1 /* 2 * Driver for the Cirrus Logic EP93xx DMA Controller 3 * 4 * Copyright (C) 2011 Mika Westerberg 5 * 6 * DMA M2P implementation is based on the original 7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights: 8 * 9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org> 10 * Copyright (C) 2006 Applied Data Systems 11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com> 12 * 13 * This driver is based on dw_dmac and amba-pl08x drivers. 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 */ 20 21 #include <linux/clk.h> 22 #include <linux/init.h> 23 #include <linux/interrupt.h> 24 #include <linux/dmaengine.h> 25 #include <linux/module.h> 26 #include <linux/platform_device.h> 27 #include <linux/slab.h> 28 29 #include <linux/platform_data/dma-ep93xx.h> 30 31 #include "dmaengine.h" 32 33 /* M2P registers */ 34 #define M2P_CONTROL 0x0000 35 #define M2P_CONTROL_STALLINT BIT(0) 36 #define M2P_CONTROL_NFBINT BIT(1) 37 #define M2P_CONTROL_CH_ERROR_INT BIT(3) 38 #define M2P_CONTROL_ENABLE BIT(4) 39 #define M2P_CONTROL_ICE BIT(6) 40 41 #define M2P_INTERRUPT 0x0004 42 #define M2P_INTERRUPT_STALL BIT(0) 43 #define M2P_INTERRUPT_NFB BIT(1) 44 #define M2P_INTERRUPT_ERROR BIT(3) 45 46 #define M2P_PPALLOC 0x0008 47 #define M2P_STATUS 0x000c 48 49 #define M2P_MAXCNT0 0x0020 50 #define M2P_BASE0 0x0024 51 #define M2P_MAXCNT1 0x0030 52 #define M2P_BASE1 0x0034 53 54 #define M2P_STATE_IDLE 0 55 #define M2P_STATE_STALL 1 56 #define M2P_STATE_ON 2 57 #define M2P_STATE_NEXT 3 58 59 /* M2M registers */ 60 #define M2M_CONTROL 0x0000 61 #define M2M_CONTROL_DONEINT BIT(2) 62 #define M2M_CONTROL_ENABLE BIT(3) 63 #define M2M_CONTROL_START BIT(4) 64 #define M2M_CONTROL_DAH BIT(11) 65 #define M2M_CONTROL_SAH BIT(12) 66 #define M2M_CONTROL_PW_SHIFT 9 67 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT) 68 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT) 69 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT) 70 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT) 71 #define M2M_CONTROL_TM_SHIFT 13 72 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT) 73 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT) 74 #define M2M_CONTROL_NFBINT BIT(21) 75 #define M2M_CONTROL_RSS_SHIFT 22 76 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT) 77 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT) 78 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT) 79 #define M2M_CONTROL_NO_HDSK BIT(24) 80 #define M2M_CONTROL_PWSC_SHIFT 25 81 82 #define M2M_INTERRUPT 0x0004 83 #define M2M_INTERRUPT_MASK 6 84 85 #define M2M_STATUS 0x000c 86 #define M2M_STATUS_CTL_SHIFT 1 87 #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT) 88 #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT) 89 #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT) 90 #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT) 91 #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT) 92 #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT) 93 #define M2M_STATUS_BUF_SHIFT 4 94 #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT) 95 #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT) 96 #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT) 97 #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT) 98 #define M2M_STATUS_DONE BIT(6) 99 100 #define M2M_BCR0 0x0010 101 #define M2M_BCR1 0x0014 102 #define M2M_SAR_BASE0 0x0018 103 #define M2M_SAR_BASE1 0x001c 104 #define M2M_DAR_BASE0 0x002c 105 #define M2M_DAR_BASE1 0x0030 106 107 #define DMA_MAX_CHAN_BYTES 0xffff 108 #define DMA_MAX_CHAN_DESCRIPTORS 32 109 110 struct ep93xx_dma_engine; 111 112 /** 113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor 114 * @src_addr: source address of the transaction 115 * @dst_addr: destination address of the transaction 116 * @size: size of the transaction (in bytes) 117 * @complete: this descriptor is completed 118 * @txd: dmaengine API descriptor 119 * @tx_list: list of linked descriptors 120 * @node: link used for putting this into a channel queue 121 */ 122 struct ep93xx_dma_desc { 123 u32 src_addr; 124 u32 dst_addr; 125 size_t size; 126 bool complete; 127 struct dma_async_tx_descriptor txd; 128 struct list_head tx_list; 129 struct list_head node; 130 }; 131 132 /** 133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel 134 * @chan: dmaengine API channel 135 * @edma: pointer to to the engine device 136 * @regs: memory mapped registers 137 * @irq: interrupt number of the channel 138 * @clk: clock used by this channel 139 * @tasklet: channel specific tasklet used for callbacks 140 * @lock: lock protecting the fields following 141 * @flags: flags for the channel 142 * @buffer: which buffer to use next (0/1) 143 * @active: flattened chain of descriptors currently being processed 144 * @queue: pending descriptors which are handled next 145 * @free_list: list of free descriptors which can be used 146 * @runtime_addr: physical address currently used as dest/src (M2M only). This 147 * is set via %DMA_SLAVE_CONFIG before slave operation is 148 * prepared 149 * @runtime_ctrl: M2M runtime values for the control register. 150 * 151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we 152 * will have slightly different scheme here: @active points to a head of 153 * flattened DMA descriptor chain. 154 * 155 * @queue holds pending transactions. These are linked through the first 156 * descriptor in the chain. When a descriptor is moved to the @active queue, 157 * the first and chained descriptors are flattened into a single list. 158 * 159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains 160 * necessary channel configuration information. For memcpy channels this must 161 * be %NULL. 162 */ 163 struct ep93xx_dma_chan { 164 struct dma_chan chan; 165 const struct ep93xx_dma_engine *edma; 166 void __iomem *regs; 167 int irq; 168 struct clk *clk; 169 struct tasklet_struct tasklet; 170 /* protects the fields following */ 171 spinlock_t lock; 172 unsigned long flags; 173 /* Channel is configured for cyclic transfers */ 174 #define EP93XX_DMA_IS_CYCLIC 0 175 176 int buffer; 177 struct list_head active; 178 struct list_head queue; 179 struct list_head free_list; 180 u32 runtime_addr; 181 u32 runtime_ctrl; 182 }; 183 184 /** 185 * struct ep93xx_dma_engine - the EP93xx DMA engine instance 186 * @dma_dev: holds the dmaengine device 187 * @m2m: is this an M2M or M2P device 188 * @hw_setup: method which sets the channel up for operation 189 * @hw_shutdown: shuts the channel down and flushes whatever is left 190 * @hw_submit: pushes active descriptor(s) to the hardware 191 * @hw_interrupt: handle the interrupt 192 * @num_channels: number of channels for this instance 193 * @channels: array of channels 194 * 195 * There is one instance of this struct for the M2P channels and one for the 196 * M2M channels. hw_xxx() methods are used to perform operations which are 197 * different on M2M and M2P channels. These methods are called with channel 198 * lock held and interrupts disabled so they cannot sleep. 199 */ 200 struct ep93xx_dma_engine { 201 struct dma_device dma_dev; 202 bool m2m; 203 int (*hw_setup)(struct ep93xx_dma_chan *); 204 void (*hw_shutdown)(struct ep93xx_dma_chan *); 205 void (*hw_submit)(struct ep93xx_dma_chan *); 206 int (*hw_interrupt)(struct ep93xx_dma_chan *); 207 #define INTERRUPT_UNKNOWN 0 208 #define INTERRUPT_DONE 1 209 #define INTERRUPT_NEXT_BUFFER 2 210 211 size_t num_channels; 212 struct ep93xx_dma_chan channels[]; 213 }; 214 215 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac) 216 { 217 return &edmac->chan.dev->device; 218 } 219 220 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan) 221 { 222 return container_of(chan, struct ep93xx_dma_chan, chan); 223 } 224 225 /** 226 * ep93xx_dma_set_active - set new active descriptor chain 227 * @edmac: channel 228 * @desc: head of the new active descriptor chain 229 * 230 * Sets @desc to be the head of the new active descriptor chain. This is the 231 * chain which is processed next. The active list must be empty before calling 232 * this function. 233 * 234 * Called with @edmac->lock held and interrupts disabled. 235 */ 236 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac, 237 struct ep93xx_dma_desc *desc) 238 { 239 BUG_ON(!list_empty(&edmac->active)); 240 241 list_add_tail(&desc->node, &edmac->active); 242 243 /* Flatten the @desc->tx_list chain into @edmac->active list */ 244 while (!list_empty(&desc->tx_list)) { 245 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list, 246 struct ep93xx_dma_desc, node); 247 248 /* 249 * We copy the callback parameters from the first descriptor 250 * to all the chained descriptors. This way we can call the 251 * callback without having to find out the first descriptor in 252 * the chain. Useful for cyclic transfers. 253 */ 254 d->txd.callback = desc->txd.callback; 255 d->txd.callback_param = desc->txd.callback_param; 256 257 list_move_tail(&d->node, &edmac->active); 258 } 259 } 260 261 /* Called with @edmac->lock held and interrupts disabled */ 262 static struct ep93xx_dma_desc * 263 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac) 264 { 265 if (list_empty(&edmac->active)) 266 return NULL; 267 268 return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node); 269 } 270 271 /** 272 * ep93xx_dma_advance_active - advances to the next active descriptor 273 * @edmac: channel 274 * 275 * Function advances active descriptor to the next in the @edmac->active and 276 * returns %true if we still have descriptors in the chain to process. 277 * Otherwise returns %false. 278 * 279 * When the channel is in cyclic mode always returns %true. 280 * 281 * Called with @edmac->lock held and interrupts disabled. 282 */ 283 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac) 284 { 285 struct ep93xx_dma_desc *desc; 286 287 list_rotate_left(&edmac->active); 288 289 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) 290 return true; 291 292 desc = ep93xx_dma_get_active(edmac); 293 if (!desc) 294 return false; 295 296 /* 297 * If txd.cookie is set it means that we are back in the first 298 * descriptor in the chain and hence done with it. 299 */ 300 return !desc->txd.cookie; 301 } 302 303 /* 304 * M2P DMA implementation 305 */ 306 307 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control) 308 { 309 writel(control, edmac->regs + M2P_CONTROL); 310 /* 311 * EP93xx User's Guide states that we must perform a dummy read after 312 * write to the control register. 313 */ 314 readl(edmac->regs + M2P_CONTROL); 315 } 316 317 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac) 318 { 319 struct ep93xx_dma_data *data = edmac->chan.private; 320 u32 control; 321 322 writel(data->port & 0xf, edmac->regs + M2P_PPALLOC); 323 324 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE 325 | M2P_CONTROL_ENABLE; 326 m2p_set_control(edmac, control); 327 328 return 0; 329 } 330 331 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac) 332 { 333 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3; 334 } 335 336 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac) 337 { 338 u32 control; 339 340 control = readl(edmac->regs + M2P_CONTROL); 341 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT); 342 m2p_set_control(edmac, control); 343 344 while (m2p_channel_state(edmac) >= M2P_STATE_ON) 345 cpu_relax(); 346 347 m2p_set_control(edmac, 0); 348 349 while (m2p_channel_state(edmac) == M2P_STATE_STALL) 350 cpu_relax(); 351 } 352 353 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac) 354 { 355 struct ep93xx_dma_desc *desc; 356 u32 bus_addr; 357 358 desc = ep93xx_dma_get_active(edmac); 359 if (!desc) { 360 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n"); 361 return; 362 } 363 364 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV) 365 bus_addr = desc->src_addr; 366 else 367 bus_addr = desc->dst_addr; 368 369 if (edmac->buffer == 0) { 370 writel(desc->size, edmac->regs + M2P_MAXCNT0); 371 writel(bus_addr, edmac->regs + M2P_BASE0); 372 } else { 373 writel(desc->size, edmac->regs + M2P_MAXCNT1); 374 writel(bus_addr, edmac->regs + M2P_BASE1); 375 } 376 377 edmac->buffer ^= 1; 378 } 379 380 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac) 381 { 382 u32 control = readl(edmac->regs + M2P_CONTROL); 383 384 m2p_fill_desc(edmac); 385 control |= M2P_CONTROL_STALLINT; 386 387 if (ep93xx_dma_advance_active(edmac)) { 388 m2p_fill_desc(edmac); 389 control |= M2P_CONTROL_NFBINT; 390 } 391 392 m2p_set_control(edmac, control); 393 } 394 395 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac) 396 { 397 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT); 398 u32 control; 399 400 if (irq_status & M2P_INTERRUPT_ERROR) { 401 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac); 402 403 /* Clear the error interrupt */ 404 writel(1, edmac->regs + M2P_INTERRUPT); 405 406 /* 407 * It seems that there is no easy way of reporting errors back 408 * to client so we just report the error here and continue as 409 * usual. 410 * 411 * Revisit this when there is a mechanism to report back the 412 * errors. 413 */ 414 dev_err(chan2dev(edmac), 415 "DMA transfer failed! Details:\n" 416 "\tcookie : %d\n" 417 "\tsrc_addr : 0x%08x\n" 418 "\tdst_addr : 0x%08x\n" 419 "\tsize : %zu\n", 420 desc->txd.cookie, desc->src_addr, desc->dst_addr, 421 desc->size); 422 } 423 424 switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) { 425 case M2P_INTERRUPT_STALL: 426 /* Disable interrupts */ 427 control = readl(edmac->regs + M2P_CONTROL); 428 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT); 429 m2p_set_control(edmac, control); 430 431 return INTERRUPT_DONE; 432 433 case M2P_INTERRUPT_NFB: 434 if (ep93xx_dma_advance_active(edmac)) 435 m2p_fill_desc(edmac); 436 437 return INTERRUPT_NEXT_BUFFER; 438 } 439 440 return INTERRUPT_UNKNOWN; 441 } 442 443 /* 444 * M2M DMA implementation 445 */ 446 447 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac) 448 { 449 const struct ep93xx_dma_data *data = edmac->chan.private; 450 u32 control = 0; 451 452 if (!data) { 453 /* This is memcpy channel, nothing to configure */ 454 writel(control, edmac->regs + M2M_CONTROL); 455 return 0; 456 } 457 458 switch (data->port) { 459 case EP93XX_DMA_SSP: 460 /* 461 * This was found via experimenting - anything less than 5 462 * causes the channel to perform only a partial transfer which 463 * leads to problems since we don't get DONE interrupt then. 464 */ 465 control = (5 << M2M_CONTROL_PWSC_SHIFT); 466 control |= M2M_CONTROL_NO_HDSK; 467 468 if (data->direction == DMA_MEM_TO_DEV) { 469 control |= M2M_CONTROL_DAH; 470 control |= M2M_CONTROL_TM_TX; 471 control |= M2M_CONTROL_RSS_SSPTX; 472 } else { 473 control |= M2M_CONTROL_SAH; 474 control |= M2M_CONTROL_TM_RX; 475 control |= M2M_CONTROL_RSS_SSPRX; 476 } 477 break; 478 479 case EP93XX_DMA_IDE: 480 /* 481 * This IDE part is totally untested. Values below are taken 482 * from the EP93xx Users's Guide and might not be correct. 483 */ 484 if (data->direction == DMA_MEM_TO_DEV) { 485 /* Worst case from the UG */ 486 control = (3 << M2M_CONTROL_PWSC_SHIFT); 487 control |= M2M_CONTROL_DAH; 488 control |= M2M_CONTROL_TM_TX; 489 } else { 490 control = (2 << M2M_CONTROL_PWSC_SHIFT); 491 control |= M2M_CONTROL_SAH; 492 control |= M2M_CONTROL_TM_RX; 493 } 494 495 control |= M2M_CONTROL_NO_HDSK; 496 control |= M2M_CONTROL_RSS_IDE; 497 control |= M2M_CONTROL_PW_16; 498 break; 499 500 default: 501 return -EINVAL; 502 } 503 504 writel(control, edmac->regs + M2M_CONTROL); 505 return 0; 506 } 507 508 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac) 509 { 510 /* Just disable the channel */ 511 writel(0, edmac->regs + M2M_CONTROL); 512 } 513 514 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac) 515 { 516 struct ep93xx_dma_desc *desc; 517 518 desc = ep93xx_dma_get_active(edmac); 519 if (!desc) { 520 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n"); 521 return; 522 } 523 524 if (edmac->buffer == 0) { 525 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0); 526 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0); 527 writel(desc->size, edmac->regs + M2M_BCR0); 528 } else { 529 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1); 530 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1); 531 writel(desc->size, edmac->regs + M2M_BCR1); 532 } 533 534 edmac->buffer ^= 1; 535 } 536 537 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac) 538 { 539 struct ep93xx_dma_data *data = edmac->chan.private; 540 u32 control = readl(edmac->regs + M2M_CONTROL); 541 542 /* 543 * Since we allow clients to configure PW (peripheral width) we always 544 * clear PW bits here and then set them according what is given in 545 * the runtime configuration. 546 */ 547 control &= ~M2M_CONTROL_PW_MASK; 548 control |= edmac->runtime_ctrl; 549 550 m2m_fill_desc(edmac); 551 control |= M2M_CONTROL_DONEINT; 552 553 if (ep93xx_dma_advance_active(edmac)) { 554 m2m_fill_desc(edmac); 555 control |= M2M_CONTROL_NFBINT; 556 } 557 558 /* 559 * Now we can finally enable the channel. For M2M channel this must be 560 * done _after_ the BCRx registers are programmed. 561 */ 562 control |= M2M_CONTROL_ENABLE; 563 writel(control, edmac->regs + M2M_CONTROL); 564 565 if (!data) { 566 /* 567 * For memcpy channels the software trigger must be asserted 568 * in order to start the memcpy operation. 569 */ 570 control |= M2M_CONTROL_START; 571 writel(control, edmac->regs + M2M_CONTROL); 572 } 573 } 574 575 /* 576 * According to EP93xx User's Guide, we should receive DONE interrupt when all 577 * M2M DMA controller transactions complete normally. This is not always the 578 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel 579 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel 580 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation). 581 * In effect, disabling the channel when only DONE bit is set could stop 582 * currently running DMA transfer. To avoid this, we use Buffer FSM and 583 * Control FSM to check current state of DMA channel. 584 */ 585 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac) 586 { 587 u32 status = readl(edmac->regs + M2M_STATUS); 588 u32 ctl_fsm = status & M2M_STATUS_CTL_MASK; 589 u32 buf_fsm = status & M2M_STATUS_BUF_MASK; 590 bool done = status & M2M_STATUS_DONE; 591 bool last_done; 592 u32 control; 593 struct ep93xx_dma_desc *desc; 594 595 /* Accept only DONE and NFB interrupts */ 596 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK)) 597 return INTERRUPT_UNKNOWN; 598 599 if (done) { 600 /* Clear the DONE bit */ 601 writel(0, edmac->regs + M2M_INTERRUPT); 602 } 603 604 /* 605 * Check whether we are done with descriptors or not. This, together 606 * with DMA channel state, determines action to take in interrupt. 607 */ 608 desc = ep93xx_dma_get_active(edmac); 609 last_done = !desc || desc->txd.cookie; 610 611 /* 612 * Use M2M DMA Buffer FSM and Control FSM to check current state of 613 * DMA channel. Using DONE and NFB bits from channel status register 614 * or bits from channel interrupt register is not reliable. 615 */ 616 if (!last_done && 617 (buf_fsm == M2M_STATUS_BUF_NO || 618 buf_fsm == M2M_STATUS_BUF_ON)) { 619 /* 620 * Two buffers are ready for update when Buffer FSM is in 621 * DMA_NO_BUF state. Only one buffer can be prepared without 622 * disabling the channel or polling the DONE bit. 623 * To simplify things, always prepare only one buffer. 624 */ 625 if (ep93xx_dma_advance_active(edmac)) { 626 m2m_fill_desc(edmac); 627 if (done && !edmac->chan.private) { 628 /* Software trigger for memcpy channel */ 629 control = readl(edmac->regs + M2M_CONTROL); 630 control |= M2M_CONTROL_START; 631 writel(control, edmac->regs + M2M_CONTROL); 632 } 633 return INTERRUPT_NEXT_BUFFER; 634 } else { 635 last_done = true; 636 } 637 } 638 639 /* 640 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state 641 * and Control FSM is in DMA_STALL state. 642 */ 643 if (last_done && 644 buf_fsm == M2M_STATUS_BUF_NO && 645 ctl_fsm == M2M_STATUS_CTL_STALL) { 646 /* Disable interrupts and the channel */ 647 control = readl(edmac->regs + M2M_CONTROL); 648 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT 649 | M2M_CONTROL_ENABLE); 650 writel(control, edmac->regs + M2M_CONTROL); 651 return INTERRUPT_DONE; 652 } 653 654 /* 655 * Nothing to do this time. 656 */ 657 return INTERRUPT_NEXT_BUFFER; 658 } 659 660 /* 661 * DMA engine API implementation 662 */ 663 664 static struct ep93xx_dma_desc * 665 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac) 666 { 667 struct ep93xx_dma_desc *desc, *_desc; 668 struct ep93xx_dma_desc *ret = NULL; 669 unsigned long flags; 670 671 spin_lock_irqsave(&edmac->lock, flags); 672 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) { 673 if (async_tx_test_ack(&desc->txd)) { 674 list_del_init(&desc->node); 675 676 /* Re-initialize the descriptor */ 677 desc->src_addr = 0; 678 desc->dst_addr = 0; 679 desc->size = 0; 680 desc->complete = false; 681 desc->txd.cookie = 0; 682 desc->txd.callback = NULL; 683 desc->txd.callback_param = NULL; 684 685 ret = desc; 686 break; 687 } 688 } 689 spin_unlock_irqrestore(&edmac->lock, flags); 690 return ret; 691 } 692 693 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac, 694 struct ep93xx_dma_desc *desc) 695 { 696 if (desc) { 697 unsigned long flags; 698 699 spin_lock_irqsave(&edmac->lock, flags); 700 list_splice_init(&desc->tx_list, &edmac->free_list); 701 list_add(&desc->node, &edmac->free_list); 702 spin_unlock_irqrestore(&edmac->lock, flags); 703 } 704 } 705 706 /** 707 * ep93xx_dma_advance_work - start processing the next pending transaction 708 * @edmac: channel 709 * 710 * If we have pending transactions queued and we are currently idling, this 711 * function takes the next queued transaction from the @edmac->queue and 712 * pushes it to the hardware for execution. 713 */ 714 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac) 715 { 716 struct ep93xx_dma_desc *new; 717 unsigned long flags; 718 719 spin_lock_irqsave(&edmac->lock, flags); 720 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) { 721 spin_unlock_irqrestore(&edmac->lock, flags); 722 return; 723 } 724 725 /* Take the next descriptor from the pending queue */ 726 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node); 727 list_del_init(&new->node); 728 729 ep93xx_dma_set_active(edmac, new); 730 731 /* Push it to the hardware */ 732 edmac->edma->hw_submit(edmac); 733 spin_unlock_irqrestore(&edmac->lock, flags); 734 } 735 736 static void ep93xx_dma_tasklet(unsigned long data) 737 { 738 struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data; 739 struct ep93xx_dma_desc *desc, *d; 740 dma_async_tx_callback callback = NULL; 741 void *callback_param = NULL; 742 LIST_HEAD(list); 743 744 spin_lock_irq(&edmac->lock); 745 /* 746 * If dma_terminate_all() was called before we get to run, the active 747 * list has become empty. If that happens we aren't supposed to do 748 * anything more than call ep93xx_dma_advance_work(). 749 */ 750 desc = ep93xx_dma_get_active(edmac); 751 if (desc) { 752 if (desc->complete) { 753 /* mark descriptor complete for non cyclic case only */ 754 if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) 755 dma_cookie_complete(&desc->txd); 756 list_splice_init(&edmac->active, &list); 757 } 758 callback = desc->txd.callback; 759 callback_param = desc->txd.callback_param; 760 } 761 spin_unlock_irq(&edmac->lock); 762 763 /* Pick up the next descriptor from the queue */ 764 ep93xx_dma_advance_work(edmac); 765 766 /* Now we can release all the chained descriptors */ 767 list_for_each_entry_safe(desc, d, &list, node) { 768 dma_descriptor_unmap(&desc->txd); 769 ep93xx_dma_desc_put(edmac, desc); 770 } 771 772 if (callback) 773 callback(callback_param); 774 } 775 776 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id) 777 { 778 struct ep93xx_dma_chan *edmac = dev_id; 779 struct ep93xx_dma_desc *desc; 780 irqreturn_t ret = IRQ_HANDLED; 781 782 spin_lock(&edmac->lock); 783 784 desc = ep93xx_dma_get_active(edmac); 785 if (!desc) { 786 dev_warn(chan2dev(edmac), 787 "got interrupt while active list is empty\n"); 788 spin_unlock(&edmac->lock); 789 return IRQ_NONE; 790 } 791 792 switch (edmac->edma->hw_interrupt(edmac)) { 793 case INTERRUPT_DONE: 794 desc->complete = true; 795 tasklet_schedule(&edmac->tasklet); 796 break; 797 798 case INTERRUPT_NEXT_BUFFER: 799 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) 800 tasklet_schedule(&edmac->tasklet); 801 break; 802 803 default: 804 dev_warn(chan2dev(edmac), "unknown interrupt!\n"); 805 ret = IRQ_NONE; 806 break; 807 } 808 809 spin_unlock(&edmac->lock); 810 return ret; 811 } 812 813 /** 814 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed 815 * @tx: descriptor to be executed 816 * 817 * Function will execute given descriptor on the hardware or if the hardware 818 * is busy, queue the descriptor to be executed later on. Returns cookie which 819 * can be used to poll the status of the descriptor. 820 */ 821 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx) 822 { 823 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan); 824 struct ep93xx_dma_desc *desc; 825 dma_cookie_t cookie; 826 unsigned long flags; 827 828 spin_lock_irqsave(&edmac->lock, flags); 829 cookie = dma_cookie_assign(tx); 830 831 desc = container_of(tx, struct ep93xx_dma_desc, txd); 832 833 /* 834 * If nothing is currently prosessed, we push this descriptor 835 * directly to the hardware. Otherwise we put the descriptor 836 * to the pending queue. 837 */ 838 if (list_empty(&edmac->active)) { 839 ep93xx_dma_set_active(edmac, desc); 840 edmac->edma->hw_submit(edmac); 841 } else { 842 list_add_tail(&desc->node, &edmac->queue); 843 } 844 845 spin_unlock_irqrestore(&edmac->lock, flags); 846 return cookie; 847 } 848 849 /** 850 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel 851 * @chan: channel to allocate resources 852 * 853 * Function allocates necessary resources for the given DMA channel and 854 * returns number of allocated descriptors for the channel. Negative errno 855 * is returned in case of failure. 856 */ 857 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan) 858 { 859 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 860 struct ep93xx_dma_data *data = chan->private; 861 const char *name = dma_chan_name(chan); 862 int ret, i; 863 864 /* Sanity check the channel parameters */ 865 if (!edmac->edma->m2m) { 866 if (!data) 867 return -EINVAL; 868 if (data->port < EP93XX_DMA_I2S1 || 869 data->port > EP93XX_DMA_IRDA) 870 return -EINVAL; 871 if (data->direction != ep93xx_dma_chan_direction(chan)) 872 return -EINVAL; 873 } else { 874 if (data) { 875 switch (data->port) { 876 case EP93XX_DMA_SSP: 877 case EP93XX_DMA_IDE: 878 if (!is_slave_direction(data->direction)) 879 return -EINVAL; 880 break; 881 default: 882 return -EINVAL; 883 } 884 } 885 } 886 887 if (data && data->name) 888 name = data->name; 889 890 ret = clk_enable(edmac->clk); 891 if (ret) 892 return ret; 893 894 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac); 895 if (ret) 896 goto fail_clk_disable; 897 898 spin_lock_irq(&edmac->lock); 899 dma_cookie_init(&edmac->chan); 900 ret = edmac->edma->hw_setup(edmac); 901 spin_unlock_irq(&edmac->lock); 902 903 if (ret) 904 goto fail_free_irq; 905 906 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) { 907 struct ep93xx_dma_desc *desc; 908 909 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 910 if (!desc) { 911 dev_warn(chan2dev(edmac), "not enough descriptors\n"); 912 break; 913 } 914 915 INIT_LIST_HEAD(&desc->tx_list); 916 917 dma_async_tx_descriptor_init(&desc->txd, chan); 918 desc->txd.flags = DMA_CTRL_ACK; 919 desc->txd.tx_submit = ep93xx_dma_tx_submit; 920 921 ep93xx_dma_desc_put(edmac, desc); 922 } 923 924 return i; 925 926 fail_free_irq: 927 free_irq(edmac->irq, edmac); 928 fail_clk_disable: 929 clk_disable(edmac->clk); 930 931 return ret; 932 } 933 934 /** 935 * ep93xx_dma_free_chan_resources - release resources for the channel 936 * @chan: channel 937 * 938 * Function releases all the resources allocated for the given channel. 939 * The channel must be idle when this is called. 940 */ 941 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan) 942 { 943 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 944 struct ep93xx_dma_desc *desc, *d; 945 unsigned long flags; 946 LIST_HEAD(list); 947 948 BUG_ON(!list_empty(&edmac->active)); 949 BUG_ON(!list_empty(&edmac->queue)); 950 951 spin_lock_irqsave(&edmac->lock, flags); 952 edmac->edma->hw_shutdown(edmac); 953 edmac->runtime_addr = 0; 954 edmac->runtime_ctrl = 0; 955 edmac->buffer = 0; 956 list_splice_init(&edmac->free_list, &list); 957 spin_unlock_irqrestore(&edmac->lock, flags); 958 959 list_for_each_entry_safe(desc, d, &list, node) 960 kfree(desc); 961 962 clk_disable(edmac->clk); 963 free_irq(edmac->irq, edmac); 964 } 965 966 /** 967 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation 968 * @chan: channel 969 * @dest: destination bus address 970 * @src: source bus address 971 * @len: size of the transaction 972 * @flags: flags for the descriptor 973 * 974 * Returns a valid DMA descriptor or %NULL in case of failure. 975 */ 976 static struct dma_async_tx_descriptor * 977 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, 978 dma_addr_t src, size_t len, unsigned long flags) 979 { 980 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 981 struct ep93xx_dma_desc *desc, *first; 982 size_t bytes, offset; 983 984 first = NULL; 985 for (offset = 0; offset < len; offset += bytes) { 986 desc = ep93xx_dma_desc_get(edmac); 987 if (!desc) { 988 dev_warn(chan2dev(edmac), "couln't get descriptor\n"); 989 goto fail; 990 } 991 992 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES); 993 994 desc->src_addr = src + offset; 995 desc->dst_addr = dest + offset; 996 desc->size = bytes; 997 998 if (!first) 999 first = desc; 1000 else 1001 list_add_tail(&desc->node, &first->tx_list); 1002 } 1003 1004 first->txd.cookie = -EBUSY; 1005 first->txd.flags = flags; 1006 1007 return &first->txd; 1008 fail: 1009 ep93xx_dma_desc_put(edmac, first); 1010 return NULL; 1011 } 1012 1013 /** 1014 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation 1015 * @chan: channel 1016 * @sgl: list of buffers to transfer 1017 * @sg_len: number of entries in @sgl 1018 * @dir: direction of tha DMA transfer 1019 * @flags: flags for the descriptor 1020 * @context: operation context (ignored) 1021 * 1022 * Returns a valid DMA descriptor or %NULL in case of failure. 1023 */ 1024 static struct dma_async_tx_descriptor * 1025 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1026 unsigned int sg_len, enum dma_transfer_direction dir, 1027 unsigned long flags, void *context) 1028 { 1029 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1030 struct ep93xx_dma_desc *desc, *first; 1031 struct scatterlist *sg; 1032 int i; 1033 1034 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) { 1035 dev_warn(chan2dev(edmac), 1036 "channel was configured with different direction\n"); 1037 return NULL; 1038 } 1039 1040 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) { 1041 dev_warn(chan2dev(edmac), 1042 "channel is already used for cyclic transfers\n"); 1043 return NULL; 1044 } 1045 1046 first = NULL; 1047 for_each_sg(sgl, sg, sg_len, i) { 1048 size_t sg_len = sg_dma_len(sg); 1049 1050 if (sg_len > DMA_MAX_CHAN_BYTES) { 1051 dev_warn(chan2dev(edmac), "too big transfer size %d\n", 1052 sg_len); 1053 goto fail; 1054 } 1055 1056 desc = ep93xx_dma_desc_get(edmac); 1057 if (!desc) { 1058 dev_warn(chan2dev(edmac), "couln't get descriptor\n"); 1059 goto fail; 1060 } 1061 1062 if (dir == DMA_MEM_TO_DEV) { 1063 desc->src_addr = sg_dma_address(sg); 1064 desc->dst_addr = edmac->runtime_addr; 1065 } else { 1066 desc->src_addr = edmac->runtime_addr; 1067 desc->dst_addr = sg_dma_address(sg); 1068 } 1069 desc->size = sg_len; 1070 1071 if (!first) 1072 first = desc; 1073 else 1074 list_add_tail(&desc->node, &first->tx_list); 1075 } 1076 1077 first->txd.cookie = -EBUSY; 1078 first->txd.flags = flags; 1079 1080 return &first->txd; 1081 1082 fail: 1083 ep93xx_dma_desc_put(edmac, first); 1084 return NULL; 1085 } 1086 1087 /** 1088 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation 1089 * @chan: channel 1090 * @dma_addr: DMA mapped address of the buffer 1091 * @buf_len: length of the buffer (in bytes) 1092 * @period_len: length of a single period 1093 * @dir: direction of the operation 1094 * @flags: tx descriptor status flags 1095 * 1096 * Prepares a descriptor for cyclic DMA operation. This means that once the 1097 * descriptor is submitted, we will be submitting in a @period_len sized 1098 * buffers and calling callback once the period has been elapsed. Transfer 1099 * terminates only when client calls dmaengine_terminate_all() for this 1100 * channel. 1101 * 1102 * Returns a valid DMA descriptor or %NULL in case of failure. 1103 */ 1104 static struct dma_async_tx_descriptor * 1105 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, 1106 size_t buf_len, size_t period_len, 1107 enum dma_transfer_direction dir, unsigned long flags) 1108 { 1109 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1110 struct ep93xx_dma_desc *desc, *first; 1111 size_t offset = 0; 1112 1113 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) { 1114 dev_warn(chan2dev(edmac), 1115 "channel was configured with different direction\n"); 1116 return NULL; 1117 } 1118 1119 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) { 1120 dev_warn(chan2dev(edmac), 1121 "channel is already used for cyclic transfers\n"); 1122 return NULL; 1123 } 1124 1125 if (period_len > DMA_MAX_CHAN_BYTES) { 1126 dev_warn(chan2dev(edmac), "too big period length %d\n", 1127 period_len); 1128 return NULL; 1129 } 1130 1131 /* Split the buffer into period size chunks */ 1132 first = NULL; 1133 for (offset = 0; offset < buf_len; offset += period_len) { 1134 desc = ep93xx_dma_desc_get(edmac); 1135 if (!desc) { 1136 dev_warn(chan2dev(edmac), "couln't get descriptor\n"); 1137 goto fail; 1138 } 1139 1140 if (dir == DMA_MEM_TO_DEV) { 1141 desc->src_addr = dma_addr + offset; 1142 desc->dst_addr = edmac->runtime_addr; 1143 } else { 1144 desc->src_addr = edmac->runtime_addr; 1145 desc->dst_addr = dma_addr + offset; 1146 } 1147 1148 desc->size = period_len; 1149 1150 if (!first) 1151 first = desc; 1152 else 1153 list_add_tail(&desc->node, &first->tx_list); 1154 } 1155 1156 first->txd.cookie = -EBUSY; 1157 1158 return &first->txd; 1159 1160 fail: 1161 ep93xx_dma_desc_put(edmac, first); 1162 return NULL; 1163 } 1164 1165 /** 1166 * ep93xx_dma_terminate_all - terminate all transactions 1167 * @edmac: channel 1168 * 1169 * Stops all DMA transactions. All descriptors are put back to the 1170 * @edmac->free_list and callbacks are _not_ called. 1171 */ 1172 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac) 1173 { 1174 struct ep93xx_dma_desc *desc, *_d; 1175 unsigned long flags; 1176 LIST_HEAD(list); 1177 1178 spin_lock_irqsave(&edmac->lock, flags); 1179 /* First we disable and flush the DMA channel */ 1180 edmac->edma->hw_shutdown(edmac); 1181 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags); 1182 list_splice_init(&edmac->active, &list); 1183 list_splice_init(&edmac->queue, &list); 1184 /* 1185 * We then re-enable the channel. This way we can continue submitting 1186 * the descriptors by just calling ->hw_submit() again. 1187 */ 1188 edmac->edma->hw_setup(edmac); 1189 spin_unlock_irqrestore(&edmac->lock, flags); 1190 1191 list_for_each_entry_safe(desc, _d, &list, node) 1192 ep93xx_dma_desc_put(edmac, desc); 1193 1194 return 0; 1195 } 1196 1197 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac, 1198 struct dma_slave_config *config) 1199 { 1200 enum dma_slave_buswidth width; 1201 unsigned long flags; 1202 u32 addr, ctrl; 1203 1204 if (!edmac->edma->m2m) 1205 return -EINVAL; 1206 1207 switch (config->direction) { 1208 case DMA_DEV_TO_MEM: 1209 width = config->src_addr_width; 1210 addr = config->src_addr; 1211 break; 1212 1213 case DMA_MEM_TO_DEV: 1214 width = config->dst_addr_width; 1215 addr = config->dst_addr; 1216 break; 1217 1218 default: 1219 return -EINVAL; 1220 } 1221 1222 switch (width) { 1223 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1224 ctrl = 0; 1225 break; 1226 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1227 ctrl = M2M_CONTROL_PW_16; 1228 break; 1229 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1230 ctrl = M2M_CONTROL_PW_32; 1231 break; 1232 default: 1233 return -EINVAL; 1234 } 1235 1236 spin_lock_irqsave(&edmac->lock, flags); 1237 edmac->runtime_addr = addr; 1238 edmac->runtime_ctrl = ctrl; 1239 spin_unlock_irqrestore(&edmac->lock, flags); 1240 1241 return 0; 1242 } 1243 1244 /** 1245 * ep93xx_dma_control - manipulate all pending operations on a channel 1246 * @chan: channel 1247 * @cmd: control command to perform 1248 * @arg: optional argument 1249 * 1250 * Controls the channel. Function returns %0 in case of success or negative 1251 * error in case of failure. 1252 */ 1253 static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 1254 unsigned long arg) 1255 { 1256 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); 1257 struct dma_slave_config *config; 1258 1259 switch (cmd) { 1260 case DMA_TERMINATE_ALL: 1261 return ep93xx_dma_terminate_all(edmac); 1262 1263 case DMA_SLAVE_CONFIG: 1264 config = (struct dma_slave_config *)arg; 1265 return ep93xx_dma_slave_config(edmac, config); 1266 1267 default: 1268 break; 1269 } 1270 1271 return -ENOSYS; 1272 } 1273 1274 /** 1275 * ep93xx_dma_tx_status - check if a transaction is completed 1276 * @chan: channel 1277 * @cookie: transaction specific cookie 1278 * @state: state of the transaction is stored here if given 1279 * 1280 * This function can be used to query state of a given transaction. 1281 */ 1282 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan, 1283 dma_cookie_t cookie, 1284 struct dma_tx_state *state) 1285 { 1286 return dma_cookie_status(chan, cookie, state); 1287 } 1288 1289 /** 1290 * ep93xx_dma_issue_pending - push pending transactions to the hardware 1291 * @chan: channel 1292 * 1293 * When this function is called, all pending transactions are pushed to the 1294 * hardware and executed. 1295 */ 1296 static void ep93xx_dma_issue_pending(struct dma_chan *chan) 1297 { 1298 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan)); 1299 } 1300 1301 static int __init ep93xx_dma_probe(struct platform_device *pdev) 1302 { 1303 struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev); 1304 struct ep93xx_dma_engine *edma; 1305 struct dma_device *dma_dev; 1306 size_t edma_size; 1307 int ret, i; 1308 1309 edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan); 1310 edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL); 1311 if (!edma) 1312 return -ENOMEM; 1313 1314 dma_dev = &edma->dma_dev; 1315 edma->m2m = platform_get_device_id(pdev)->driver_data; 1316 edma->num_channels = pdata->num_channels; 1317 1318 INIT_LIST_HEAD(&dma_dev->channels); 1319 for (i = 0; i < pdata->num_channels; i++) { 1320 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i]; 1321 struct ep93xx_dma_chan *edmac = &edma->channels[i]; 1322 1323 edmac->chan.device = dma_dev; 1324 edmac->regs = cdata->base; 1325 edmac->irq = cdata->irq; 1326 edmac->edma = edma; 1327 1328 edmac->clk = clk_get(NULL, cdata->name); 1329 if (IS_ERR(edmac->clk)) { 1330 dev_warn(&pdev->dev, "failed to get clock for %s\n", 1331 cdata->name); 1332 continue; 1333 } 1334 1335 spin_lock_init(&edmac->lock); 1336 INIT_LIST_HEAD(&edmac->active); 1337 INIT_LIST_HEAD(&edmac->queue); 1338 INIT_LIST_HEAD(&edmac->free_list); 1339 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet, 1340 (unsigned long)edmac); 1341 1342 list_add_tail(&edmac->chan.device_node, 1343 &dma_dev->channels); 1344 } 1345 1346 dma_cap_zero(dma_dev->cap_mask); 1347 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); 1348 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); 1349 1350 dma_dev->dev = &pdev->dev; 1351 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources; 1352 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources; 1353 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg; 1354 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic; 1355 dma_dev->device_control = ep93xx_dma_control; 1356 dma_dev->device_issue_pending = ep93xx_dma_issue_pending; 1357 dma_dev->device_tx_status = ep93xx_dma_tx_status; 1358 1359 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES); 1360 1361 if (edma->m2m) { 1362 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); 1363 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy; 1364 1365 edma->hw_setup = m2m_hw_setup; 1366 edma->hw_shutdown = m2m_hw_shutdown; 1367 edma->hw_submit = m2m_hw_submit; 1368 edma->hw_interrupt = m2m_hw_interrupt; 1369 } else { 1370 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); 1371 1372 edma->hw_setup = m2p_hw_setup; 1373 edma->hw_shutdown = m2p_hw_shutdown; 1374 edma->hw_submit = m2p_hw_submit; 1375 edma->hw_interrupt = m2p_hw_interrupt; 1376 } 1377 1378 ret = dma_async_device_register(dma_dev); 1379 if (unlikely(ret)) { 1380 for (i = 0; i < edma->num_channels; i++) { 1381 struct ep93xx_dma_chan *edmac = &edma->channels[i]; 1382 if (!IS_ERR_OR_NULL(edmac->clk)) 1383 clk_put(edmac->clk); 1384 } 1385 kfree(edma); 1386 } else { 1387 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n", 1388 edma->m2m ? "M" : "P"); 1389 } 1390 1391 return ret; 1392 } 1393 1394 static struct platform_device_id ep93xx_dma_driver_ids[] = { 1395 { "ep93xx-dma-m2p", 0 }, 1396 { "ep93xx-dma-m2m", 1 }, 1397 { }, 1398 }; 1399 1400 static struct platform_driver ep93xx_dma_driver = { 1401 .driver = { 1402 .name = "ep93xx-dma", 1403 }, 1404 .id_table = ep93xx_dma_driver_ids, 1405 }; 1406 1407 static int __init ep93xx_dma_module_init(void) 1408 { 1409 return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe); 1410 } 1411 subsys_initcall(ep93xx_dma_module_init); 1412 1413 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); 1414 MODULE_DESCRIPTION("EP93xx DMA driver"); 1415 MODULE_LICENSE("GPL"); 1416