xref: /openbmc/linux/drivers/dma/ep93xx_dma.c (revision e23feb16)
1 /*
2  * Driver for the Cirrus Logic EP93xx DMA Controller
3  *
4  * Copyright (C) 2011 Mika Westerberg
5  *
6  * DMA M2P implementation is based on the original
7  * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8  *
9  *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10  *   Copyright (C) 2006 Applied Data Systems
11  *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12  *
13  * This driver is based on dw_dmac and amba-pl08x drivers.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  */
20 
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 
29 #include <linux/platform_data/dma-ep93xx.h>
30 
31 #include "dmaengine.h"
32 
33 /* M2P registers */
34 #define M2P_CONTROL			0x0000
35 #define M2P_CONTROL_STALLINT		BIT(0)
36 #define M2P_CONTROL_NFBINT		BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT	BIT(3)
38 #define M2P_CONTROL_ENABLE		BIT(4)
39 #define M2P_CONTROL_ICE			BIT(6)
40 
41 #define M2P_INTERRUPT			0x0004
42 #define M2P_INTERRUPT_STALL		BIT(0)
43 #define M2P_INTERRUPT_NFB		BIT(1)
44 #define M2P_INTERRUPT_ERROR		BIT(3)
45 
46 #define M2P_PPALLOC			0x0008
47 #define M2P_STATUS			0x000c
48 
49 #define M2P_MAXCNT0			0x0020
50 #define M2P_BASE0			0x0024
51 #define M2P_MAXCNT1			0x0030
52 #define M2P_BASE1			0x0034
53 
54 #define M2P_STATE_IDLE			0
55 #define M2P_STATE_STALL			1
56 #define M2P_STATE_ON			2
57 #define M2P_STATE_NEXT			3
58 
59 /* M2M registers */
60 #define M2M_CONTROL			0x0000
61 #define M2M_CONTROL_DONEINT		BIT(2)
62 #define M2M_CONTROL_ENABLE		BIT(3)
63 #define M2M_CONTROL_START		BIT(4)
64 #define M2M_CONTROL_DAH			BIT(11)
65 #define M2M_CONTROL_SAH			BIT(12)
66 #define M2M_CONTROL_PW_SHIFT		9
67 #define M2M_CONTROL_PW_8		(0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16		(1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32		(2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK		(3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT		13
72 #define M2M_CONTROL_TM_TX		(1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX		(2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT		BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT		22
76 #define M2M_CONTROL_RSS_SSPRX		(1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX		(2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE		(3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK		BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT		25
81 
82 #define M2M_INTERRUPT			0x0004
83 #define M2M_INTERRUPT_MASK		6
84 
85 #define M2M_STATUS			0x000c
86 #define M2M_STATUS_CTL_SHIFT		1
87 #define M2M_STATUS_CTL_IDLE		(0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL		(1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD		(2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR		(3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT		(4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK		(7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT		4
94 #define M2M_STATUS_BUF_NO		(0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON		(1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT		(2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK		(3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE			BIT(6)
99 
100 #define M2M_BCR0			0x0010
101 #define M2M_BCR1			0x0014
102 #define M2M_SAR_BASE0			0x0018
103 #define M2M_SAR_BASE1			0x001c
104 #define M2M_DAR_BASE0			0x002c
105 #define M2M_DAR_BASE1			0x0030
106 
107 #define DMA_MAX_CHAN_BYTES		0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS	32
109 
110 struct ep93xx_dma_engine;
111 
112 /**
113  * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114  * @src_addr: source address of the transaction
115  * @dst_addr: destination address of the transaction
116  * @size: size of the transaction (in bytes)
117  * @complete: this descriptor is completed
118  * @txd: dmaengine API descriptor
119  * @tx_list: list of linked descriptors
120  * @node: link used for putting this into a channel queue
121  */
122 struct ep93xx_dma_desc {
123 	u32				src_addr;
124 	u32				dst_addr;
125 	size_t				size;
126 	bool				complete;
127 	struct dma_async_tx_descriptor	txd;
128 	struct list_head		tx_list;
129 	struct list_head		node;
130 };
131 
132 /**
133  * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134  * @chan: dmaengine API channel
135  * @edma: pointer to to the engine device
136  * @regs: memory mapped registers
137  * @irq: interrupt number of the channel
138  * @clk: clock used by this channel
139  * @tasklet: channel specific tasklet used for callbacks
140  * @lock: lock protecting the fields following
141  * @flags: flags for the channel
142  * @buffer: which buffer to use next (0/1)
143  * @active: flattened chain of descriptors currently being processed
144  * @queue: pending descriptors which are handled next
145  * @free_list: list of free descriptors which can be used
146  * @runtime_addr: physical address currently used as dest/src (M2M only). This
147  *                is set via %DMA_SLAVE_CONFIG before slave operation is
148  *                prepared
149  * @runtime_ctrl: M2M runtime values for the control register.
150  *
151  * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152  * will have slightly different scheme here: @active points to a head of
153  * flattened DMA descriptor chain.
154  *
155  * @queue holds pending transactions. These are linked through the first
156  * descriptor in the chain. When a descriptor is moved to the @active queue,
157  * the first and chained descriptors are flattened into a single list.
158  *
159  * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160  * necessary channel configuration information. For memcpy channels this must
161  * be %NULL.
162  */
163 struct ep93xx_dma_chan {
164 	struct dma_chan			chan;
165 	const struct ep93xx_dma_engine	*edma;
166 	void __iomem			*regs;
167 	int				irq;
168 	struct clk			*clk;
169 	struct tasklet_struct		tasklet;
170 	/* protects the fields following */
171 	spinlock_t			lock;
172 	unsigned long			flags;
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC		0
175 
176 	int				buffer;
177 	struct list_head		active;
178 	struct list_head		queue;
179 	struct list_head		free_list;
180 	u32				runtime_addr;
181 	u32				runtime_ctrl;
182 };
183 
184 /**
185  * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186  * @dma_dev: holds the dmaengine device
187  * @m2m: is this an M2M or M2P device
188  * @hw_setup: method which sets the channel up for operation
189  * @hw_shutdown: shuts the channel down and flushes whatever is left
190  * @hw_submit: pushes active descriptor(s) to the hardware
191  * @hw_interrupt: handle the interrupt
192  * @num_channels: number of channels for this instance
193  * @channels: array of channels
194  *
195  * There is one instance of this struct for the M2P channels and one for the
196  * M2M channels. hw_xxx() methods are used to perform operations which are
197  * different on M2M and M2P channels. These methods are called with channel
198  * lock held and interrupts disabled so they cannot sleep.
199  */
200 struct ep93xx_dma_engine {
201 	struct dma_device	dma_dev;
202 	bool			m2m;
203 	int			(*hw_setup)(struct ep93xx_dma_chan *);
204 	void			(*hw_shutdown)(struct ep93xx_dma_chan *);
205 	void			(*hw_submit)(struct ep93xx_dma_chan *);
206 	int			(*hw_interrupt)(struct ep93xx_dma_chan *);
207 #define INTERRUPT_UNKNOWN	0
208 #define INTERRUPT_DONE		1
209 #define INTERRUPT_NEXT_BUFFER	2
210 
211 	size_t			num_channels;
212 	struct ep93xx_dma_chan	channels[];
213 };
214 
215 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
216 {
217 	return &edmac->chan.dev->device;
218 }
219 
220 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
221 {
222 	return container_of(chan, struct ep93xx_dma_chan, chan);
223 }
224 
225 /**
226  * ep93xx_dma_set_active - set new active descriptor chain
227  * @edmac: channel
228  * @desc: head of the new active descriptor chain
229  *
230  * Sets @desc to be the head of the new active descriptor chain. This is the
231  * chain which is processed next. The active list must be empty before calling
232  * this function.
233  *
234  * Called with @edmac->lock held and interrupts disabled.
235  */
236 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
237 				  struct ep93xx_dma_desc *desc)
238 {
239 	BUG_ON(!list_empty(&edmac->active));
240 
241 	list_add_tail(&desc->node, &edmac->active);
242 
243 	/* Flatten the @desc->tx_list chain into @edmac->active list */
244 	while (!list_empty(&desc->tx_list)) {
245 		struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
246 			struct ep93xx_dma_desc, node);
247 
248 		/*
249 		 * We copy the callback parameters from the first descriptor
250 		 * to all the chained descriptors. This way we can call the
251 		 * callback without having to find out the first descriptor in
252 		 * the chain. Useful for cyclic transfers.
253 		 */
254 		d->txd.callback = desc->txd.callback;
255 		d->txd.callback_param = desc->txd.callback_param;
256 
257 		list_move_tail(&d->node, &edmac->active);
258 	}
259 }
260 
261 /* Called with @edmac->lock held and interrupts disabled */
262 static struct ep93xx_dma_desc *
263 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
264 {
265 	if (list_empty(&edmac->active))
266 		return NULL;
267 
268 	return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
269 }
270 
271 /**
272  * ep93xx_dma_advance_active - advances to the next active descriptor
273  * @edmac: channel
274  *
275  * Function advances active descriptor to the next in the @edmac->active and
276  * returns %true if we still have descriptors in the chain to process.
277  * Otherwise returns %false.
278  *
279  * When the channel is in cyclic mode always returns %true.
280  *
281  * Called with @edmac->lock held and interrupts disabled.
282  */
283 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
284 {
285 	struct ep93xx_dma_desc *desc;
286 
287 	list_rotate_left(&edmac->active);
288 
289 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
290 		return true;
291 
292 	desc = ep93xx_dma_get_active(edmac);
293 	if (!desc)
294 		return false;
295 
296 	/*
297 	 * If txd.cookie is set it means that we are back in the first
298 	 * descriptor in the chain and hence done with it.
299 	 */
300 	return !desc->txd.cookie;
301 }
302 
303 /*
304  * M2P DMA implementation
305  */
306 
307 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
308 {
309 	writel(control, edmac->regs + M2P_CONTROL);
310 	/*
311 	 * EP93xx User's Guide states that we must perform a dummy read after
312 	 * write to the control register.
313 	 */
314 	readl(edmac->regs + M2P_CONTROL);
315 }
316 
317 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
318 {
319 	struct ep93xx_dma_data *data = edmac->chan.private;
320 	u32 control;
321 
322 	writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
323 
324 	control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
325 		| M2P_CONTROL_ENABLE;
326 	m2p_set_control(edmac, control);
327 
328 	return 0;
329 }
330 
331 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
332 {
333 	return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
334 }
335 
336 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
337 {
338 	u32 control;
339 
340 	control = readl(edmac->regs + M2P_CONTROL);
341 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
342 	m2p_set_control(edmac, control);
343 
344 	while (m2p_channel_state(edmac) >= M2P_STATE_ON)
345 		cpu_relax();
346 
347 	m2p_set_control(edmac, 0);
348 
349 	while (m2p_channel_state(edmac) == M2P_STATE_STALL)
350 		cpu_relax();
351 }
352 
353 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
354 {
355 	struct ep93xx_dma_desc *desc;
356 	u32 bus_addr;
357 
358 	desc = ep93xx_dma_get_active(edmac);
359 	if (!desc) {
360 		dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
361 		return;
362 	}
363 
364 	if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
365 		bus_addr = desc->src_addr;
366 	else
367 		bus_addr = desc->dst_addr;
368 
369 	if (edmac->buffer == 0) {
370 		writel(desc->size, edmac->regs + M2P_MAXCNT0);
371 		writel(bus_addr, edmac->regs + M2P_BASE0);
372 	} else {
373 		writel(desc->size, edmac->regs + M2P_MAXCNT1);
374 		writel(bus_addr, edmac->regs + M2P_BASE1);
375 	}
376 
377 	edmac->buffer ^= 1;
378 }
379 
380 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
381 {
382 	u32 control = readl(edmac->regs + M2P_CONTROL);
383 
384 	m2p_fill_desc(edmac);
385 	control |= M2P_CONTROL_STALLINT;
386 
387 	if (ep93xx_dma_advance_active(edmac)) {
388 		m2p_fill_desc(edmac);
389 		control |= M2P_CONTROL_NFBINT;
390 	}
391 
392 	m2p_set_control(edmac, control);
393 }
394 
395 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
396 {
397 	u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
398 	u32 control;
399 
400 	if (irq_status & M2P_INTERRUPT_ERROR) {
401 		struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
402 
403 		/* Clear the error interrupt */
404 		writel(1, edmac->regs + M2P_INTERRUPT);
405 
406 		/*
407 		 * It seems that there is no easy way of reporting errors back
408 		 * to client so we just report the error here and continue as
409 		 * usual.
410 		 *
411 		 * Revisit this when there is a mechanism to report back the
412 		 * errors.
413 		 */
414 		dev_err(chan2dev(edmac),
415 			"DMA transfer failed! Details:\n"
416 			"\tcookie	: %d\n"
417 			"\tsrc_addr	: 0x%08x\n"
418 			"\tdst_addr	: 0x%08x\n"
419 			"\tsize		: %zu\n",
420 			desc->txd.cookie, desc->src_addr, desc->dst_addr,
421 			desc->size);
422 	}
423 
424 	switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
425 	case M2P_INTERRUPT_STALL:
426 		/* Disable interrupts */
427 		control = readl(edmac->regs + M2P_CONTROL);
428 		control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
429 		m2p_set_control(edmac, control);
430 
431 		return INTERRUPT_DONE;
432 
433 	case M2P_INTERRUPT_NFB:
434 		if (ep93xx_dma_advance_active(edmac))
435 			m2p_fill_desc(edmac);
436 
437 		return INTERRUPT_NEXT_BUFFER;
438 	}
439 
440 	return INTERRUPT_UNKNOWN;
441 }
442 
443 /*
444  * M2M DMA implementation
445  */
446 
447 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
448 {
449 	const struct ep93xx_dma_data *data = edmac->chan.private;
450 	u32 control = 0;
451 
452 	if (!data) {
453 		/* This is memcpy channel, nothing to configure */
454 		writel(control, edmac->regs + M2M_CONTROL);
455 		return 0;
456 	}
457 
458 	switch (data->port) {
459 	case EP93XX_DMA_SSP:
460 		/*
461 		 * This was found via experimenting - anything less than 5
462 		 * causes the channel to perform only a partial transfer which
463 		 * leads to problems since we don't get DONE interrupt then.
464 		 */
465 		control = (5 << M2M_CONTROL_PWSC_SHIFT);
466 		control |= M2M_CONTROL_NO_HDSK;
467 
468 		if (data->direction == DMA_MEM_TO_DEV) {
469 			control |= M2M_CONTROL_DAH;
470 			control |= M2M_CONTROL_TM_TX;
471 			control |= M2M_CONTROL_RSS_SSPTX;
472 		} else {
473 			control |= M2M_CONTROL_SAH;
474 			control |= M2M_CONTROL_TM_RX;
475 			control |= M2M_CONTROL_RSS_SSPRX;
476 		}
477 		break;
478 
479 	case EP93XX_DMA_IDE:
480 		/*
481 		 * This IDE part is totally untested. Values below are taken
482 		 * from the EP93xx Users's Guide and might not be correct.
483 		 */
484 		if (data->direction == DMA_MEM_TO_DEV) {
485 			/* Worst case from the UG */
486 			control = (3 << M2M_CONTROL_PWSC_SHIFT);
487 			control |= M2M_CONTROL_DAH;
488 			control |= M2M_CONTROL_TM_TX;
489 		} else {
490 			control = (2 << M2M_CONTROL_PWSC_SHIFT);
491 			control |= M2M_CONTROL_SAH;
492 			control |= M2M_CONTROL_TM_RX;
493 		}
494 
495 		control |= M2M_CONTROL_NO_HDSK;
496 		control |= M2M_CONTROL_RSS_IDE;
497 		control |= M2M_CONTROL_PW_16;
498 		break;
499 
500 	default:
501 		return -EINVAL;
502 	}
503 
504 	writel(control, edmac->regs + M2M_CONTROL);
505 	return 0;
506 }
507 
508 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
509 {
510 	/* Just disable the channel */
511 	writel(0, edmac->regs + M2M_CONTROL);
512 }
513 
514 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
515 {
516 	struct ep93xx_dma_desc *desc;
517 
518 	desc = ep93xx_dma_get_active(edmac);
519 	if (!desc) {
520 		dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
521 		return;
522 	}
523 
524 	if (edmac->buffer == 0) {
525 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
526 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
527 		writel(desc->size, edmac->regs + M2M_BCR0);
528 	} else {
529 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
530 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
531 		writel(desc->size, edmac->regs + M2M_BCR1);
532 	}
533 
534 	edmac->buffer ^= 1;
535 }
536 
537 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
538 {
539 	struct ep93xx_dma_data *data = edmac->chan.private;
540 	u32 control = readl(edmac->regs + M2M_CONTROL);
541 
542 	/*
543 	 * Since we allow clients to configure PW (peripheral width) we always
544 	 * clear PW bits here and then set them according what is given in
545 	 * the runtime configuration.
546 	 */
547 	control &= ~M2M_CONTROL_PW_MASK;
548 	control |= edmac->runtime_ctrl;
549 
550 	m2m_fill_desc(edmac);
551 	control |= M2M_CONTROL_DONEINT;
552 
553 	if (ep93xx_dma_advance_active(edmac)) {
554 		m2m_fill_desc(edmac);
555 		control |= M2M_CONTROL_NFBINT;
556 	}
557 
558 	/*
559 	 * Now we can finally enable the channel. For M2M channel this must be
560 	 * done _after_ the BCRx registers are programmed.
561 	 */
562 	control |= M2M_CONTROL_ENABLE;
563 	writel(control, edmac->regs + M2M_CONTROL);
564 
565 	if (!data) {
566 		/*
567 		 * For memcpy channels the software trigger must be asserted
568 		 * in order to start the memcpy operation.
569 		 */
570 		control |= M2M_CONTROL_START;
571 		writel(control, edmac->regs + M2M_CONTROL);
572 	}
573 }
574 
575 /*
576  * According to EP93xx User's Guide, we should receive DONE interrupt when all
577  * M2M DMA controller transactions complete normally. This is not always the
578  * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
579  * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
580  * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
581  * In effect, disabling the channel when only DONE bit is set could stop
582  * currently running DMA transfer. To avoid this, we use Buffer FSM and
583  * Control FSM to check current state of DMA channel.
584  */
585 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
586 {
587 	u32 status = readl(edmac->regs + M2M_STATUS);
588 	u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
589 	u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
590 	bool done = status & M2M_STATUS_DONE;
591 	bool last_done;
592 	u32 control;
593 	struct ep93xx_dma_desc *desc;
594 
595 	/* Accept only DONE and NFB interrupts */
596 	if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
597 		return INTERRUPT_UNKNOWN;
598 
599 	if (done) {
600 		/* Clear the DONE bit */
601 		writel(0, edmac->regs + M2M_INTERRUPT);
602 	}
603 
604 	/*
605 	 * Check whether we are done with descriptors or not. This, together
606 	 * with DMA channel state, determines action to take in interrupt.
607 	 */
608 	desc = ep93xx_dma_get_active(edmac);
609 	last_done = !desc || desc->txd.cookie;
610 
611 	/*
612 	 * Use M2M DMA Buffer FSM and Control FSM to check current state of
613 	 * DMA channel. Using DONE and NFB bits from channel status register
614 	 * or bits from channel interrupt register is not reliable.
615 	 */
616 	if (!last_done &&
617 	    (buf_fsm == M2M_STATUS_BUF_NO ||
618 	     buf_fsm == M2M_STATUS_BUF_ON)) {
619 		/*
620 		 * Two buffers are ready for update when Buffer FSM is in
621 		 * DMA_NO_BUF state. Only one buffer can be prepared without
622 		 * disabling the channel or polling the DONE bit.
623 		 * To simplify things, always prepare only one buffer.
624 		 */
625 		if (ep93xx_dma_advance_active(edmac)) {
626 			m2m_fill_desc(edmac);
627 			if (done && !edmac->chan.private) {
628 				/* Software trigger for memcpy channel */
629 				control = readl(edmac->regs + M2M_CONTROL);
630 				control |= M2M_CONTROL_START;
631 				writel(control, edmac->regs + M2M_CONTROL);
632 			}
633 			return INTERRUPT_NEXT_BUFFER;
634 		} else {
635 			last_done = true;
636 		}
637 	}
638 
639 	/*
640 	 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
641 	 * and Control FSM is in DMA_STALL state.
642 	 */
643 	if (last_done &&
644 	    buf_fsm == M2M_STATUS_BUF_NO &&
645 	    ctl_fsm == M2M_STATUS_CTL_STALL) {
646 		/* Disable interrupts and the channel */
647 		control = readl(edmac->regs + M2M_CONTROL);
648 		control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
649 			    | M2M_CONTROL_ENABLE);
650 		writel(control, edmac->regs + M2M_CONTROL);
651 		return INTERRUPT_DONE;
652 	}
653 
654 	/*
655 	 * Nothing to do this time.
656 	 */
657 	return INTERRUPT_NEXT_BUFFER;
658 }
659 
660 /*
661  * DMA engine API implementation
662  */
663 
664 static struct ep93xx_dma_desc *
665 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
666 {
667 	struct ep93xx_dma_desc *desc, *_desc;
668 	struct ep93xx_dma_desc *ret = NULL;
669 	unsigned long flags;
670 
671 	spin_lock_irqsave(&edmac->lock, flags);
672 	list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
673 		if (async_tx_test_ack(&desc->txd)) {
674 			list_del_init(&desc->node);
675 
676 			/* Re-initialize the descriptor */
677 			desc->src_addr = 0;
678 			desc->dst_addr = 0;
679 			desc->size = 0;
680 			desc->complete = false;
681 			desc->txd.cookie = 0;
682 			desc->txd.callback = NULL;
683 			desc->txd.callback_param = NULL;
684 
685 			ret = desc;
686 			break;
687 		}
688 	}
689 	spin_unlock_irqrestore(&edmac->lock, flags);
690 	return ret;
691 }
692 
693 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
694 				struct ep93xx_dma_desc *desc)
695 {
696 	if (desc) {
697 		unsigned long flags;
698 
699 		spin_lock_irqsave(&edmac->lock, flags);
700 		list_splice_init(&desc->tx_list, &edmac->free_list);
701 		list_add(&desc->node, &edmac->free_list);
702 		spin_unlock_irqrestore(&edmac->lock, flags);
703 	}
704 }
705 
706 /**
707  * ep93xx_dma_advance_work - start processing the next pending transaction
708  * @edmac: channel
709  *
710  * If we have pending transactions queued and we are currently idling, this
711  * function takes the next queued transaction from the @edmac->queue and
712  * pushes it to the hardware for execution.
713  */
714 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
715 {
716 	struct ep93xx_dma_desc *new;
717 	unsigned long flags;
718 
719 	spin_lock_irqsave(&edmac->lock, flags);
720 	if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
721 		spin_unlock_irqrestore(&edmac->lock, flags);
722 		return;
723 	}
724 
725 	/* Take the next descriptor from the pending queue */
726 	new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
727 	list_del_init(&new->node);
728 
729 	ep93xx_dma_set_active(edmac, new);
730 
731 	/* Push it to the hardware */
732 	edmac->edma->hw_submit(edmac);
733 	spin_unlock_irqrestore(&edmac->lock, flags);
734 }
735 
736 static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc)
737 {
738 	struct device *dev = desc->txd.chan->device->dev;
739 
740 	if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
741 		if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
742 			dma_unmap_single(dev, desc->src_addr, desc->size,
743 					 DMA_TO_DEVICE);
744 		else
745 			dma_unmap_page(dev, desc->src_addr, desc->size,
746 				       DMA_TO_DEVICE);
747 	}
748 	if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
749 		if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
750 			dma_unmap_single(dev, desc->dst_addr, desc->size,
751 					 DMA_FROM_DEVICE);
752 		else
753 			dma_unmap_page(dev, desc->dst_addr, desc->size,
754 				       DMA_FROM_DEVICE);
755 	}
756 }
757 
758 static void ep93xx_dma_tasklet(unsigned long data)
759 {
760 	struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
761 	struct ep93xx_dma_desc *desc, *d;
762 	dma_async_tx_callback callback = NULL;
763 	void *callback_param = NULL;
764 	LIST_HEAD(list);
765 
766 	spin_lock_irq(&edmac->lock);
767 	/*
768 	 * If dma_terminate_all() was called before we get to run, the active
769 	 * list has become empty. If that happens we aren't supposed to do
770 	 * anything more than call ep93xx_dma_advance_work().
771 	 */
772 	desc = ep93xx_dma_get_active(edmac);
773 	if (desc) {
774 		if (desc->complete) {
775 			/* mark descriptor complete for non cyclic case only */
776 			if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
777 				dma_cookie_complete(&desc->txd);
778 			list_splice_init(&edmac->active, &list);
779 		}
780 		callback = desc->txd.callback;
781 		callback_param = desc->txd.callback_param;
782 	}
783 	spin_unlock_irq(&edmac->lock);
784 
785 	/* Pick up the next descriptor from the queue */
786 	ep93xx_dma_advance_work(edmac);
787 
788 	/* Now we can release all the chained descriptors */
789 	list_for_each_entry_safe(desc, d, &list, node) {
790 		/*
791 		 * For the memcpy channels the API requires us to unmap the
792 		 * buffers unless requested otherwise.
793 		 */
794 		if (!edmac->chan.private)
795 			ep93xx_dma_unmap_buffers(desc);
796 
797 		ep93xx_dma_desc_put(edmac, desc);
798 	}
799 
800 	if (callback)
801 		callback(callback_param);
802 }
803 
804 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
805 {
806 	struct ep93xx_dma_chan *edmac = dev_id;
807 	struct ep93xx_dma_desc *desc;
808 	irqreturn_t ret = IRQ_HANDLED;
809 
810 	spin_lock(&edmac->lock);
811 
812 	desc = ep93xx_dma_get_active(edmac);
813 	if (!desc) {
814 		dev_warn(chan2dev(edmac),
815 			 "got interrupt while active list is empty\n");
816 		spin_unlock(&edmac->lock);
817 		return IRQ_NONE;
818 	}
819 
820 	switch (edmac->edma->hw_interrupt(edmac)) {
821 	case INTERRUPT_DONE:
822 		desc->complete = true;
823 		tasklet_schedule(&edmac->tasklet);
824 		break;
825 
826 	case INTERRUPT_NEXT_BUFFER:
827 		if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
828 			tasklet_schedule(&edmac->tasklet);
829 		break;
830 
831 	default:
832 		dev_warn(chan2dev(edmac), "unknown interrupt!\n");
833 		ret = IRQ_NONE;
834 		break;
835 	}
836 
837 	spin_unlock(&edmac->lock);
838 	return ret;
839 }
840 
841 /**
842  * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
843  * @tx: descriptor to be executed
844  *
845  * Function will execute given descriptor on the hardware or if the hardware
846  * is busy, queue the descriptor to be executed later on. Returns cookie which
847  * can be used to poll the status of the descriptor.
848  */
849 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
850 {
851 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
852 	struct ep93xx_dma_desc *desc;
853 	dma_cookie_t cookie;
854 	unsigned long flags;
855 
856 	spin_lock_irqsave(&edmac->lock, flags);
857 	cookie = dma_cookie_assign(tx);
858 
859 	desc = container_of(tx, struct ep93xx_dma_desc, txd);
860 
861 	/*
862 	 * If nothing is currently prosessed, we push this descriptor
863 	 * directly to the hardware. Otherwise we put the descriptor
864 	 * to the pending queue.
865 	 */
866 	if (list_empty(&edmac->active)) {
867 		ep93xx_dma_set_active(edmac, desc);
868 		edmac->edma->hw_submit(edmac);
869 	} else {
870 		list_add_tail(&desc->node, &edmac->queue);
871 	}
872 
873 	spin_unlock_irqrestore(&edmac->lock, flags);
874 	return cookie;
875 }
876 
877 /**
878  * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
879  * @chan: channel to allocate resources
880  *
881  * Function allocates necessary resources for the given DMA channel and
882  * returns number of allocated descriptors for the channel. Negative errno
883  * is returned in case of failure.
884  */
885 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
886 {
887 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
888 	struct ep93xx_dma_data *data = chan->private;
889 	const char *name = dma_chan_name(chan);
890 	int ret, i;
891 
892 	/* Sanity check the channel parameters */
893 	if (!edmac->edma->m2m) {
894 		if (!data)
895 			return -EINVAL;
896 		if (data->port < EP93XX_DMA_I2S1 ||
897 		    data->port > EP93XX_DMA_IRDA)
898 			return -EINVAL;
899 		if (data->direction != ep93xx_dma_chan_direction(chan))
900 			return -EINVAL;
901 	} else {
902 		if (data) {
903 			switch (data->port) {
904 			case EP93XX_DMA_SSP:
905 			case EP93XX_DMA_IDE:
906 				if (!is_slave_direction(data->direction))
907 					return -EINVAL;
908 				break;
909 			default:
910 				return -EINVAL;
911 			}
912 		}
913 	}
914 
915 	if (data && data->name)
916 		name = data->name;
917 
918 	ret = clk_enable(edmac->clk);
919 	if (ret)
920 		return ret;
921 
922 	ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
923 	if (ret)
924 		goto fail_clk_disable;
925 
926 	spin_lock_irq(&edmac->lock);
927 	dma_cookie_init(&edmac->chan);
928 	ret = edmac->edma->hw_setup(edmac);
929 	spin_unlock_irq(&edmac->lock);
930 
931 	if (ret)
932 		goto fail_free_irq;
933 
934 	for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
935 		struct ep93xx_dma_desc *desc;
936 
937 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
938 		if (!desc) {
939 			dev_warn(chan2dev(edmac), "not enough descriptors\n");
940 			break;
941 		}
942 
943 		INIT_LIST_HEAD(&desc->tx_list);
944 
945 		dma_async_tx_descriptor_init(&desc->txd, chan);
946 		desc->txd.flags = DMA_CTRL_ACK;
947 		desc->txd.tx_submit = ep93xx_dma_tx_submit;
948 
949 		ep93xx_dma_desc_put(edmac, desc);
950 	}
951 
952 	return i;
953 
954 fail_free_irq:
955 	free_irq(edmac->irq, edmac);
956 fail_clk_disable:
957 	clk_disable(edmac->clk);
958 
959 	return ret;
960 }
961 
962 /**
963  * ep93xx_dma_free_chan_resources - release resources for the channel
964  * @chan: channel
965  *
966  * Function releases all the resources allocated for the given channel.
967  * The channel must be idle when this is called.
968  */
969 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
970 {
971 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
972 	struct ep93xx_dma_desc *desc, *d;
973 	unsigned long flags;
974 	LIST_HEAD(list);
975 
976 	BUG_ON(!list_empty(&edmac->active));
977 	BUG_ON(!list_empty(&edmac->queue));
978 
979 	spin_lock_irqsave(&edmac->lock, flags);
980 	edmac->edma->hw_shutdown(edmac);
981 	edmac->runtime_addr = 0;
982 	edmac->runtime_ctrl = 0;
983 	edmac->buffer = 0;
984 	list_splice_init(&edmac->free_list, &list);
985 	spin_unlock_irqrestore(&edmac->lock, flags);
986 
987 	list_for_each_entry_safe(desc, d, &list, node)
988 		kfree(desc);
989 
990 	clk_disable(edmac->clk);
991 	free_irq(edmac->irq, edmac);
992 }
993 
994 /**
995  * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
996  * @chan: channel
997  * @dest: destination bus address
998  * @src: source bus address
999  * @len: size of the transaction
1000  * @flags: flags for the descriptor
1001  *
1002  * Returns a valid DMA descriptor or %NULL in case of failure.
1003  */
1004 static struct dma_async_tx_descriptor *
1005 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
1006 			   dma_addr_t src, size_t len, unsigned long flags)
1007 {
1008 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1009 	struct ep93xx_dma_desc *desc, *first;
1010 	size_t bytes, offset;
1011 
1012 	first = NULL;
1013 	for (offset = 0; offset < len; offset += bytes) {
1014 		desc = ep93xx_dma_desc_get(edmac);
1015 		if (!desc) {
1016 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1017 			goto fail;
1018 		}
1019 
1020 		bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
1021 
1022 		desc->src_addr = src + offset;
1023 		desc->dst_addr = dest + offset;
1024 		desc->size = bytes;
1025 
1026 		if (!first)
1027 			first = desc;
1028 		else
1029 			list_add_tail(&desc->node, &first->tx_list);
1030 	}
1031 
1032 	first->txd.cookie = -EBUSY;
1033 	first->txd.flags = flags;
1034 
1035 	return &first->txd;
1036 fail:
1037 	ep93xx_dma_desc_put(edmac, first);
1038 	return NULL;
1039 }
1040 
1041 /**
1042  * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1043  * @chan: channel
1044  * @sgl: list of buffers to transfer
1045  * @sg_len: number of entries in @sgl
1046  * @dir: direction of tha DMA transfer
1047  * @flags: flags for the descriptor
1048  * @context: operation context (ignored)
1049  *
1050  * Returns a valid DMA descriptor or %NULL in case of failure.
1051  */
1052 static struct dma_async_tx_descriptor *
1053 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1054 			 unsigned int sg_len, enum dma_transfer_direction dir,
1055 			 unsigned long flags, void *context)
1056 {
1057 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1058 	struct ep93xx_dma_desc *desc, *first;
1059 	struct scatterlist *sg;
1060 	int i;
1061 
1062 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1063 		dev_warn(chan2dev(edmac),
1064 			 "channel was configured with different direction\n");
1065 		return NULL;
1066 	}
1067 
1068 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1069 		dev_warn(chan2dev(edmac),
1070 			 "channel is already used for cyclic transfers\n");
1071 		return NULL;
1072 	}
1073 
1074 	first = NULL;
1075 	for_each_sg(sgl, sg, sg_len, i) {
1076 		size_t sg_len = sg_dma_len(sg);
1077 
1078 		if (sg_len > DMA_MAX_CHAN_BYTES) {
1079 			dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1080 				 sg_len);
1081 			goto fail;
1082 		}
1083 
1084 		desc = ep93xx_dma_desc_get(edmac);
1085 		if (!desc) {
1086 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1087 			goto fail;
1088 		}
1089 
1090 		if (dir == DMA_MEM_TO_DEV) {
1091 			desc->src_addr = sg_dma_address(sg);
1092 			desc->dst_addr = edmac->runtime_addr;
1093 		} else {
1094 			desc->src_addr = edmac->runtime_addr;
1095 			desc->dst_addr = sg_dma_address(sg);
1096 		}
1097 		desc->size = sg_len;
1098 
1099 		if (!first)
1100 			first = desc;
1101 		else
1102 			list_add_tail(&desc->node, &first->tx_list);
1103 	}
1104 
1105 	first->txd.cookie = -EBUSY;
1106 	first->txd.flags = flags;
1107 
1108 	return &first->txd;
1109 
1110 fail:
1111 	ep93xx_dma_desc_put(edmac, first);
1112 	return NULL;
1113 }
1114 
1115 /**
1116  * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1117  * @chan: channel
1118  * @dma_addr: DMA mapped address of the buffer
1119  * @buf_len: length of the buffer (in bytes)
1120  * @period_len: length of a single period
1121  * @dir: direction of the operation
1122  * @flags: tx descriptor status flags
1123  * @context: operation context (ignored)
1124  *
1125  * Prepares a descriptor for cyclic DMA operation. This means that once the
1126  * descriptor is submitted, we will be submitting in a @period_len sized
1127  * buffers and calling callback once the period has been elapsed. Transfer
1128  * terminates only when client calls dmaengine_terminate_all() for this
1129  * channel.
1130  *
1131  * Returns a valid DMA descriptor or %NULL in case of failure.
1132  */
1133 static struct dma_async_tx_descriptor *
1134 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1135 			   size_t buf_len, size_t period_len,
1136 			   enum dma_transfer_direction dir, unsigned long flags,
1137 			   void *context)
1138 {
1139 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1140 	struct ep93xx_dma_desc *desc, *first;
1141 	size_t offset = 0;
1142 
1143 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1144 		dev_warn(chan2dev(edmac),
1145 			 "channel was configured with different direction\n");
1146 		return NULL;
1147 	}
1148 
1149 	if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1150 		dev_warn(chan2dev(edmac),
1151 			 "channel is already used for cyclic transfers\n");
1152 		return NULL;
1153 	}
1154 
1155 	if (period_len > DMA_MAX_CHAN_BYTES) {
1156 		dev_warn(chan2dev(edmac), "too big period length %d\n",
1157 			 period_len);
1158 		return NULL;
1159 	}
1160 
1161 	/* Split the buffer into period size chunks */
1162 	first = NULL;
1163 	for (offset = 0; offset < buf_len; offset += period_len) {
1164 		desc = ep93xx_dma_desc_get(edmac);
1165 		if (!desc) {
1166 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1167 			goto fail;
1168 		}
1169 
1170 		if (dir == DMA_MEM_TO_DEV) {
1171 			desc->src_addr = dma_addr + offset;
1172 			desc->dst_addr = edmac->runtime_addr;
1173 		} else {
1174 			desc->src_addr = edmac->runtime_addr;
1175 			desc->dst_addr = dma_addr + offset;
1176 		}
1177 
1178 		desc->size = period_len;
1179 
1180 		if (!first)
1181 			first = desc;
1182 		else
1183 			list_add_tail(&desc->node, &first->tx_list);
1184 	}
1185 
1186 	first->txd.cookie = -EBUSY;
1187 
1188 	return &first->txd;
1189 
1190 fail:
1191 	ep93xx_dma_desc_put(edmac, first);
1192 	return NULL;
1193 }
1194 
1195 /**
1196  * ep93xx_dma_terminate_all - terminate all transactions
1197  * @edmac: channel
1198  *
1199  * Stops all DMA transactions. All descriptors are put back to the
1200  * @edmac->free_list and callbacks are _not_ called.
1201  */
1202 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
1203 {
1204 	struct ep93xx_dma_desc *desc, *_d;
1205 	unsigned long flags;
1206 	LIST_HEAD(list);
1207 
1208 	spin_lock_irqsave(&edmac->lock, flags);
1209 	/* First we disable and flush the DMA channel */
1210 	edmac->edma->hw_shutdown(edmac);
1211 	clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1212 	list_splice_init(&edmac->active, &list);
1213 	list_splice_init(&edmac->queue, &list);
1214 	/*
1215 	 * We then re-enable the channel. This way we can continue submitting
1216 	 * the descriptors by just calling ->hw_submit() again.
1217 	 */
1218 	edmac->edma->hw_setup(edmac);
1219 	spin_unlock_irqrestore(&edmac->lock, flags);
1220 
1221 	list_for_each_entry_safe(desc, _d, &list, node)
1222 		ep93xx_dma_desc_put(edmac, desc);
1223 
1224 	return 0;
1225 }
1226 
1227 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
1228 				   struct dma_slave_config *config)
1229 {
1230 	enum dma_slave_buswidth width;
1231 	unsigned long flags;
1232 	u32 addr, ctrl;
1233 
1234 	if (!edmac->edma->m2m)
1235 		return -EINVAL;
1236 
1237 	switch (config->direction) {
1238 	case DMA_DEV_TO_MEM:
1239 		width = config->src_addr_width;
1240 		addr = config->src_addr;
1241 		break;
1242 
1243 	case DMA_MEM_TO_DEV:
1244 		width = config->dst_addr_width;
1245 		addr = config->dst_addr;
1246 		break;
1247 
1248 	default:
1249 		return -EINVAL;
1250 	}
1251 
1252 	switch (width) {
1253 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1254 		ctrl = 0;
1255 		break;
1256 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1257 		ctrl = M2M_CONTROL_PW_16;
1258 		break;
1259 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1260 		ctrl = M2M_CONTROL_PW_32;
1261 		break;
1262 	default:
1263 		return -EINVAL;
1264 	}
1265 
1266 	spin_lock_irqsave(&edmac->lock, flags);
1267 	edmac->runtime_addr = addr;
1268 	edmac->runtime_ctrl = ctrl;
1269 	spin_unlock_irqrestore(&edmac->lock, flags);
1270 
1271 	return 0;
1272 }
1273 
1274 /**
1275  * ep93xx_dma_control - manipulate all pending operations on a channel
1276  * @chan: channel
1277  * @cmd: control command to perform
1278  * @arg: optional argument
1279  *
1280  * Controls the channel. Function returns %0 in case of success or negative
1281  * error in case of failure.
1282  */
1283 static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1284 			      unsigned long arg)
1285 {
1286 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1287 	struct dma_slave_config *config;
1288 
1289 	switch (cmd) {
1290 	case DMA_TERMINATE_ALL:
1291 		return ep93xx_dma_terminate_all(edmac);
1292 
1293 	case DMA_SLAVE_CONFIG:
1294 		config = (struct dma_slave_config *)arg;
1295 		return ep93xx_dma_slave_config(edmac, config);
1296 
1297 	default:
1298 		break;
1299 	}
1300 
1301 	return -ENOSYS;
1302 }
1303 
1304 /**
1305  * ep93xx_dma_tx_status - check if a transaction is completed
1306  * @chan: channel
1307  * @cookie: transaction specific cookie
1308  * @state: state of the transaction is stored here if given
1309  *
1310  * This function can be used to query state of a given transaction.
1311  */
1312 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1313 					    dma_cookie_t cookie,
1314 					    struct dma_tx_state *state)
1315 {
1316 	return dma_cookie_status(chan, cookie, state);
1317 }
1318 
1319 /**
1320  * ep93xx_dma_issue_pending - push pending transactions to the hardware
1321  * @chan: channel
1322  *
1323  * When this function is called, all pending transactions are pushed to the
1324  * hardware and executed.
1325  */
1326 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1327 {
1328 	ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1329 }
1330 
1331 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1332 {
1333 	struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1334 	struct ep93xx_dma_engine *edma;
1335 	struct dma_device *dma_dev;
1336 	size_t edma_size;
1337 	int ret, i;
1338 
1339 	edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1340 	edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1341 	if (!edma)
1342 		return -ENOMEM;
1343 
1344 	dma_dev = &edma->dma_dev;
1345 	edma->m2m = platform_get_device_id(pdev)->driver_data;
1346 	edma->num_channels = pdata->num_channels;
1347 
1348 	INIT_LIST_HEAD(&dma_dev->channels);
1349 	for (i = 0; i < pdata->num_channels; i++) {
1350 		const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1351 		struct ep93xx_dma_chan *edmac = &edma->channels[i];
1352 
1353 		edmac->chan.device = dma_dev;
1354 		edmac->regs = cdata->base;
1355 		edmac->irq = cdata->irq;
1356 		edmac->edma = edma;
1357 
1358 		edmac->clk = clk_get(NULL, cdata->name);
1359 		if (IS_ERR(edmac->clk)) {
1360 			dev_warn(&pdev->dev, "failed to get clock for %s\n",
1361 				 cdata->name);
1362 			continue;
1363 		}
1364 
1365 		spin_lock_init(&edmac->lock);
1366 		INIT_LIST_HEAD(&edmac->active);
1367 		INIT_LIST_HEAD(&edmac->queue);
1368 		INIT_LIST_HEAD(&edmac->free_list);
1369 		tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1370 			     (unsigned long)edmac);
1371 
1372 		list_add_tail(&edmac->chan.device_node,
1373 			      &dma_dev->channels);
1374 	}
1375 
1376 	dma_cap_zero(dma_dev->cap_mask);
1377 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1378 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1379 
1380 	dma_dev->dev = &pdev->dev;
1381 	dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1382 	dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1383 	dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1384 	dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1385 	dma_dev->device_control = ep93xx_dma_control;
1386 	dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1387 	dma_dev->device_tx_status = ep93xx_dma_tx_status;
1388 
1389 	dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1390 
1391 	if (edma->m2m) {
1392 		dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1393 		dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1394 
1395 		edma->hw_setup = m2m_hw_setup;
1396 		edma->hw_shutdown = m2m_hw_shutdown;
1397 		edma->hw_submit = m2m_hw_submit;
1398 		edma->hw_interrupt = m2m_hw_interrupt;
1399 	} else {
1400 		dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1401 
1402 		edma->hw_setup = m2p_hw_setup;
1403 		edma->hw_shutdown = m2p_hw_shutdown;
1404 		edma->hw_submit = m2p_hw_submit;
1405 		edma->hw_interrupt = m2p_hw_interrupt;
1406 	}
1407 
1408 	ret = dma_async_device_register(dma_dev);
1409 	if (unlikely(ret)) {
1410 		for (i = 0; i < edma->num_channels; i++) {
1411 			struct ep93xx_dma_chan *edmac = &edma->channels[i];
1412 			if (!IS_ERR_OR_NULL(edmac->clk))
1413 				clk_put(edmac->clk);
1414 		}
1415 		kfree(edma);
1416 	} else {
1417 		dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1418 			 edma->m2m ? "M" : "P");
1419 	}
1420 
1421 	return ret;
1422 }
1423 
1424 static struct platform_device_id ep93xx_dma_driver_ids[] = {
1425 	{ "ep93xx-dma-m2p", 0 },
1426 	{ "ep93xx-dma-m2m", 1 },
1427 	{ },
1428 };
1429 
1430 static struct platform_driver ep93xx_dma_driver = {
1431 	.driver		= {
1432 		.name	= "ep93xx-dma",
1433 	},
1434 	.id_table	= ep93xx_dma_driver_ids,
1435 };
1436 
1437 static int __init ep93xx_dma_module_init(void)
1438 {
1439 	return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1440 }
1441 subsys_initcall(ep93xx_dma_module_init);
1442 
1443 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1444 MODULE_DESCRIPTION("EP93xx DMA driver");
1445 MODULE_LICENSE("GPL");
1446