609 }
610 
611 static void fsl_re_free_chan_resources(struct dma_chan *chan)
612 {
613 	struct fsl_re_chan *re_chan;
614 	struct fsl_re_desc *desc;
615 
616 	re_chan = container_of(chan, struct fsl_re_chan, chan);
617 	while (re_chan->alloc_count--) {
618 		desc = list_first_entry(&re_chan->free_q,
619 					struct fsl_re_desc,
620 					node);
621 
622 		list_del(&desc->node);
623 		dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
624 			      desc->cf_paddr);
625 		kfree(desc);
626 	}
627 
628 	if (!list_empty(&re_chan->free_q))
629 		dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
630 }
631 
632 static int fsl_re_chan_probe(struct platform_device *ofdev,
633 		      struct device_node *np, u8 q, u32 off)
634 {
635 	struct device *dev, *chandev;
636 	struct fsl_re_drv_private *re_priv;
637 	struct fsl_re_chan *chan;
638 	struct dma_device *dma_dev;
639 	u32 ptr;
640 	u32 status;
641 	int ret = 0, rc;
642 	struct platform_device *chan_ofdev;
643 
644 	dev = &ofdev->dev;
645 	re_priv = dev_get_drvdata(dev);
646 	dma_dev = &re_priv->dma_dev;
647 
648 	chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
649 	if (!chan)
650 		return -ENOMEM;
651 
652 	/* create platform device for chan node */
653 	chan_ofdev = of_platform_device_create(np, NULL, dev);
654 	if (!chan_ofdev) {
655 		dev_err(dev, "Not able to create ofdev for jr %d\n", q);
656 		ret = -EINVAL;
657 		goto err_free;
658 	}
659 
660 	/* read reg property from dts */
661 	rc = of_property_read_u32(np, "reg", &ptr);
662 	if (rc) {
663 		dev_err(dev, "Reg property not found in jr %d\n", q);
664 		ret = -ENODEV;
665 		goto err_free;
666 	}
667 
668 	chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
669 			off + ptr);
670 
671 	/* read irq property from dts */
672 	chan->irq = irq_of_parse_and_map(np, 0);
673 	if (chan->irq == NO_IRQ) {
674 		dev_err(dev, "No IRQ defined for JR %d\n", q);
675 		ret = -ENODEV;
676 		goto err_free;
677 	}
678 
679 	snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
680 
681 	chandev = &chan_ofdev->dev;
682 	tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev);
683 
684 	ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
685 	if (ret) {
686 		dev_err(dev, "Unable to register interrupt for JR %d\n", q);
687 		ret = -EINVAL;
688 		goto err_free;
689 	}
690 
691 	re_priv->re_jrs[q] = chan;
692 	chan->chan.device = dma_dev;
693 	chan->chan.private = chan;
694 	chan->dev = chandev;
695 	chan->re_dev = re_priv;
696 
697 	spin_lock_init(&chan->desc_lock);
698 	INIT_LIST_HEAD(&chan->ack_q);
699 	INIT_LIST_HEAD(&chan->active_q);
700 	INIT_LIST_HEAD(&chan->submit_q);
701 	INIT_LIST_HEAD(&chan->free_q);
702 
703 	chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
704 		GFP_KERNEL, &chan->inb_phys_addr);
705 	if (!chan->inb_ring_virt_addr) {
706 		dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
707 		ret = -ENOMEM;
708 		goto err_free;
709 	}
710 
711 	chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
712 		GFP_KERNEL, &chan->oub_phys_addr);
713 	if (!chan->oub_ring_virt_addr) {
714 		dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
715 		ret = -ENOMEM;
716 		goto err_free_1;
717 	}
718 
719 	/* Program the Inbound/Outbound ring base addresses and size */
720 	out_be32(&chan->jrregs->inbring_base_h,
721 		 chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
722 	out_be32(&chan->jrregs->oubring_base_h,
723 		 chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
724 	out_be32(&chan->jrregs->inbring_base_l,
725 		 chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
726 	out_be32(&chan->jrregs->oubring_base_l,
727 		 chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
728 	out_be32(&chan->jrregs->inbring_size,
729 		 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
730 	out_be32(&chan->jrregs->oubring_size,
731 		 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
732 
733 	/* Read LIODN value from u-boot */
734 	status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
735 
736 	/* Program the CFG reg */
737 	out_be32(&chan->jrregs->jr_config_1,
738 		 FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
739 
740 	dev_set_drvdata(chandev, chan);
741 
742 	/* Enable RE/CHAN */
743 	out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
744 
745 	return 0;
746 
747 err_free_1:
748 	dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
749 		      chan->inb_phys_addr);
750 err_free:
751 	return ret;
752 }
753 
754 /* Probe function for RAID Engine */
755 static int fsl_re_probe(struct platform_device *ofdev)
756 {
757 	struct fsl_re_drv_private *re_priv;
758 	struct device_node *np;
759 	struct device_node *child;
760 	u32 off;
761 	u8 ridx = 0;
762 	struct dma_device *dma_dev;
763 	struct resource *res;
764 	int rc;
765 	struct device *dev = &ofdev->dev;
766 
767 	re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
768 	if (!re_priv)
769 		return -ENOMEM;
770 
771 	res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
772 	if (!res)
773 		return -ENODEV;
774 
775 	/* IOMAP the entire RAID Engine region */
776 	re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
777 	if (!re_priv->re_regs)
778 		return -EBUSY;
779 
780 	/* Program the RE mode */
781 	out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
782 
783 	/* Program Galois Field polynomial */
784 	out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
785 
786 	dev_info(dev, "version %x, mode %x, gfp %x\n",
787 		 in_be32(&re_priv->re_regs->re_version_id),
788 		 in_be32(&re_priv->re_regs->global_config),
789 		 in_be32(&re_priv->re_regs->galois_field_config));
790 
791 	dma_dev = &re_priv->dma_dev;
792 	dma_dev->dev = dev;
793 	INIT_LIST_HEAD(&dma_dev->channels);
794 	dma_set_mask(dev, DMA_BIT_MASK(40));
795 
796 	dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
797 	dma_dev->device_tx_status = fsl_re_tx_status;
798 	dma_dev->device_issue_pending = fsl_re_issue_pending;
799 
800 	dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
801 	dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
802 	dma_cap_set(DMA_XOR, dma_dev->cap_mask);
803 
804 	dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
805 	dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
806 	dma_cap_set(DMA_PQ, dma_dev->cap_mask);
807 
808 	dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
809 	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
810 
811 	dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
812 
813 	re_priv->total_chans = 0;
814 
815 	re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
816 					FSL_RE_CF_CDB_SIZE,
817 					FSL_RE_CF_CDB_ALIGN, 0);
818 
819 	if (!re_priv->cf_desc_pool) {
820 		dev_err(dev, "No memory for fsl re_cf desc pool\n");
821 		return -ENOMEM;
822 	}
823 
824 	re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
825 			sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
826 			FSL_RE_FRAME_ALIGN, 0);
827 	if (!re_priv->hw_desc_pool) {
828 		dev_err(dev, "No memory for fsl re_hw desc pool\n");
829 		return -ENOMEM;
830 	}
831 
832 	dev_set_drvdata(dev, re_priv);
833 
834 	/* Parse Device tree to find out the total number of JQs present */
835 	for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
836 		rc = of_property_read_u32(np, "reg", &off);
837 		if (rc) {
838 			dev_err(dev, "Reg property not found in JQ node\n");
839 			return -ENODEV;
840 		}
841 		/* Find out the Job Rings present under each JQ */
842 		for_each_child_of_node(np, child) {
843 			rc = of_device_is_compatible(child,
844 					     "fsl,raideng-v1.0-job-ring");
845 			if (rc) {
846 				fsl_re_chan_probe(ofdev, child, ridx++, off);
847 				re_priv->total_chans++;
848 			}
849 		}
850 	}
851 
852 	dma_async_device_register(dma_dev);
853 
854 	return 0;
855 }
856 
857 static void fsl_re_remove_chan(struct fsl_re_chan *chan)
858 {
859 	dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
860 		      chan->inb_phys_addr);
861 
862 	dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
863 		      chan->oub_phys_addr);
864 }
865 
866 static int fsl_re_remove(struct platform_device *ofdev)
867 {
868 	struct fsl_re_drv_private *re_priv;
869 	struct device *dev;
870 	int i;
871 
872 	dev = &ofdev->dev;
873 	re_priv = dev_get_drvdata(dev);
874 
875 	/* Cleanup chan related memory areas */
876 	for (i = 0; i < re_priv->total_chans; i++)
877 		fsl_re_remove_chan(re_priv->re_jrs[i]);
878 
879 	/* Unregister the driver */
880 	dma_async_device_unregister(&re_priv->dma_dev);
881 
882 	return 0;
883 }
884 
885 static struct of_device_id fsl_re_ids[] = {
886 	{ .compatible = "fsl,raideng-v1.0", },
887 	{}
888 };
889 
890 static struct platform_driver fsl_re_driver = {
891 	.driver = {
892 		.name = "fsl-raideng",
893 		.owner = THIS_MODULE,
894 		.of_match_table = fsl_re_ids,
895 	},
896 	.probe = fsl_re_probe,
897 	.remove = fsl_re_remove,
898 };
899 
900 module_platform_driver(fsl_re_driver);
901 
902 MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
903 MODULE_LICENSE("GPL v2");
904 MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");
905