xref: /openbmc/linux/drivers/dma/ep93xx_dma.c (revision ae0be8de)
1 /*
2  * Driver for the Cirrus Logic EP93xx DMA Controller
3  *
4  * Copyright (C) 2011 Mika Westerberg
5  *
6  * DMA M2P implementation is based on the original
7  * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8  *
9  *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10  *   Copyright (C) 2006 Applied Data Systems
11  *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12  *
13  * This driver is based on dw_dmac and amba-pl08x drivers.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  */
20 
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/platform_device.h>
28 #include <linux/slab.h>
29 
30 #include <linux/platform_data/dma-ep93xx.h>
31 
32 #include "dmaengine.h"
33 
34 /* M2P registers */
35 #define M2P_CONTROL			0x0000
36 #define M2P_CONTROL_STALLINT		BIT(0)
37 #define M2P_CONTROL_NFBINT		BIT(1)
38 #define M2P_CONTROL_CH_ERROR_INT	BIT(3)
39 #define M2P_CONTROL_ENABLE		BIT(4)
40 #define M2P_CONTROL_ICE			BIT(6)
41 
42 #define M2P_INTERRUPT			0x0004
43 #define M2P_INTERRUPT_STALL		BIT(0)
44 #define M2P_INTERRUPT_NFB		BIT(1)
45 #define M2P_INTERRUPT_ERROR		BIT(3)
46 
47 #define M2P_PPALLOC			0x0008
48 #define M2P_STATUS			0x000c
49 
50 #define M2P_MAXCNT0			0x0020
51 #define M2P_BASE0			0x0024
52 #define M2P_MAXCNT1			0x0030
53 #define M2P_BASE1			0x0034
54 
55 #define M2P_STATE_IDLE			0
56 #define M2P_STATE_STALL			1
57 #define M2P_STATE_ON			2
58 #define M2P_STATE_NEXT			3
59 
60 /* M2M registers */
61 #define M2M_CONTROL			0x0000
62 #define M2M_CONTROL_DONEINT		BIT(2)
63 #define M2M_CONTROL_ENABLE		BIT(3)
64 #define M2M_CONTROL_START		BIT(4)
65 #define M2M_CONTROL_DAH			BIT(11)
66 #define M2M_CONTROL_SAH			BIT(12)
67 #define M2M_CONTROL_PW_SHIFT		9
68 #define M2M_CONTROL_PW_8		(0 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_16		(1 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_32		(2 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_PW_MASK		(3 << M2M_CONTROL_PW_SHIFT)
72 #define M2M_CONTROL_TM_SHIFT		13
73 #define M2M_CONTROL_TM_TX		(1 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_TM_RX		(2 << M2M_CONTROL_TM_SHIFT)
75 #define M2M_CONTROL_NFBINT		BIT(21)
76 #define M2M_CONTROL_RSS_SHIFT		22
77 #define M2M_CONTROL_RSS_SSPRX		(1 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_SSPTX		(2 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_RSS_IDE		(3 << M2M_CONTROL_RSS_SHIFT)
80 #define M2M_CONTROL_NO_HDSK		BIT(24)
81 #define M2M_CONTROL_PWSC_SHIFT		25
82 
83 #define M2M_INTERRUPT			0x0004
84 #define M2M_INTERRUPT_MASK		6
85 
86 #define M2M_STATUS			0x000c
87 #define M2M_STATUS_CTL_SHIFT		1
88 #define M2M_STATUS_CTL_IDLE		(0 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_STALL		(1 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMRD		(2 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_MEMWR		(3 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_BWCWAIT		(4 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_CTL_MASK		(7 << M2M_STATUS_CTL_SHIFT)
94 #define M2M_STATUS_BUF_SHIFT		4
95 #define M2M_STATUS_BUF_NO		(0 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_ON		(1 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_NEXT		(2 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_BUF_MASK		(3 << M2M_STATUS_BUF_SHIFT)
99 #define M2M_STATUS_DONE			BIT(6)
100 
101 #define M2M_BCR0			0x0010
102 #define M2M_BCR1			0x0014
103 #define M2M_SAR_BASE0			0x0018
104 #define M2M_SAR_BASE1			0x001c
105 #define M2M_DAR_BASE0			0x002c
106 #define M2M_DAR_BASE1			0x0030
107 
108 #define DMA_MAX_CHAN_BYTES		0xffff
109 #define DMA_MAX_CHAN_DESCRIPTORS	32
110 
111 struct ep93xx_dma_engine;
112 static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
113 					 enum dma_transfer_direction dir,
114 					 struct dma_slave_config *config);
115 
116 /**
117  * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
118  * @src_addr: source address of the transaction
119  * @dst_addr: destination address of the transaction
120  * @size: size of the transaction (in bytes)
121  * @complete: this descriptor is completed
122  * @txd: dmaengine API descriptor
123  * @tx_list: list of linked descriptors
124  * @node: link used for putting this into a channel queue
125  */
126 struct ep93xx_dma_desc {
127 	u32				src_addr;
128 	u32				dst_addr;
129 	size_t				size;
130 	bool				complete;
131 	struct dma_async_tx_descriptor	txd;
132 	struct list_head		tx_list;
133 	struct list_head		node;
134 };
135 
136 /**
137  * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
138  * @chan: dmaengine API channel
139  * @edma: pointer to to the engine device
140  * @regs: memory mapped registers
141  * @irq: interrupt number of the channel
142  * @clk: clock used by this channel
143  * @tasklet: channel specific tasklet used for callbacks
144  * @lock: lock protecting the fields following
145  * @flags: flags for the channel
146  * @buffer: which buffer to use next (0/1)
147  * @active: flattened chain of descriptors currently being processed
148  * @queue: pending descriptors which are handled next
149  * @free_list: list of free descriptors which can be used
150  * @runtime_addr: physical address currently used as dest/src (M2M only). This
151  *                is set via .device_config before slave operation is
152  *                prepared
153  * @runtime_ctrl: M2M runtime values for the control register.
154  *
155  * As EP93xx DMA controller doesn't support real chained DMA descriptors we
156  * will have slightly different scheme here: @active points to a head of
157  * flattened DMA descriptor chain.
158  *
159  * @queue holds pending transactions. These are linked through the first
160  * descriptor in the chain. When a descriptor is moved to the @active queue,
161  * the first and chained descriptors are flattened into a single list.
162  *
163  * @chan.private holds pointer to &struct ep93xx_dma_data which contains
164  * necessary channel configuration information. For memcpy channels this must
165  * be %NULL.
166  */
167 struct ep93xx_dma_chan {
168 	struct dma_chan			chan;
169 	const struct ep93xx_dma_engine	*edma;
170 	void __iomem			*regs;
171 	int				irq;
172 	struct clk			*clk;
173 	struct tasklet_struct		tasklet;
174 	/* protects the fields following */
175 	spinlock_t			lock;
176 	unsigned long			flags;
177 /* Channel is configured for cyclic transfers */
178 #define EP93XX_DMA_IS_CYCLIC		0
179 
180 	int				buffer;
181 	struct list_head		active;
182 	struct list_head		queue;
183 	struct list_head		free_list;
184 	u32				runtime_addr;
185 	u32				runtime_ctrl;
186 	struct dma_slave_config		slave_config;
187 };
188 
189 /**
190  * struct ep93xx_dma_engine - the EP93xx DMA engine instance
191  * @dma_dev: holds the dmaengine device
192  * @m2m: is this an M2M or M2P device
193  * @hw_setup: method which sets the channel up for operation
194  * @hw_shutdown: shuts the channel down and flushes whatever is left
195  * @hw_submit: pushes active descriptor(s) to the hardware
196  * @hw_interrupt: handle the interrupt
197  * @num_channels: number of channels for this instance
198  * @channels: array of channels
199  *
200  * There is one instance of this struct for the M2P channels and one for the
201  * M2M channels. hw_xxx() methods are used to perform operations which are
202  * different on M2M and M2P channels. These methods are called with channel
203  * lock held and interrupts disabled so they cannot sleep.
204  */
205 struct ep93xx_dma_engine {
206 	struct dma_device	dma_dev;
207 	bool			m2m;
208 	int			(*hw_setup)(struct ep93xx_dma_chan *);
209 	void			(*hw_synchronize)(struct ep93xx_dma_chan *);
210 	void			(*hw_shutdown)(struct ep93xx_dma_chan *);
211 	void			(*hw_submit)(struct ep93xx_dma_chan *);
212 	int			(*hw_interrupt)(struct ep93xx_dma_chan *);
213 #define INTERRUPT_UNKNOWN	0
214 #define INTERRUPT_DONE		1
215 #define INTERRUPT_NEXT_BUFFER	2
216 
217 	size_t			num_channels;
218 	struct ep93xx_dma_chan	channels[];
219 };
220 
221 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
222 {
223 	return &edmac->chan.dev->device;
224 }
225 
226 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
227 {
228 	return container_of(chan, struct ep93xx_dma_chan, chan);
229 }
230 
231 /**
232  * ep93xx_dma_set_active - set new active descriptor chain
233  * @edmac: channel
234  * @desc: head of the new active descriptor chain
235  *
236  * Sets @desc to be the head of the new active descriptor chain. This is the
237  * chain which is processed next. The active list must be empty before calling
238  * this function.
239  *
240  * Called with @edmac->lock held and interrupts disabled.
241  */
242 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
243 				  struct ep93xx_dma_desc *desc)
244 {
245 	BUG_ON(!list_empty(&edmac->active));
246 
247 	list_add_tail(&desc->node, &edmac->active);
248 
249 	/* Flatten the @desc->tx_list chain into @edmac->active list */
250 	while (!list_empty(&desc->tx_list)) {
251 		struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
252 			struct ep93xx_dma_desc, node);
253 
254 		/*
255 		 * We copy the callback parameters from the first descriptor
256 		 * to all the chained descriptors. This way we can call the
257 		 * callback without having to find out the first descriptor in
258 		 * the chain. Useful for cyclic transfers.
259 		 */
260 		d->txd.callback = desc->txd.callback;
261 		d->txd.callback_param = desc->txd.callback_param;
262 
263 		list_move_tail(&d->node, &edmac->active);
264 	}
265 }
266 
267 /* Called with @edmac->lock held and interrupts disabled */
268 static struct ep93xx_dma_desc *
269 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
270 {
271 	return list_first_entry_or_null(&edmac->active,
272 					struct ep93xx_dma_desc, node);
273 }
274 
275 /**
276  * ep93xx_dma_advance_active - advances to the next active descriptor
277  * @edmac: channel
278  *
279  * Function advances active descriptor to the next in the @edmac->active and
280  * returns %true if we still have descriptors in the chain to process.
281  * Otherwise returns %false.
282  *
283  * When the channel is in cyclic mode always returns %true.
284  *
285  * Called with @edmac->lock held and interrupts disabled.
286  */
287 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
288 {
289 	struct ep93xx_dma_desc *desc;
290 
291 	list_rotate_left(&edmac->active);
292 
293 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
294 		return true;
295 
296 	desc = ep93xx_dma_get_active(edmac);
297 	if (!desc)
298 		return false;
299 
300 	/*
301 	 * If txd.cookie is set it means that we are back in the first
302 	 * descriptor in the chain and hence done with it.
303 	 */
304 	return !desc->txd.cookie;
305 }
306 
307 /*
308  * M2P DMA implementation
309  */
310 
311 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
312 {
313 	writel(control, edmac->regs + M2P_CONTROL);
314 	/*
315 	 * EP93xx User's Guide states that we must perform a dummy read after
316 	 * write to the control register.
317 	 */
318 	readl(edmac->regs + M2P_CONTROL);
319 }
320 
321 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
322 {
323 	struct ep93xx_dma_data *data = edmac->chan.private;
324 	u32 control;
325 
326 	writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
327 
328 	control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
329 		| M2P_CONTROL_ENABLE;
330 	m2p_set_control(edmac, control);
331 
332 	edmac->buffer = 0;
333 
334 	return 0;
335 }
336 
337 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
338 {
339 	return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
340 }
341 
342 static void m2p_hw_synchronize(struct ep93xx_dma_chan *edmac)
343 {
344 	unsigned long flags;
345 	u32 control;
346 
347 	spin_lock_irqsave(&edmac->lock, flags);
348 	control = readl(edmac->regs + M2P_CONTROL);
349 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
350 	m2p_set_control(edmac, control);
351 	spin_unlock_irqrestore(&edmac->lock, flags);
352 
353 	while (m2p_channel_state(edmac) >= M2P_STATE_ON)
354 		schedule();
355 }
356 
357 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
358 {
359 	m2p_set_control(edmac, 0);
360 
361 	while (m2p_channel_state(edmac) != M2P_STATE_IDLE)
362 		dev_warn(chan2dev(edmac), "M2P: Not yet IDLE\n");
363 }
364 
365 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
366 {
367 	struct ep93xx_dma_desc *desc;
368 	u32 bus_addr;
369 
370 	desc = ep93xx_dma_get_active(edmac);
371 	if (!desc) {
372 		dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
373 		return;
374 	}
375 
376 	if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
377 		bus_addr = desc->src_addr;
378 	else
379 		bus_addr = desc->dst_addr;
380 
381 	if (edmac->buffer == 0) {
382 		writel(desc->size, edmac->regs + M2P_MAXCNT0);
383 		writel(bus_addr, edmac->regs + M2P_BASE0);
384 	} else {
385 		writel(desc->size, edmac->regs + M2P_MAXCNT1);
386 		writel(bus_addr, edmac->regs + M2P_BASE1);
387 	}
388 
389 	edmac->buffer ^= 1;
390 }
391 
392 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
393 {
394 	u32 control = readl(edmac->regs + M2P_CONTROL);
395 
396 	m2p_fill_desc(edmac);
397 	control |= M2P_CONTROL_STALLINT;
398 
399 	if (ep93xx_dma_advance_active(edmac)) {
400 		m2p_fill_desc(edmac);
401 		control |= M2P_CONTROL_NFBINT;
402 	}
403 
404 	m2p_set_control(edmac, control);
405 }
406 
407 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
408 {
409 	u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
410 	u32 control;
411 
412 	if (irq_status & M2P_INTERRUPT_ERROR) {
413 		struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
414 
415 		/* Clear the error interrupt */
416 		writel(1, edmac->regs + M2P_INTERRUPT);
417 
418 		/*
419 		 * It seems that there is no easy way of reporting errors back
420 		 * to client so we just report the error here and continue as
421 		 * usual.
422 		 *
423 		 * Revisit this when there is a mechanism to report back the
424 		 * errors.
425 		 */
426 		dev_err(chan2dev(edmac),
427 			"DMA transfer failed! Details:\n"
428 			"\tcookie	: %d\n"
429 			"\tsrc_addr	: 0x%08x\n"
430 			"\tdst_addr	: 0x%08x\n"
431 			"\tsize		: %zu\n",
432 			desc->txd.cookie, desc->src_addr, desc->dst_addr,
433 			desc->size);
434 	}
435 
436 	/*
437 	 * Even latest E2 silicon revision sometimes assert STALL interrupt
438 	 * instead of NFB. Therefore we treat them equally, basing on the
439 	 * amount of data we still have to transfer.
440 	 */
441 	if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
442 		return INTERRUPT_UNKNOWN;
443 
444 	if (ep93xx_dma_advance_active(edmac)) {
445 		m2p_fill_desc(edmac);
446 		return INTERRUPT_NEXT_BUFFER;
447 	}
448 
449 	/* Disable interrupts */
450 	control = readl(edmac->regs + M2P_CONTROL);
451 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
452 	m2p_set_control(edmac, control);
453 
454 	return INTERRUPT_DONE;
455 }
456 
457 /*
458  * M2M DMA implementation
459  */
460 
461 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
462 {
463 	const struct ep93xx_dma_data *data = edmac->chan.private;
464 	u32 control = 0;
465 
466 	if (!data) {
467 		/* This is memcpy channel, nothing to configure */
468 		writel(control, edmac->regs + M2M_CONTROL);
469 		return 0;
470 	}
471 
472 	switch (data->port) {
473 	case EP93XX_DMA_SSP:
474 		/*
475 		 * This was found via experimenting - anything less than 5
476 		 * causes the channel to perform only a partial transfer which
477 		 * leads to problems since we don't get DONE interrupt then.
478 		 */
479 		control = (5 << M2M_CONTROL_PWSC_SHIFT);
480 		control |= M2M_CONTROL_NO_HDSK;
481 
482 		if (data->direction == DMA_MEM_TO_DEV) {
483 			control |= M2M_CONTROL_DAH;
484 			control |= M2M_CONTROL_TM_TX;
485 			control |= M2M_CONTROL_RSS_SSPTX;
486 		} else {
487 			control |= M2M_CONTROL_SAH;
488 			control |= M2M_CONTROL_TM_RX;
489 			control |= M2M_CONTROL_RSS_SSPRX;
490 		}
491 		break;
492 
493 	case EP93XX_DMA_IDE:
494 		/*
495 		 * This IDE part is totally untested. Values below are taken
496 		 * from the EP93xx Users's Guide and might not be correct.
497 		 */
498 		if (data->direction == DMA_MEM_TO_DEV) {
499 			/* Worst case from the UG */
500 			control = (3 << M2M_CONTROL_PWSC_SHIFT);
501 			control |= M2M_CONTROL_DAH;
502 			control |= M2M_CONTROL_TM_TX;
503 		} else {
504 			control = (2 << M2M_CONTROL_PWSC_SHIFT);
505 			control |= M2M_CONTROL_SAH;
506 			control |= M2M_CONTROL_TM_RX;
507 		}
508 
509 		control |= M2M_CONTROL_NO_HDSK;
510 		control |= M2M_CONTROL_RSS_IDE;
511 		control |= M2M_CONTROL_PW_16;
512 		break;
513 
514 	default:
515 		return -EINVAL;
516 	}
517 
518 	writel(control, edmac->regs + M2M_CONTROL);
519 	return 0;
520 }
521 
522 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
523 {
524 	/* Just disable the channel */
525 	writel(0, edmac->regs + M2M_CONTROL);
526 }
527 
528 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
529 {
530 	struct ep93xx_dma_desc *desc;
531 
532 	desc = ep93xx_dma_get_active(edmac);
533 	if (!desc) {
534 		dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
535 		return;
536 	}
537 
538 	if (edmac->buffer == 0) {
539 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
540 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
541 		writel(desc->size, edmac->regs + M2M_BCR0);
542 	} else {
543 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
544 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
545 		writel(desc->size, edmac->regs + M2M_BCR1);
546 	}
547 
548 	edmac->buffer ^= 1;
549 }
550 
551 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
552 {
553 	struct ep93xx_dma_data *data = edmac->chan.private;
554 	u32 control = readl(edmac->regs + M2M_CONTROL);
555 
556 	/*
557 	 * Since we allow clients to configure PW (peripheral width) we always
558 	 * clear PW bits here and then set them according what is given in
559 	 * the runtime configuration.
560 	 */
561 	control &= ~M2M_CONTROL_PW_MASK;
562 	control |= edmac->runtime_ctrl;
563 
564 	m2m_fill_desc(edmac);
565 	control |= M2M_CONTROL_DONEINT;
566 
567 	if (ep93xx_dma_advance_active(edmac)) {
568 		m2m_fill_desc(edmac);
569 		control |= M2M_CONTROL_NFBINT;
570 	}
571 
572 	/*
573 	 * Now we can finally enable the channel. For M2M channel this must be
574 	 * done _after_ the BCRx registers are programmed.
575 	 */
576 	control |= M2M_CONTROL_ENABLE;
577 	writel(control, edmac->regs + M2M_CONTROL);
578 
579 	if (!data) {
580 		/*
581 		 * For memcpy channels the software trigger must be asserted
582 		 * in order to start the memcpy operation.
583 		 */
584 		control |= M2M_CONTROL_START;
585 		writel(control, edmac->regs + M2M_CONTROL);
586 	}
587 }
588 
589 /*
590  * According to EP93xx User's Guide, we should receive DONE interrupt when all
591  * M2M DMA controller transactions complete normally. This is not always the
592  * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
593  * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
594  * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
595  * In effect, disabling the channel when only DONE bit is set could stop
596  * currently running DMA transfer. To avoid this, we use Buffer FSM and
597  * Control FSM to check current state of DMA channel.
598  */
599 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
600 {
601 	u32 status = readl(edmac->regs + M2M_STATUS);
602 	u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
603 	u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
604 	bool done = status & M2M_STATUS_DONE;
605 	bool last_done;
606 	u32 control;
607 	struct ep93xx_dma_desc *desc;
608 
609 	/* Accept only DONE and NFB interrupts */
610 	if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
611 		return INTERRUPT_UNKNOWN;
612 
613 	if (done) {
614 		/* Clear the DONE bit */
615 		writel(0, edmac->regs + M2M_INTERRUPT);
616 	}
617 
618 	/*
619 	 * Check whether we are done with descriptors or not. This, together
620 	 * with DMA channel state, determines action to take in interrupt.
621 	 */
622 	desc = ep93xx_dma_get_active(edmac);
623 	last_done = !desc || desc->txd.cookie;
624 
625 	/*
626 	 * Use M2M DMA Buffer FSM and Control FSM to check current state of
627 	 * DMA channel. Using DONE and NFB bits from channel status register
628 	 * or bits from channel interrupt register is not reliable.
629 	 */
630 	if (!last_done &&
631 	    (buf_fsm == M2M_STATUS_BUF_NO ||
632 	     buf_fsm == M2M_STATUS_BUF_ON)) {
633 		/*
634 		 * Two buffers are ready for update when Buffer FSM is in
635 		 * DMA_NO_BUF state. Only one buffer can be prepared without
636 		 * disabling the channel or polling the DONE bit.
637 		 * To simplify things, always prepare only one buffer.
638 		 */
639 		if (ep93xx_dma_advance_active(edmac)) {
640 			m2m_fill_desc(edmac);
641 			if (done && !edmac->chan.private) {
642 				/* Software trigger for memcpy channel */
643 				control = readl(edmac->regs + M2M_CONTROL);
644 				control |= M2M_CONTROL_START;
645 				writel(control, edmac->regs + M2M_CONTROL);
646 			}
647 			return INTERRUPT_NEXT_BUFFER;
648 		} else {
649 			last_done = true;
650 		}
651 	}
652 
653 	/*
654 	 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
655 	 * and Control FSM is in DMA_STALL state.
656 	 */
657 	if (last_done &&
658 	    buf_fsm == M2M_STATUS_BUF_NO &&
659 	    ctl_fsm == M2M_STATUS_CTL_STALL) {
660 		/* Disable interrupts and the channel */
661 		control = readl(edmac->regs + M2M_CONTROL);
662 		control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
663 			    | M2M_CONTROL_ENABLE);
664 		writel(control, edmac->regs + M2M_CONTROL);
665 		return INTERRUPT_DONE;
666 	}
667 
668 	/*
669 	 * Nothing to do this time.
670 	 */
671 	return INTERRUPT_NEXT_BUFFER;
672 }
673 
674 /*
675  * DMA engine API implementation
676  */
677 
678 static struct ep93xx_dma_desc *
679 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
680 {
681 	struct ep93xx_dma_desc *desc, *_desc;
682 	struct ep93xx_dma_desc *ret = NULL;
683 	unsigned long flags;
684 
685 	spin_lock_irqsave(&edmac->lock, flags);
686 	list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
687 		if (async_tx_test_ack(&desc->txd)) {
688 			list_del_init(&desc->node);
689 
690 			/* Re-initialize the descriptor */
691 			desc->src_addr = 0;
692 			desc->dst_addr = 0;
693 			desc->size = 0;
694 			desc->complete = false;
695 			desc->txd.cookie = 0;
696 			desc->txd.callback = NULL;
697 			desc->txd.callback_param = NULL;
698 
699 			ret = desc;
700 			break;
701 		}
702 	}
703 	spin_unlock_irqrestore(&edmac->lock, flags);
704 	return ret;
705 }
706 
707 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
708 				struct ep93xx_dma_desc *desc)
709 {
710 	if (desc) {
711 		unsigned long flags;
712 
713 		spin_lock_irqsave(&edmac->lock, flags);
714 		list_splice_init(&desc->tx_list, &edmac->free_list);
715 		list_add(&desc->node, &edmac->free_list);
716 		spin_unlock_irqrestore(&edmac->lock, flags);
717 	}
718 }
719 
720 /**
721  * ep93xx_dma_advance_work - start processing the next pending transaction
722  * @edmac: channel
723  *
724  * If we have pending transactions queued and we are currently idling, this
725  * function takes the next queued transaction from the @edmac->queue and
726  * pushes it to the hardware for execution.
727  */
728 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
729 {
730 	struct ep93xx_dma_desc *new;
731 	unsigned long flags;
732 
733 	spin_lock_irqsave(&edmac->lock, flags);
734 	if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
735 		spin_unlock_irqrestore(&edmac->lock, flags);
736 		return;
737 	}
738 
739 	/* Take the next descriptor from the pending queue */
740 	new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
741 	list_del_init(&new->node);
742 
743 	ep93xx_dma_set_active(edmac, new);
744 
745 	/* Push it to the hardware */
746 	edmac->edma->hw_submit(edmac);
747 	spin_unlock_irqrestore(&edmac->lock, flags);
748 }
749 
750 static void ep93xx_dma_tasklet(unsigned long data)
751 {
752 	struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
753 	struct ep93xx_dma_desc *desc, *d;
754 	struct dmaengine_desc_callback cb;
755 	LIST_HEAD(list);
756 
757 	memset(&cb, 0, sizeof(cb));
758 	spin_lock_irq(&edmac->lock);
759 	/*
760 	 * If dma_terminate_all() was called before we get to run, the active
761 	 * list has become empty. If that happens we aren't supposed to do
762 	 * anything more than call ep93xx_dma_advance_work().
763 	 */
764 	desc = ep93xx_dma_get_active(edmac);
765 	if (desc) {
766 		if (desc->complete) {
767 			/* mark descriptor complete for non cyclic case only */
768 			if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
769 				dma_cookie_complete(&desc->txd);
770 			list_splice_init(&edmac->active, &list);
771 		}
772 		dmaengine_desc_get_callback(&desc->txd, &cb);
773 	}
774 	spin_unlock_irq(&edmac->lock);
775 
776 	/* Pick up the next descriptor from the queue */
777 	ep93xx_dma_advance_work(edmac);
778 
779 	/* Now we can release all the chained descriptors */
780 	list_for_each_entry_safe(desc, d, &list, node) {
781 		dma_descriptor_unmap(&desc->txd);
782 		ep93xx_dma_desc_put(edmac, desc);
783 	}
784 
785 	dmaengine_desc_callback_invoke(&cb, NULL);
786 }
787 
788 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
789 {
790 	struct ep93xx_dma_chan *edmac = dev_id;
791 	struct ep93xx_dma_desc *desc;
792 	irqreturn_t ret = IRQ_HANDLED;
793 
794 	spin_lock(&edmac->lock);
795 
796 	desc = ep93xx_dma_get_active(edmac);
797 	if (!desc) {
798 		dev_warn(chan2dev(edmac),
799 			 "got interrupt while active list is empty\n");
800 		spin_unlock(&edmac->lock);
801 		return IRQ_NONE;
802 	}
803 
804 	switch (edmac->edma->hw_interrupt(edmac)) {
805 	case INTERRUPT_DONE:
806 		desc->complete = true;
807 		tasklet_schedule(&edmac->tasklet);
808 		break;
809 
810 	case INTERRUPT_NEXT_BUFFER:
811 		if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
812 			tasklet_schedule(&edmac->tasklet);
813 		break;
814 
815 	default:
816 		dev_warn(chan2dev(edmac), "unknown interrupt!\n");
817 		ret = IRQ_NONE;
818 		break;
819 	}
820 
821 	spin_unlock(&edmac->lock);
822 	return ret;
823 }
824 
825 /**
826  * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
827  * @tx: descriptor to be executed
828  *
829  * Function will execute given descriptor on the hardware or if the hardware
830  * is busy, queue the descriptor to be executed later on. Returns cookie which
831  * can be used to poll the status of the descriptor.
832  */
833 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
834 {
835 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
836 	struct ep93xx_dma_desc *desc;
837 	dma_cookie_t cookie;
838 	unsigned long flags;
839 
840 	spin_lock_irqsave(&edmac->lock, flags);
841 	cookie = dma_cookie_assign(tx);
842 
843 	desc = container_of(tx, struct ep93xx_dma_desc, txd);
844 
845 	/*
846 	 * If nothing is currently prosessed, we push this descriptor
847 	 * directly to the hardware. Otherwise we put the descriptor
848 	 * to the pending queue.
849 	 */
850 	if (list_empty(&edmac->active)) {
851 		ep93xx_dma_set_active(edmac, desc);
852 		edmac->edma->hw_submit(edmac);
853 	} else {
854 		list_add_tail(&desc->node, &edmac->queue);
855 	}
856 
857 	spin_unlock_irqrestore(&edmac->lock, flags);
858 	return cookie;
859 }
860 
861 /**
862  * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
863  * @chan: channel to allocate resources
864  *
865  * Function allocates necessary resources for the given DMA channel and
866  * returns number of allocated descriptors for the channel. Negative errno
867  * is returned in case of failure.
868  */
869 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
870 {
871 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
872 	struct ep93xx_dma_data *data = chan->private;
873 	const char *name = dma_chan_name(chan);
874 	int ret, i;
875 
876 	/* Sanity check the channel parameters */
877 	if (!edmac->edma->m2m) {
878 		if (!data)
879 			return -EINVAL;
880 		if (data->port < EP93XX_DMA_I2S1 ||
881 		    data->port > EP93XX_DMA_IRDA)
882 			return -EINVAL;
883 		if (data->direction != ep93xx_dma_chan_direction(chan))
884 			return -EINVAL;
885 	} else {
886 		if (data) {
887 			switch (data->port) {
888 			case EP93XX_DMA_SSP:
889 			case EP93XX_DMA_IDE:
890 				if (!is_slave_direction(data->direction))
891 					return -EINVAL;
892 				break;
893 			default:
894 				return -EINVAL;
895 			}
896 		}
897 	}
898 
899 	if (data && data->name)
900 		name = data->name;
901 
902 	ret = clk_enable(edmac->clk);
903 	if (ret)
904 		return ret;
905 
906 	ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
907 	if (ret)
908 		goto fail_clk_disable;
909 
910 	spin_lock_irq(&edmac->lock);
911 	dma_cookie_init(&edmac->chan);
912 	ret = edmac->edma->hw_setup(edmac);
913 	spin_unlock_irq(&edmac->lock);
914 
915 	if (ret)
916 		goto fail_free_irq;
917 
918 	for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
919 		struct ep93xx_dma_desc *desc;
920 
921 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
922 		if (!desc) {
923 			dev_warn(chan2dev(edmac), "not enough descriptors\n");
924 			break;
925 		}
926 
927 		INIT_LIST_HEAD(&desc->tx_list);
928 
929 		dma_async_tx_descriptor_init(&desc->txd, chan);
930 		desc->txd.flags = DMA_CTRL_ACK;
931 		desc->txd.tx_submit = ep93xx_dma_tx_submit;
932 
933 		ep93xx_dma_desc_put(edmac, desc);
934 	}
935 
936 	return i;
937 
938 fail_free_irq:
939 	free_irq(edmac->irq, edmac);
940 fail_clk_disable:
941 	clk_disable(edmac->clk);
942 
943 	return ret;
944 }
945 
946 /**
947  * ep93xx_dma_free_chan_resources - release resources for the channel
948  * @chan: channel
949  *
950  * Function releases all the resources allocated for the given channel.
951  * The channel must be idle when this is called.
952  */
953 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
954 {
955 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
956 	struct ep93xx_dma_desc *desc, *d;
957 	unsigned long flags;
958 	LIST_HEAD(list);
959 
960 	BUG_ON(!list_empty(&edmac->active));
961 	BUG_ON(!list_empty(&edmac->queue));
962 
963 	spin_lock_irqsave(&edmac->lock, flags);
964 	edmac->edma->hw_shutdown(edmac);
965 	edmac->runtime_addr = 0;
966 	edmac->runtime_ctrl = 0;
967 	edmac->buffer = 0;
968 	list_splice_init(&edmac->free_list, &list);
969 	spin_unlock_irqrestore(&edmac->lock, flags);
970 
971 	list_for_each_entry_safe(desc, d, &list, node)
972 		kfree(desc);
973 
974 	clk_disable(edmac->clk);
975 	free_irq(edmac->irq, edmac);
976 }
977 
978 /**
979  * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
980  * @chan: channel
981  * @dest: destination bus address
982  * @src: source bus address
983  * @len: size of the transaction
984  * @flags: flags for the descriptor
985  *
986  * Returns a valid DMA descriptor or %NULL in case of failure.
987  */
988 static struct dma_async_tx_descriptor *
989 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
990 			   dma_addr_t src, size_t len, unsigned long flags)
991 {
992 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
993 	struct ep93xx_dma_desc *desc, *first;
994 	size_t bytes, offset;
995 
996 	first = NULL;
997 	for (offset = 0; offset < len; offset += bytes) {
998 		desc = ep93xx_dma_desc_get(edmac);
999 		if (!desc) {
1000 			dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1001 			goto fail;
1002 		}
1003 
1004 		bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
1005 
1006 		desc->src_addr = src + offset;
1007 		desc->dst_addr = dest + offset;
1008 		desc->size = bytes;
1009 
1010 		if (!first)
1011 			first = desc;
1012 		else
1013 			list_add_tail(&desc->node, &first->tx_list);
1014 	}
1015 
1016 	first->txd.cookie = -EBUSY;
1017 	first->txd.flags = flags;
1018 
1019 	return &first->txd;
1020 fail:
1021 	ep93xx_dma_desc_put(edmac, first);
1022 	return NULL;
1023 }
1024 
1025 /**
1026  * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1027  * @chan: channel
1028  * @sgl: list of buffers to transfer
1029  * @sg_len: number of entries in @sgl
1030  * @dir: direction of tha DMA transfer
1031  * @flags: flags for the descriptor
1032  * @context: operation context (ignored)
1033  *
1034  * Returns a valid DMA descriptor or %NULL in case of failure.
1035  */
1036 static struct dma_async_tx_descriptor *
1037 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1038 			 unsigned int sg_len, enum dma_transfer_direction dir,
1039 			 unsigned long flags, void *context)
1040 {
1041 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1042 	struct ep93xx_dma_desc *desc, *first;
1043 	struct scatterlist *sg;
1044 	int i;
1045 
1046 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1047 		dev_warn(chan2dev(edmac),
1048 			 "channel was configured with different direction\n");
1049 		return NULL;
1050 	}
1051 
1052 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1053 		dev_warn(chan2dev(edmac),
1054 			 "channel is already used for cyclic transfers\n");
1055 		return NULL;
1056 	}
1057 
1058 	ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1059 
1060 	first = NULL;
1061 	for_each_sg(sgl, sg, sg_len, i) {
1062 		size_t len = sg_dma_len(sg);
1063 
1064 		if (len > DMA_MAX_CHAN_BYTES) {
1065 			dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
1066 				 len);
1067 			goto fail;
1068 		}
1069 
1070 		desc = ep93xx_dma_desc_get(edmac);
1071 		if (!desc) {
1072 			dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1073 			goto fail;
1074 		}
1075 
1076 		if (dir == DMA_MEM_TO_DEV) {
1077 			desc->src_addr = sg_dma_address(sg);
1078 			desc->dst_addr = edmac->runtime_addr;
1079 		} else {
1080 			desc->src_addr = edmac->runtime_addr;
1081 			desc->dst_addr = sg_dma_address(sg);
1082 		}
1083 		desc->size = len;
1084 
1085 		if (!first)
1086 			first = desc;
1087 		else
1088 			list_add_tail(&desc->node, &first->tx_list);
1089 	}
1090 
1091 	first->txd.cookie = -EBUSY;
1092 	first->txd.flags = flags;
1093 
1094 	return &first->txd;
1095 
1096 fail:
1097 	ep93xx_dma_desc_put(edmac, first);
1098 	return NULL;
1099 }
1100 
1101 /**
1102  * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1103  * @chan: channel
1104  * @dma_addr: DMA mapped address of the buffer
1105  * @buf_len: length of the buffer (in bytes)
1106  * @period_len: length of a single period
1107  * @dir: direction of the operation
1108  * @flags: tx descriptor status flags
1109  *
1110  * Prepares a descriptor for cyclic DMA operation. This means that once the
1111  * descriptor is submitted, we will be submitting in a @period_len sized
1112  * buffers and calling callback once the period has been elapsed. Transfer
1113  * terminates only when client calls dmaengine_terminate_all() for this
1114  * channel.
1115  *
1116  * Returns a valid DMA descriptor or %NULL in case of failure.
1117  */
1118 static struct dma_async_tx_descriptor *
1119 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1120 			   size_t buf_len, size_t period_len,
1121 			   enum dma_transfer_direction dir, unsigned long flags)
1122 {
1123 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1124 	struct ep93xx_dma_desc *desc, *first;
1125 	size_t offset = 0;
1126 
1127 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1128 		dev_warn(chan2dev(edmac),
1129 			 "channel was configured with different direction\n");
1130 		return NULL;
1131 	}
1132 
1133 	if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1134 		dev_warn(chan2dev(edmac),
1135 			 "channel is already used for cyclic transfers\n");
1136 		return NULL;
1137 	}
1138 
1139 	if (period_len > DMA_MAX_CHAN_BYTES) {
1140 		dev_warn(chan2dev(edmac), "too big period length %zu\n",
1141 			 period_len);
1142 		return NULL;
1143 	}
1144 
1145 	ep93xx_dma_slave_config_write(chan, dir, &edmac->slave_config);
1146 
1147 	/* Split the buffer into period size chunks */
1148 	first = NULL;
1149 	for (offset = 0; offset < buf_len; offset += period_len) {
1150 		desc = ep93xx_dma_desc_get(edmac);
1151 		if (!desc) {
1152 			dev_warn(chan2dev(edmac), "couldn't get descriptor\n");
1153 			goto fail;
1154 		}
1155 
1156 		if (dir == DMA_MEM_TO_DEV) {
1157 			desc->src_addr = dma_addr + offset;
1158 			desc->dst_addr = edmac->runtime_addr;
1159 		} else {
1160 			desc->src_addr = edmac->runtime_addr;
1161 			desc->dst_addr = dma_addr + offset;
1162 		}
1163 
1164 		desc->size = period_len;
1165 
1166 		if (!first)
1167 			first = desc;
1168 		else
1169 			list_add_tail(&desc->node, &first->tx_list);
1170 	}
1171 
1172 	first->txd.cookie = -EBUSY;
1173 
1174 	return &first->txd;
1175 
1176 fail:
1177 	ep93xx_dma_desc_put(edmac, first);
1178 	return NULL;
1179 }
1180 
1181 /**
1182  * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
1183  * current context.
1184  * @chan: channel
1185  *
1186  * Synchronizes the DMA channel termination to the current context. When this
1187  * function returns it is guaranteed that all transfers for previously issued
1188  * descriptors have stopped and and it is safe to free the memory associated
1189  * with them. Furthermore it is guaranteed that all complete callback functions
1190  * for a previously submitted descriptor have finished running and it is safe to
1191  * free resources accessed from within the complete callbacks.
1192  */
1193 static void ep93xx_dma_synchronize(struct dma_chan *chan)
1194 {
1195 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1196 
1197 	if (edmac->edma->hw_synchronize)
1198 		edmac->edma->hw_synchronize(edmac);
1199 }
1200 
1201 /**
1202  * ep93xx_dma_terminate_all - terminate all transactions
1203  * @chan: channel
1204  *
1205  * Stops all DMA transactions. All descriptors are put back to the
1206  * @edmac->free_list and callbacks are _not_ called.
1207  */
1208 static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1209 {
1210 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1211 	struct ep93xx_dma_desc *desc, *_d;
1212 	unsigned long flags;
1213 	LIST_HEAD(list);
1214 
1215 	spin_lock_irqsave(&edmac->lock, flags);
1216 	/* First we disable and flush the DMA channel */
1217 	edmac->edma->hw_shutdown(edmac);
1218 	clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1219 	list_splice_init(&edmac->active, &list);
1220 	list_splice_init(&edmac->queue, &list);
1221 	/*
1222 	 * We then re-enable the channel. This way we can continue submitting
1223 	 * the descriptors by just calling ->hw_submit() again.
1224 	 */
1225 	edmac->edma->hw_setup(edmac);
1226 	spin_unlock_irqrestore(&edmac->lock, flags);
1227 
1228 	list_for_each_entry_safe(desc, _d, &list, node)
1229 		ep93xx_dma_desc_put(edmac, desc);
1230 
1231 	return 0;
1232 }
1233 
1234 static int ep93xx_dma_slave_config(struct dma_chan *chan,
1235 				   struct dma_slave_config *config)
1236 {
1237 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1238 
1239 	memcpy(&edmac->slave_config, config, sizeof(*config));
1240 
1241 	return 0;
1242 }
1243 
1244 static int ep93xx_dma_slave_config_write(struct dma_chan *chan,
1245 					 enum dma_transfer_direction dir,
1246 					 struct dma_slave_config *config)
1247 {
1248 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1249 	enum dma_slave_buswidth width;
1250 	unsigned long flags;
1251 	u32 addr, ctrl;
1252 
1253 	if (!edmac->edma->m2m)
1254 		return -EINVAL;
1255 
1256 	switch (dir) {
1257 	case DMA_DEV_TO_MEM:
1258 		width = config->src_addr_width;
1259 		addr = config->src_addr;
1260 		break;
1261 
1262 	case DMA_MEM_TO_DEV:
1263 		width = config->dst_addr_width;
1264 		addr = config->dst_addr;
1265 		break;
1266 
1267 	default:
1268 		return -EINVAL;
1269 	}
1270 
1271 	switch (width) {
1272 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1273 		ctrl = 0;
1274 		break;
1275 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1276 		ctrl = M2M_CONTROL_PW_16;
1277 		break;
1278 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1279 		ctrl = M2M_CONTROL_PW_32;
1280 		break;
1281 	default:
1282 		return -EINVAL;
1283 	}
1284 
1285 	spin_lock_irqsave(&edmac->lock, flags);
1286 	edmac->runtime_addr = addr;
1287 	edmac->runtime_ctrl = ctrl;
1288 	spin_unlock_irqrestore(&edmac->lock, flags);
1289 
1290 	return 0;
1291 }
1292 
1293 /**
1294  * ep93xx_dma_tx_status - check if a transaction is completed
1295  * @chan: channel
1296  * @cookie: transaction specific cookie
1297  * @state: state of the transaction is stored here if given
1298  *
1299  * This function can be used to query state of a given transaction.
1300  */
1301 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1302 					    dma_cookie_t cookie,
1303 					    struct dma_tx_state *state)
1304 {
1305 	return dma_cookie_status(chan, cookie, state);
1306 }
1307 
1308 /**
1309  * ep93xx_dma_issue_pending - push pending transactions to the hardware
1310  * @chan: channel
1311  *
1312  * When this function is called, all pending transactions are pushed to the
1313  * hardware and executed.
1314  */
1315 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1316 {
1317 	ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1318 }
1319 
1320 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1321 {
1322 	struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1323 	struct ep93xx_dma_engine *edma;
1324 	struct dma_device *dma_dev;
1325 	size_t edma_size;
1326 	int ret, i;
1327 
1328 	edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1329 	edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1330 	if (!edma)
1331 		return -ENOMEM;
1332 
1333 	dma_dev = &edma->dma_dev;
1334 	edma->m2m = platform_get_device_id(pdev)->driver_data;
1335 	edma->num_channels = pdata->num_channels;
1336 
1337 	INIT_LIST_HEAD(&dma_dev->channels);
1338 	for (i = 0; i < pdata->num_channels; i++) {
1339 		const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1340 		struct ep93xx_dma_chan *edmac = &edma->channels[i];
1341 
1342 		edmac->chan.device = dma_dev;
1343 		edmac->regs = cdata->base;
1344 		edmac->irq = cdata->irq;
1345 		edmac->edma = edma;
1346 
1347 		edmac->clk = clk_get(NULL, cdata->name);
1348 		if (IS_ERR(edmac->clk)) {
1349 			dev_warn(&pdev->dev, "failed to get clock for %s\n",
1350 				 cdata->name);
1351 			continue;
1352 		}
1353 
1354 		spin_lock_init(&edmac->lock);
1355 		INIT_LIST_HEAD(&edmac->active);
1356 		INIT_LIST_HEAD(&edmac->queue);
1357 		INIT_LIST_HEAD(&edmac->free_list);
1358 		tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1359 			     (unsigned long)edmac);
1360 
1361 		list_add_tail(&edmac->chan.device_node,
1362 			      &dma_dev->channels);
1363 	}
1364 
1365 	dma_cap_zero(dma_dev->cap_mask);
1366 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1367 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1368 
1369 	dma_dev->dev = &pdev->dev;
1370 	dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1371 	dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1372 	dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1373 	dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1374 	dma_dev->device_config = ep93xx_dma_slave_config;
1375 	dma_dev->device_synchronize = ep93xx_dma_synchronize;
1376 	dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1377 	dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1378 	dma_dev->device_tx_status = ep93xx_dma_tx_status;
1379 
1380 	dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1381 
1382 	if (edma->m2m) {
1383 		dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1384 		dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1385 
1386 		edma->hw_setup = m2m_hw_setup;
1387 		edma->hw_shutdown = m2m_hw_shutdown;
1388 		edma->hw_submit = m2m_hw_submit;
1389 		edma->hw_interrupt = m2m_hw_interrupt;
1390 	} else {
1391 		dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1392 
1393 		edma->hw_synchronize = m2p_hw_synchronize;
1394 		edma->hw_setup = m2p_hw_setup;
1395 		edma->hw_shutdown = m2p_hw_shutdown;
1396 		edma->hw_submit = m2p_hw_submit;
1397 		edma->hw_interrupt = m2p_hw_interrupt;
1398 	}
1399 
1400 	ret = dma_async_device_register(dma_dev);
1401 	if (unlikely(ret)) {
1402 		for (i = 0; i < edma->num_channels; i++) {
1403 			struct ep93xx_dma_chan *edmac = &edma->channels[i];
1404 			if (!IS_ERR_OR_NULL(edmac->clk))
1405 				clk_put(edmac->clk);
1406 		}
1407 		kfree(edma);
1408 	} else {
1409 		dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1410 			 edma->m2m ? "M" : "P");
1411 	}
1412 
1413 	return ret;
1414 }
1415 
1416 static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1417 	{ "ep93xx-dma-m2p", 0 },
1418 	{ "ep93xx-dma-m2m", 1 },
1419 	{ },
1420 };
1421 
1422 static struct platform_driver ep93xx_dma_driver = {
1423 	.driver		= {
1424 		.name	= "ep93xx-dma",
1425 	},
1426 	.id_table	= ep93xx_dma_driver_ids,
1427 };
1428 
1429 static int __init ep93xx_dma_module_init(void)
1430 {
1431 	return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1432 }
1433 subsys_initcall(ep93xx_dma_module_init);
1434 
1435 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1436 MODULE_DESCRIPTION("EP93xx DMA driver");
1437 MODULE_LICENSE("GPL");
1438