1 /*
2 * drivers/dma/fsl_raid.c
3 *
4 * Freescale RAID Engine device driver
5 *
6 * Author:
7 * Harninder Rai <harninder.rai@freescale.com>
8 * Naveen Burmi <naveenburmi@freescale.com>
9 *
10 * Rewrite:
11 * Xuelin Shi <xuelin.shi@freescale.com>
12 *
13 * Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions are met:
17 * * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * * Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * * Neither the name of Freescale Semiconductor nor the
23 * names of its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written permission.
25 *
26 * ALTERNATIVELY, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") as published by the Free Software
28 * Foundation, either version 2 of that License or (at your option) any
29 * later version.
30 *
31 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
34 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
40 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Theory of operation:
43 *
44 * General capabilities:
45 * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
46 * calculations required in RAID5 and RAID6 operations. RE driver
47 * registers with Linux's ASYNC layer as dma driver. RE hardware
48 * maintains strict ordering of the requests through chained
49 * command queueing.
50 *
51 * Data flow:
52 * Software RAID layer of Linux (MD layer) maintains RAID partitions,
53 * strips, stripes etc. It sends requests to the underlying ASYNC layer
54 * which further passes it to RE driver. ASYNC layer decides which request
55 * goes to which job ring of RE hardware. For every request processed by
56 * RAID Engine, driver gets an interrupt unless coalescing is set. The
57 * per job ring interrupt handler checks the status register for errors,
58 * clears the interrupt and leave the post interrupt processing to the irq
59 * thread.
60 */
61 #include <linux/interrupt.h>
62 #include <linux/module.h>
63 #include <linux/of.h>
64 #include <linux/of_irq.h>
65 #include <linux/of_platform.h>
66 #include <linux/platform_device.h>
67 #include <linux/dma-mapping.h>
68 #include <linux/dmapool.h>
69 #include <linux/dmaengine.h>
70 #include <linux/io.h>
71 #include <linux/spinlock.h>
72 #include <linux/slab.h>
73
74 #include "dmaengine.h"
75 #include "fsl_raid.h"
76
77 #define FSL_RE_MAX_XOR_SRCS 16
78 #define FSL_RE_MAX_PQ_SRCS 16
79 #define FSL_RE_MIN_DESCS 256
80 #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS)
81 #define FSL_RE_FRAME_FORMAT 0x1
82 #define FSL_RE_MAX_DATA_LEN (1024*1024)
83
84 #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
85
86 /* Add descriptors into per chan software queue - submit_q */
fsl_re_tx_submit(struct dma_async_tx_descriptor * tx)87 static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
88 {
89 struct fsl_re_desc *desc;
90 struct fsl_re_chan *re_chan;
91 dma_cookie_t cookie;
92 unsigned long flags;
93
94 desc = to_fsl_re_dma_desc(tx);
95 re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
96
97 spin_lock_irqsave(&re_chan->desc_lock, flags);
98 cookie = dma_cookie_assign(tx);
99 list_add_tail(&desc->node, &re_chan->submit_q);
100 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
101
102 return cookie;
103 }
104
105 /* Copy descriptor from per chan software queue into hardware job ring */
fsl_re_issue_pending(struct dma_chan * chan)106 static void fsl_re_issue_pending(struct dma_chan *chan)
107 {
108 struct fsl_re_chan *re_chan;
109 int avail;
110 struct fsl_re_desc *desc, *_desc;
111 unsigned long flags;
112
113 re_chan = container_of(chan, struct fsl_re_chan, chan);
114
115 spin_lock_irqsave(&re_chan->desc_lock, flags);
116 avail = FSL_RE_SLOT_AVAIL(
117 in_be32(&re_chan->jrregs->inbring_slot_avail));
118
119 list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
120 if (!avail)
121 break;
122
123 list_move_tail(&desc->node, &re_chan->active_q);
124
125 memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
126 &desc->hwdesc, sizeof(struct fsl_re_hw_desc));
127
128 re_chan->inb_count = (re_chan->inb_count + 1) &
129 FSL_RE_RING_SIZE_MASK;
130 out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
131 avail--;
132 }
133 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
134 }
135
fsl_re_desc_done(struct fsl_re_desc * desc)136 static void fsl_re_desc_done(struct fsl_re_desc *desc)
137 {
138 dma_cookie_complete(&desc->async_tx);
139 dma_descriptor_unmap(&desc->async_tx);
140 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
141 }
142
fsl_re_cleanup_descs(struct fsl_re_chan * re_chan)143 static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
144 {
145 struct fsl_re_desc *desc, *_desc;
146 unsigned long flags;
147
148 spin_lock_irqsave(&re_chan->desc_lock, flags);
149 list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
150 if (async_tx_test_ack(&desc->async_tx))
151 list_move_tail(&desc->node, &re_chan->free_q);
152 }
153 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
154
155 fsl_re_issue_pending(&re_chan->chan);
156 }
157
fsl_re_dequeue(struct tasklet_struct * t)158 static void fsl_re_dequeue(struct tasklet_struct *t)
159 {
160 struct fsl_re_chan *re_chan = from_tasklet(re_chan, t, irqtask);
161 struct fsl_re_desc *desc, *_desc;
162 struct fsl_re_hw_desc *hwdesc;
163 unsigned long flags;
164 unsigned int count, oub_count;
165 int found;
166
167 fsl_re_cleanup_descs(re_chan);
168
169 spin_lock_irqsave(&re_chan->desc_lock, flags);
170 count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
171 while (count--) {
172 found = 0;
173 hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
174 list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
175 node) {
176 /* compare the hw dma addr to find the completed */
177 if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
178 desc->hwdesc.addr_low == hwdesc->addr_low) {
179 found = 1;
180 break;
181 }
182 }
183
184 if (found) {
185 fsl_re_desc_done(desc);
186 list_move_tail(&desc->node, &re_chan->ack_q);
187 } else {
188 dev_err(re_chan->dev,
189 "found hwdesc not in sw queue, discard it\n");
190 }
191
192 oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
193 re_chan->oub_count = oub_count;
194
195 out_be32(&re_chan->jrregs->oubring_job_rmvd,
196 FSL_RE_RMVD_JOB(1));
197 }
198 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
199 }
200
201 /* Per Job Ring interrupt handler */
fsl_re_isr(int irq,void * data)202 static irqreturn_t fsl_re_isr(int irq, void *data)
203 {
204 struct fsl_re_chan *re_chan;
205 u32 irqstate, status;
206
207 re_chan = dev_get_drvdata((struct device *)data);
208
209 irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
210 if (!irqstate)
211 return IRQ_NONE;
212
213 /*
214 * There's no way in upper layer (read MD layer) to recover from
215 * error conditions except restart everything. In long term we
216 * need to do something more than just crashing
217 */
218 if (irqstate & FSL_RE_ERROR) {
219 status = in_be32(&re_chan->jrregs->jr_status);
220 dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
221 irqstate, status);
222 }
223
224 /* Clear interrupt */
225 out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
226
227 tasklet_schedule(&re_chan->irqtask);
228
229 return IRQ_HANDLED;
230 }
231
fsl_re_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)232 static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
233 dma_cookie_t cookie,
234 struct dma_tx_state *txstate)
235 {
236 return dma_cookie_status(chan, cookie, txstate);
237 }
238
fill_cfd_frame(struct fsl_re_cmpnd_frame * cf,u8 index,size_t length,dma_addr_t addr,bool final)239 static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
240 size_t length, dma_addr_t addr, bool final)
241 {
242 u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
243
244 efrl |= final << FSL_RE_CF_FINAL_SHIFT;
245 cf[index].efrl32 = efrl;
246 cf[index].addr_high = upper_32_bits(addr);
247 cf[index].addr_low = lower_32_bits(addr);
248 }
249
fsl_re_init_desc(struct fsl_re_chan * re_chan,struct fsl_re_desc * desc,void * cf,dma_addr_t paddr)250 static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
251 struct fsl_re_desc *desc,
252 void *cf, dma_addr_t paddr)
253 {
254 desc->re_chan = re_chan;
255 desc->async_tx.tx_submit = fsl_re_tx_submit;
256 dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
257 INIT_LIST_HEAD(&desc->node);
258
259 desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
260 desc->hwdesc.lbea32 = upper_32_bits(paddr);
261 desc->hwdesc.addr_low = lower_32_bits(paddr);
262 desc->cf_addr = cf;
263 desc->cf_paddr = paddr;
264
265 desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
266 desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
267
268 return desc;
269 }
270
fsl_re_chan_alloc_desc(struct fsl_re_chan * re_chan,unsigned long flags)271 static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
272 unsigned long flags)
273 {
274 struct fsl_re_desc *desc = NULL;
275 void *cf;
276 dma_addr_t paddr;
277 unsigned long lock_flag;
278
279 fsl_re_cleanup_descs(re_chan);
280
281 spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
282 if (!list_empty(&re_chan->free_q)) {
283 /* take one desc from free_q */
284 desc = list_first_entry(&re_chan->free_q,
285 struct fsl_re_desc, node);
286 list_del(&desc->node);
287
288 desc->async_tx.flags = flags;
289 }
290 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
291
292 if (!desc) {
293 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
294 if (!desc)
295 return NULL;
296
297 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
298 &paddr);
299 if (!cf) {
300 kfree(desc);
301 return NULL;
302 }
303
304 desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
305 desc->async_tx.flags = flags;
306
307 spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
308 re_chan->alloc_count++;
309 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
310 }
311
312 return desc;
313 }
314
fsl_re_prep_dma_genq(struct dma_chan * chan,dma_addr_t dest,dma_addr_t * src,unsigned int src_cnt,const unsigned char * scf,size_t len,unsigned long flags)315 static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
316 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
317 unsigned int src_cnt, const unsigned char *scf, size_t len,
318 unsigned long flags)
319 {
320 struct fsl_re_chan *re_chan;
321 struct fsl_re_desc *desc;
322 struct fsl_re_xor_cdb *xor;
323 struct fsl_re_cmpnd_frame *cf;
324 u32 cdb;
325 unsigned int i, j;
326 unsigned int save_src_cnt = src_cnt;
327 int cont_q = 0;
328
329 re_chan = container_of(chan, struct fsl_re_chan, chan);
330 if (len > FSL_RE_MAX_DATA_LEN) {
331 dev_err(re_chan->dev, "genq tx length %zu, max length %d\n",
332 len, FSL_RE_MAX_DATA_LEN);
333 return NULL;
334 }
335
336 desc = fsl_re_chan_alloc_desc(re_chan, flags);
337 if (desc <= 0)
338 return NULL;
339
340 if (scf && (flags & DMA_PREP_CONTINUE)) {
341 cont_q = 1;
342 src_cnt += 1;
343 }
344
345 /* Filling xor CDB */
346 cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
347 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
348 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
349 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
350 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
351 xor = desc->cdb_addr;
352 xor->cdb32 = cdb;
353
354 if (scf) {
355 /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
356 for (i = 0; i < save_src_cnt; i++)
357 xor->gfm[i] = scf[i];
358 if (cont_q)
359 xor->gfm[i++] = 1;
360 } else {
361 /* compute P, that is XOR all srcs */
362 for (i = 0; i < src_cnt; i++)
363 xor->gfm[i] = 1;
364 }
365
366 /* Filling frame 0 of compound frame descriptor with CDB */
367 cf = desc->cf_addr;
368 fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
369
370 /* Fill CFD's 1st frame with dest buffer */
371 fill_cfd_frame(cf, 1, len, dest, 0);
372
373 /* Fill CFD's rest of the frames with source buffers */
374 for (i = 2, j = 0; j < save_src_cnt; i++, j++)
375 fill_cfd_frame(cf, i, len, src[j], 0);
376
377 if (cont_q)
378 fill_cfd_frame(cf, i++, len, dest, 0);
379
380 /* Setting the final bit in the last source buffer frame in CFD */
381 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
382
383 return &desc->async_tx;
384 }
385
386 /*
387 * Prep function for P parity calculation.In RAID Engine terminology,
388 * XOR calculation is called GenQ calculation done through GenQ command
389 */
fsl_re_prep_dma_xor(struct dma_chan * chan,dma_addr_t dest,dma_addr_t * src,unsigned int src_cnt,size_t len,unsigned long flags)390 static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
391 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
392 unsigned int src_cnt, size_t len, unsigned long flags)
393 {
394 /* NULL let genq take all coef as 1 */
395 return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
396 }
397
398 /*
399 * Prep function for P/Q parity calculation.In RAID Engine terminology,
400 * P/Q calculation is called GenQQ done through GenQQ command
401 */
fsl_re_prep_dma_pq(struct dma_chan * chan,dma_addr_t * dest,dma_addr_t * src,unsigned int src_cnt,const unsigned char * scf,size_t len,unsigned long flags)402 static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
403 struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
404 unsigned int src_cnt, const unsigned char *scf, size_t len,
405 unsigned long flags)
406 {
407 struct fsl_re_chan *re_chan;
408 struct fsl_re_desc *desc;
409 struct fsl_re_pq_cdb *pq;
410 struct fsl_re_cmpnd_frame *cf;
411 u32 cdb;
412 u8 *p;
413 int gfmq_len, i, j;
414 unsigned int save_src_cnt = src_cnt;
415
416 re_chan = container_of(chan, struct fsl_re_chan, chan);
417 if (len > FSL_RE_MAX_DATA_LEN) {
418 dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n",
419 len, FSL_RE_MAX_DATA_LEN);
420 return NULL;
421 }
422
423 /*
424 * RE requires at least 2 sources, if given only one source, we pass the
425 * second source same as the first one.
426 * With only one source, generating P is meaningless, only generate Q.
427 */
428 if (src_cnt == 1) {
429 struct dma_async_tx_descriptor *tx;
430 dma_addr_t dma_src[2];
431 unsigned char coef[2];
432
433 dma_src[0] = *src;
434 coef[0] = *scf;
435 dma_src[1] = *src;
436 coef[1] = 0;
437 tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
438 flags);
439 if (tx)
440 desc = to_fsl_re_dma_desc(tx);
441
442 return tx;
443 }
444
445 /*
446 * During RAID6 array creation, Linux's MD layer gets P and Q
447 * calculated separately in two steps. But our RAID Engine has
448 * the capability to calculate both P and Q with a single command
449 * Hence to merge well with MD layer, we need to provide a hook
450 * here and call re_jq_prep_dma_genq() function
451 */
452
453 if (flags & DMA_PREP_PQ_DISABLE_P)
454 return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
455 scf, len, flags);
456
457 if (flags & DMA_PREP_CONTINUE)
458 src_cnt += 3;
459
460 desc = fsl_re_chan_alloc_desc(re_chan, flags);
461 if (desc <= 0)
462 return NULL;
463
464 /* Filling GenQQ CDB */
465 cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
466 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
467 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
468 cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
469 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
470
471 pq = desc->cdb_addr;
472 pq->cdb32 = cdb;
473
474 p = pq->gfm_q1;
475 /* Init gfm_q1[] */
476 for (i = 0; i < src_cnt; i++)
477 p[i] = 1;
478
479 /* Align gfm[] to 32bit */
480 gfmq_len = ALIGN(src_cnt, 4);
481
482 /* Init gfm_q2[] */
483 p += gfmq_len;
484 for (i = 0; i < src_cnt; i++)
485 p[i] = scf[i];
486
487 /* Filling frame 0 of compound frame descriptor with CDB */
488 cf = desc->cf_addr;
489 fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
490
491 /* Fill CFD's 1st & 2nd frame with dest buffers */
492 for (i = 1, j = 0; i < 3; i++, j++)
493 fill_cfd_frame(cf, i, len, dest[j], 0);
494
495 /* Fill CFD's rest of the frames with source buffers */
496 for (i = 3, j = 0; j < save_src_cnt; i++, j++)
497 fill_cfd_frame(cf, i, len, src[j], 0);
498
499 /* PQ computation continuation */
500 if (flags & DMA_PREP_CONTINUE) {
501 if (src_cnt - save_src_cnt == 3) {
502 p[save_src_cnt] = 0;
503 p[save_src_cnt + 1] = 0;
504 p[save_src_cnt + 2] = 1;
505 fill_cfd_frame(cf, i++, len, dest[0], 0);
506 fill_cfd_frame(cf, i++, len, dest[1], 0);
507 fill_cfd_frame(cf, i++, len, dest[1], 0);
508 } else {
509 dev_err(re_chan->dev, "PQ tx continuation error!\n");
510 return NULL;
511 }
512 }
513
514 /* Setting the final bit in the last source buffer frame in CFD */
515 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
516
517 return &desc->async_tx;
518 }
519
520 /*
521 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
522 * command. Logic of this function will need to be modified once multipage
523 * support is added in Linux's MD/ASYNC Layer
524 */
fsl_re_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)525 static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
526 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
527 size_t len, unsigned long flags)
528 {
529 struct fsl_re_chan *re_chan;
530 struct fsl_re_desc *desc;
531 size_t length;
532 struct fsl_re_cmpnd_frame *cf;
533 struct fsl_re_move_cdb *move;
534 u32 cdb;
535
536 re_chan = container_of(chan, struct fsl_re_chan, chan);
537
538 if (len > FSL_RE_MAX_DATA_LEN) {
539 dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n",
540 len, FSL_RE_MAX_DATA_LEN);
541 return NULL;
542 }
543
544 desc = fsl_re_chan_alloc_desc(re_chan, flags);
545 if (desc <= 0)
546 return NULL;
547
548 /* Filling move CDB */
549 cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
550 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
551 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
552 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
553
554 move = desc->cdb_addr;
555 move->cdb32 = cdb;
556
557 /* Filling frame 0 of CFD with move CDB */
558 cf = desc->cf_addr;
559 fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
560
561 length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
562
563 /* Fill CFD's 1st frame with dest buffer */
564 fill_cfd_frame(cf, 1, length, dest, 0);
565
566 /* Fill CFD's 2nd frame with src buffer */
567 fill_cfd_frame(cf, 2, length, src, 1);
568
569 return &desc->async_tx;
570 }
571
fsl_re_alloc_chan_resources(struct dma_chan * chan)572 static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
573 {
574 struct fsl_re_chan *re_chan;
575 struct fsl_re_desc *desc;
576 void *cf;
577 dma_addr_t paddr;
578 int i;
579
580 re_chan = container_of(chan, struct fsl_re_chan, chan);
581 for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
582 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
583 if (!desc)
584 break;
585
586 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
587 &paddr);
588 if (!cf) {
589 kfree(desc);
590 break;
591 }
592
593 INIT_LIST_HEAD(&desc->node);
594 fsl_re_init_desc(re_chan, desc, cf, paddr);
595
596 list_add_tail(&desc->node, &re_chan->free_q);
597 re_chan->alloc_count++;
598 }
599 return re_chan->alloc_count;
600 }
601
fsl_re_free_chan_resources(struct dma_chan * chan)602 static void fsl_re_free_chan_resources(struct dma_chan *chan)
603 {
604 struct fsl_re_chan *re_chan;
605 struct fsl_re_desc *desc;
606
607 re_chan = container_of(chan, struct fsl_re_chan, chan);
608 while (re_chan->alloc_count--) {
609 desc = list_first_entry(&re_chan->free_q,
610 struct fsl_re_desc,
611 node);
612
613 list_del(&desc->node);
614 dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
615 desc->cf_paddr);
616 kfree(desc);
617 }
618
619 if (!list_empty(&re_chan->free_q))
620 dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
621 }
622
fsl_re_chan_probe(struct platform_device * ofdev,struct device_node * np,u8 q,u32 off)623 static int fsl_re_chan_probe(struct platform_device *ofdev,
624 struct device_node *np, u8 q, u32 off)
625 {
626 struct device *dev, *chandev;
627 struct fsl_re_drv_private *re_priv;
628 struct fsl_re_chan *chan;
629 struct dma_device *dma_dev;
630 u32 ptr;
631 u32 status;
632 int ret = 0, rc;
633 struct platform_device *chan_ofdev;
634
635 dev = &ofdev->dev;
636 re_priv = dev_get_drvdata(dev);
637 dma_dev = &re_priv->dma_dev;
638
639 chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
640 if (!chan)
641 return -ENOMEM;
642
643 /* create platform device for chan node */
644 chan_ofdev = of_platform_device_create(np, NULL, dev);
645 if (!chan_ofdev) {
646 dev_err(dev, "Not able to create ofdev for jr %d\n", q);
647 ret = -EINVAL;
648 goto err_free;
649 }
650
651 /* read reg property from dts */
652 rc = of_property_read_u32(np, "reg", &ptr);
653 if (rc) {
654 dev_err(dev, "Reg property not found in jr %d\n", q);
655 ret = -ENODEV;
656 goto err_free;
657 }
658
659 chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
660 off + ptr);
661
662 /* read irq property from dts */
663 chan->irq = irq_of_parse_and_map(np, 0);
664 if (!chan->irq) {
665 dev_err(dev, "No IRQ defined for JR %d\n", q);
666 ret = -ENODEV;
667 goto err_free;
668 }
669
670 snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
671
672 chandev = &chan_ofdev->dev;
673 tasklet_setup(&chan->irqtask, fsl_re_dequeue);
674
675 ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
676 if (ret) {
677 dev_err(dev, "Unable to register interrupt for JR %d\n", q);
678 ret = -EINVAL;
679 goto err_free;
680 }
681
682 re_priv->re_jrs[q] = chan;
683 chan->chan.device = dma_dev;
684 chan->chan.private = chan;
685 chan->dev = chandev;
686 chan->re_dev = re_priv;
687
688 spin_lock_init(&chan->desc_lock);
689 INIT_LIST_HEAD(&chan->ack_q);
690 INIT_LIST_HEAD(&chan->active_q);
691 INIT_LIST_HEAD(&chan->submit_q);
692 INIT_LIST_HEAD(&chan->free_q);
693
694 chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
695 GFP_KERNEL, &chan->inb_phys_addr);
696 if (!chan->inb_ring_virt_addr) {
697 dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
698 ret = -ENOMEM;
699 goto err_free;
700 }
701
702 chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
703 GFP_KERNEL, &chan->oub_phys_addr);
704 if (!chan->oub_ring_virt_addr) {
705 dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
706 ret = -ENOMEM;
707 goto err_free_1;
708 }
709
710 /* Program the Inbound/Outbound ring base addresses and size */
711 out_be32(&chan->jrregs->inbring_base_h,
712 chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
713 out_be32(&chan->jrregs->oubring_base_h,
714 chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
715 out_be32(&chan->jrregs->inbring_base_l,
716 chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
717 out_be32(&chan->jrregs->oubring_base_l,
718 chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
719 out_be32(&chan->jrregs->inbring_size,
720 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
721 out_be32(&chan->jrregs->oubring_size,
722 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
723
724 /* Read LIODN value from u-boot */
725 status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
726
727 /* Program the CFG reg */
728 out_be32(&chan->jrregs->jr_config_1,
729 FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
730
731 dev_set_drvdata(chandev, chan);
732
733 /* Enable RE/CHAN */
734 out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
735
736 return 0;
737
738 err_free_1:
739 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
740 chan->inb_phys_addr);
741 err_free:
742 return ret;
743 }
744
745 /* Probe function for RAID Engine */
fsl_re_probe(struct platform_device * ofdev)746 static int fsl_re_probe(struct platform_device *ofdev)
747 {
748 struct fsl_re_drv_private *re_priv;
749 struct device_node *np;
750 struct device_node *child;
751 u32 off;
752 u8 ridx = 0;
753 struct dma_device *dma_dev;
754 struct resource *res;
755 int rc;
756 struct device *dev = &ofdev->dev;
757
758 re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
759 if (!re_priv)
760 return -ENOMEM;
761
762 res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
763 if (!res)
764 return -ENODEV;
765
766 /* IOMAP the entire RAID Engine region */
767 re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
768 if (!re_priv->re_regs)
769 return -EBUSY;
770
771 /* Program the RE mode */
772 out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
773
774 /* Program Galois Field polynomial */
775 out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
776
777 dev_info(dev, "version %x, mode %x, gfp %x\n",
778 in_be32(&re_priv->re_regs->re_version_id),
779 in_be32(&re_priv->re_regs->global_config),
780 in_be32(&re_priv->re_regs->galois_field_config));
781
782 dma_dev = &re_priv->dma_dev;
783 dma_dev->dev = dev;
784 INIT_LIST_HEAD(&dma_dev->channels);
785 dma_set_mask(dev, DMA_BIT_MASK(40));
786
787 dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
788 dma_dev->device_tx_status = fsl_re_tx_status;
789 dma_dev->device_issue_pending = fsl_re_issue_pending;
790
791 dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
792 dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
793 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
794
795 dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
796 dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
797 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
798
799 dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
800 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
801
802 dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
803
804 re_priv->total_chans = 0;
805
806 re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
807 FSL_RE_CF_CDB_SIZE,
808 FSL_RE_CF_CDB_ALIGN, 0);
809
810 if (!re_priv->cf_desc_pool) {
811 dev_err(dev, "No memory for fsl re_cf desc pool\n");
812 return -ENOMEM;
813 }
814
815 re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
816 sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
817 FSL_RE_FRAME_ALIGN, 0);
818 if (!re_priv->hw_desc_pool) {
819 dev_err(dev, "No memory for fsl re_hw desc pool\n");
820 return -ENOMEM;
821 }
822
823 dev_set_drvdata(dev, re_priv);
824
825 /* Parse Device tree to find out the total number of JQs present */
826 for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
827 rc = of_property_read_u32(np, "reg", &off);
828 if (rc) {
829 dev_err(dev, "Reg property not found in JQ node\n");
830 of_node_put(np);
831 return -ENODEV;
832 }
833 /* Find out the Job Rings present under each JQ */
834 for_each_child_of_node(np, child) {
835 rc = of_device_is_compatible(child,
836 "fsl,raideng-v1.0-job-ring");
837 if (rc) {
838 fsl_re_chan_probe(ofdev, child, ridx++, off);
839 re_priv->total_chans++;
840 }
841 }
842 }
843
844 dma_async_device_register(dma_dev);
845
846 return 0;
847 }
848
fsl_re_remove_chan(struct fsl_re_chan * chan)849 static void fsl_re_remove_chan(struct fsl_re_chan *chan)
850 {
851 tasklet_kill(&chan->irqtask);
852
853 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
854 chan->inb_phys_addr);
855
856 dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
857 chan->oub_phys_addr);
858 }
859
fsl_re_remove(struct platform_device * ofdev)860 static int fsl_re_remove(struct platform_device *ofdev)
861 {
862 struct fsl_re_drv_private *re_priv;
863 struct device *dev;
864 int i;
865
866 dev = &ofdev->dev;
867 re_priv = dev_get_drvdata(dev);
868
869 /* Cleanup chan related memory areas */
870 for (i = 0; i < re_priv->total_chans; i++)
871 fsl_re_remove_chan(re_priv->re_jrs[i]);
872
873 /* Unregister the driver */
874 dma_async_device_unregister(&re_priv->dma_dev);
875
876 return 0;
877 }
878
879 static const struct of_device_id fsl_re_ids[] = {
880 { .compatible = "fsl,raideng-v1.0", },
881 {}
882 };
883 MODULE_DEVICE_TABLE(of, fsl_re_ids);
884
885 static struct platform_driver fsl_re_driver = {
886 .driver = {
887 .name = "fsl-raideng",
888 .of_match_table = fsl_re_ids,
889 },
890 .probe = fsl_re_probe,
891 .remove = fsl_re_remove,
892 };
893
894 module_platform_driver(fsl_re_driver);
895
896 MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
897 MODULE_LICENSE("GPL v2");
898 MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");
899