xref: /openbmc/linux/drivers/dma/ep93xx_dma.c (revision 2359ccdd)
1 /*
2  * Driver for the Cirrus Logic EP93xx DMA Controller
3  *
4  * Copyright (C) 2011 Mika Westerberg
5  *
6  * DMA M2P implementation is based on the original
7  * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8  *
9  *   Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10  *   Copyright (C) 2006 Applied Data Systems
11  *   Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12  *
13  * This driver is based on dw_dmac and amba-pl08x drivers.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  */
20 
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 
29 #include <linux/platform_data/dma-ep93xx.h>
30 
31 #include "dmaengine.h"
32 
33 /* M2P registers */
34 #define M2P_CONTROL			0x0000
35 #define M2P_CONTROL_STALLINT		BIT(0)
36 #define M2P_CONTROL_NFBINT		BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT	BIT(3)
38 #define M2P_CONTROL_ENABLE		BIT(4)
39 #define M2P_CONTROL_ICE			BIT(6)
40 
41 #define M2P_INTERRUPT			0x0004
42 #define M2P_INTERRUPT_STALL		BIT(0)
43 #define M2P_INTERRUPT_NFB		BIT(1)
44 #define M2P_INTERRUPT_ERROR		BIT(3)
45 
46 #define M2P_PPALLOC			0x0008
47 #define M2P_STATUS			0x000c
48 
49 #define M2P_MAXCNT0			0x0020
50 #define M2P_BASE0			0x0024
51 #define M2P_MAXCNT1			0x0030
52 #define M2P_BASE1			0x0034
53 
54 #define M2P_STATE_IDLE			0
55 #define M2P_STATE_STALL			1
56 #define M2P_STATE_ON			2
57 #define M2P_STATE_NEXT			3
58 
59 /* M2M registers */
60 #define M2M_CONTROL			0x0000
61 #define M2M_CONTROL_DONEINT		BIT(2)
62 #define M2M_CONTROL_ENABLE		BIT(3)
63 #define M2M_CONTROL_START		BIT(4)
64 #define M2M_CONTROL_DAH			BIT(11)
65 #define M2M_CONTROL_SAH			BIT(12)
66 #define M2M_CONTROL_PW_SHIFT		9
67 #define M2M_CONTROL_PW_8		(0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16		(1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32		(2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK		(3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT		13
72 #define M2M_CONTROL_TM_TX		(1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX		(2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT		BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT		22
76 #define M2M_CONTROL_RSS_SSPRX		(1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX		(2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE		(3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK		BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT		25
81 
82 #define M2M_INTERRUPT			0x0004
83 #define M2M_INTERRUPT_MASK		6
84 
85 #define M2M_STATUS			0x000c
86 #define M2M_STATUS_CTL_SHIFT		1
87 #define M2M_STATUS_CTL_IDLE		(0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL		(1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD		(2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR		(3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT		(4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK		(7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT		4
94 #define M2M_STATUS_BUF_NO		(0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON		(1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT		(2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK		(3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE			BIT(6)
99 
100 #define M2M_BCR0			0x0010
101 #define M2M_BCR1			0x0014
102 #define M2M_SAR_BASE0			0x0018
103 #define M2M_SAR_BASE1			0x001c
104 #define M2M_DAR_BASE0			0x002c
105 #define M2M_DAR_BASE1			0x0030
106 
107 #define DMA_MAX_CHAN_BYTES		0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS	32
109 
110 struct ep93xx_dma_engine;
111 
112 /**
113  * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114  * @src_addr: source address of the transaction
115  * @dst_addr: destination address of the transaction
116  * @size: size of the transaction (in bytes)
117  * @complete: this descriptor is completed
118  * @txd: dmaengine API descriptor
119  * @tx_list: list of linked descriptors
120  * @node: link used for putting this into a channel queue
121  */
122 struct ep93xx_dma_desc {
123 	u32				src_addr;
124 	u32				dst_addr;
125 	size_t				size;
126 	bool				complete;
127 	struct dma_async_tx_descriptor	txd;
128 	struct list_head		tx_list;
129 	struct list_head		node;
130 };
131 
132 /**
133  * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134  * @chan: dmaengine API channel
135  * @edma: pointer to to the engine device
136  * @regs: memory mapped registers
137  * @irq: interrupt number of the channel
138  * @clk: clock used by this channel
139  * @tasklet: channel specific tasklet used for callbacks
140  * @lock: lock protecting the fields following
141  * @flags: flags for the channel
142  * @buffer: which buffer to use next (0/1)
143  * @active: flattened chain of descriptors currently being processed
144  * @queue: pending descriptors which are handled next
145  * @free_list: list of free descriptors which can be used
146  * @runtime_addr: physical address currently used as dest/src (M2M only). This
147  *                is set via .device_config before slave operation is
148  *                prepared
149  * @runtime_ctrl: M2M runtime values for the control register.
150  *
151  * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152  * will have slightly different scheme here: @active points to a head of
153  * flattened DMA descriptor chain.
154  *
155  * @queue holds pending transactions. These are linked through the first
156  * descriptor in the chain. When a descriptor is moved to the @active queue,
157  * the first and chained descriptors are flattened into a single list.
158  *
159  * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160  * necessary channel configuration information. For memcpy channels this must
161  * be %NULL.
162  */
163 struct ep93xx_dma_chan {
164 	struct dma_chan			chan;
165 	const struct ep93xx_dma_engine	*edma;
166 	void __iomem			*regs;
167 	int				irq;
168 	struct clk			*clk;
169 	struct tasklet_struct		tasklet;
170 	/* protects the fields following */
171 	spinlock_t			lock;
172 	unsigned long			flags;
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC		0
175 
176 	int				buffer;
177 	struct list_head		active;
178 	struct list_head		queue;
179 	struct list_head		free_list;
180 	u32				runtime_addr;
181 	u32				runtime_ctrl;
182 };
183 
184 /**
185  * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186  * @dma_dev: holds the dmaengine device
187  * @m2m: is this an M2M or M2P device
188  * @hw_setup: method which sets the channel up for operation
189  * @hw_shutdown: shuts the channel down and flushes whatever is left
190  * @hw_submit: pushes active descriptor(s) to the hardware
191  * @hw_interrupt: handle the interrupt
192  * @num_channels: number of channels for this instance
193  * @channels: array of channels
194  *
195  * There is one instance of this struct for the M2P channels and one for the
196  * M2M channels. hw_xxx() methods are used to perform operations which are
197  * different on M2M and M2P channels. These methods are called with channel
198  * lock held and interrupts disabled so they cannot sleep.
199  */
200 struct ep93xx_dma_engine {
201 	struct dma_device	dma_dev;
202 	bool			m2m;
203 	int			(*hw_setup)(struct ep93xx_dma_chan *);
204 	void			(*hw_synchronize)(struct ep93xx_dma_chan *);
205 	void			(*hw_shutdown)(struct ep93xx_dma_chan *);
206 	void			(*hw_submit)(struct ep93xx_dma_chan *);
207 	int			(*hw_interrupt)(struct ep93xx_dma_chan *);
208 #define INTERRUPT_UNKNOWN	0
209 #define INTERRUPT_DONE		1
210 #define INTERRUPT_NEXT_BUFFER	2
211 
212 	size_t			num_channels;
213 	struct ep93xx_dma_chan	channels[];
214 };
215 
216 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
217 {
218 	return &edmac->chan.dev->device;
219 }
220 
221 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
222 {
223 	return container_of(chan, struct ep93xx_dma_chan, chan);
224 }
225 
226 /**
227  * ep93xx_dma_set_active - set new active descriptor chain
228  * @edmac: channel
229  * @desc: head of the new active descriptor chain
230  *
231  * Sets @desc to be the head of the new active descriptor chain. This is the
232  * chain which is processed next. The active list must be empty before calling
233  * this function.
234  *
235  * Called with @edmac->lock held and interrupts disabled.
236  */
237 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
238 				  struct ep93xx_dma_desc *desc)
239 {
240 	BUG_ON(!list_empty(&edmac->active));
241 
242 	list_add_tail(&desc->node, &edmac->active);
243 
244 	/* Flatten the @desc->tx_list chain into @edmac->active list */
245 	while (!list_empty(&desc->tx_list)) {
246 		struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
247 			struct ep93xx_dma_desc, node);
248 
249 		/*
250 		 * We copy the callback parameters from the first descriptor
251 		 * to all the chained descriptors. This way we can call the
252 		 * callback without having to find out the first descriptor in
253 		 * the chain. Useful for cyclic transfers.
254 		 */
255 		d->txd.callback = desc->txd.callback;
256 		d->txd.callback_param = desc->txd.callback_param;
257 
258 		list_move_tail(&d->node, &edmac->active);
259 	}
260 }
261 
262 /* Called with @edmac->lock held and interrupts disabled */
263 static struct ep93xx_dma_desc *
264 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
265 {
266 	return list_first_entry_or_null(&edmac->active,
267 					struct ep93xx_dma_desc, node);
268 }
269 
270 /**
271  * ep93xx_dma_advance_active - advances to the next active descriptor
272  * @edmac: channel
273  *
274  * Function advances active descriptor to the next in the @edmac->active and
275  * returns %true if we still have descriptors in the chain to process.
276  * Otherwise returns %false.
277  *
278  * When the channel is in cyclic mode always returns %true.
279  *
280  * Called with @edmac->lock held and interrupts disabled.
281  */
282 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
283 {
284 	struct ep93xx_dma_desc *desc;
285 
286 	list_rotate_left(&edmac->active);
287 
288 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
289 		return true;
290 
291 	desc = ep93xx_dma_get_active(edmac);
292 	if (!desc)
293 		return false;
294 
295 	/*
296 	 * If txd.cookie is set it means that we are back in the first
297 	 * descriptor in the chain and hence done with it.
298 	 */
299 	return !desc->txd.cookie;
300 }
301 
302 /*
303  * M2P DMA implementation
304  */
305 
306 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
307 {
308 	writel(control, edmac->regs + M2P_CONTROL);
309 	/*
310 	 * EP93xx User's Guide states that we must perform a dummy read after
311 	 * write to the control register.
312 	 */
313 	readl(edmac->regs + M2P_CONTROL);
314 }
315 
316 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
317 {
318 	struct ep93xx_dma_data *data = edmac->chan.private;
319 	u32 control;
320 
321 	writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
322 
323 	control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
324 		| M2P_CONTROL_ENABLE;
325 	m2p_set_control(edmac, control);
326 
327 	edmac->buffer = 0;
328 
329 	return 0;
330 }
331 
332 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
333 {
334 	return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
335 }
336 
337 static void m2p_hw_synchronize(struct ep93xx_dma_chan *edmac)
338 {
339 	unsigned long flags;
340 	u32 control;
341 
342 	spin_lock_irqsave(&edmac->lock, flags);
343 	control = readl(edmac->regs + M2P_CONTROL);
344 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
345 	m2p_set_control(edmac, control);
346 	spin_unlock_irqrestore(&edmac->lock, flags);
347 
348 	while (m2p_channel_state(edmac) >= M2P_STATE_ON)
349 		schedule();
350 }
351 
352 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
353 {
354 	m2p_set_control(edmac, 0);
355 
356 	while (m2p_channel_state(edmac) != M2P_STATE_IDLE)
357 		dev_warn(chan2dev(edmac), "M2P: Not yet IDLE\n");
358 }
359 
360 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
361 {
362 	struct ep93xx_dma_desc *desc;
363 	u32 bus_addr;
364 
365 	desc = ep93xx_dma_get_active(edmac);
366 	if (!desc) {
367 		dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
368 		return;
369 	}
370 
371 	if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
372 		bus_addr = desc->src_addr;
373 	else
374 		bus_addr = desc->dst_addr;
375 
376 	if (edmac->buffer == 0) {
377 		writel(desc->size, edmac->regs + M2P_MAXCNT0);
378 		writel(bus_addr, edmac->regs + M2P_BASE0);
379 	} else {
380 		writel(desc->size, edmac->regs + M2P_MAXCNT1);
381 		writel(bus_addr, edmac->regs + M2P_BASE1);
382 	}
383 
384 	edmac->buffer ^= 1;
385 }
386 
387 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
388 {
389 	u32 control = readl(edmac->regs + M2P_CONTROL);
390 
391 	m2p_fill_desc(edmac);
392 	control |= M2P_CONTROL_STALLINT;
393 
394 	if (ep93xx_dma_advance_active(edmac)) {
395 		m2p_fill_desc(edmac);
396 		control |= M2P_CONTROL_NFBINT;
397 	}
398 
399 	m2p_set_control(edmac, control);
400 }
401 
402 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
403 {
404 	u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
405 	u32 control;
406 
407 	if (irq_status & M2P_INTERRUPT_ERROR) {
408 		struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
409 
410 		/* Clear the error interrupt */
411 		writel(1, edmac->regs + M2P_INTERRUPT);
412 
413 		/*
414 		 * It seems that there is no easy way of reporting errors back
415 		 * to client so we just report the error here and continue as
416 		 * usual.
417 		 *
418 		 * Revisit this when there is a mechanism to report back the
419 		 * errors.
420 		 */
421 		dev_err(chan2dev(edmac),
422 			"DMA transfer failed! Details:\n"
423 			"\tcookie	: %d\n"
424 			"\tsrc_addr	: 0x%08x\n"
425 			"\tdst_addr	: 0x%08x\n"
426 			"\tsize		: %zu\n",
427 			desc->txd.cookie, desc->src_addr, desc->dst_addr,
428 			desc->size);
429 	}
430 
431 	/*
432 	 * Even latest E2 silicon revision sometimes assert STALL interrupt
433 	 * instead of NFB. Therefore we treat them equally, basing on the
434 	 * amount of data we still have to transfer.
435 	 */
436 	if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
437 		return INTERRUPT_UNKNOWN;
438 
439 	if (ep93xx_dma_advance_active(edmac)) {
440 		m2p_fill_desc(edmac);
441 		return INTERRUPT_NEXT_BUFFER;
442 	}
443 
444 	/* Disable interrupts */
445 	control = readl(edmac->regs + M2P_CONTROL);
446 	control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
447 	m2p_set_control(edmac, control);
448 
449 	return INTERRUPT_DONE;
450 }
451 
452 /*
453  * M2M DMA implementation
454  */
455 
456 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
457 {
458 	const struct ep93xx_dma_data *data = edmac->chan.private;
459 	u32 control = 0;
460 
461 	if (!data) {
462 		/* This is memcpy channel, nothing to configure */
463 		writel(control, edmac->regs + M2M_CONTROL);
464 		return 0;
465 	}
466 
467 	switch (data->port) {
468 	case EP93XX_DMA_SSP:
469 		/*
470 		 * This was found via experimenting - anything less than 5
471 		 * causes the channel to perform only a partial transfer which
472 		 * leads to problems since we don't get DONE interrupt then.
473 		 */
474 		control = (5 << M2M_CONTROL_PWSC_SHIFT);
475 		control |= M2M_CONTROL_NO_HDSK;
476 
477 		if (data->direction == DMA_MEM_TO_DEV) {
478 			control |= M2M_CONTROL_DAH;
479 			control |= M2M_CONTROL_TM_TX;
480 			control |= M2M_CONTROL_RSS_SSPTX;
481 		} else {
482 			control |= M2M_CONTROL_SAH;
483 			control |= M2M_CONTROL_TM_RX;
484 			control |= M2M_CONTROL_RSS_SSPRX;
485 		}
486 		break;
487 
488 	case EP93XX_DMA_IDE:
489 		/*
490 		 * This IDE part is totally untested. Values below are taken
491 		 * from the EP93xx Users's Guide and might not be correct.
492 		 */
493 		if (data->direction == DMA_MEM_TO_DEV) {
494 			/* Worst case from the UG */
495 			control = (3 << M2M_CONTROL_PWSC_SHIFT);
496 			control |= M2M_CONTROL_DAH;
497 			control |= M2M_CONTROL_TM_TX;
498 		} else {
499 			control = (2 << M2M_CONTROL_PWSC_SHIFT);
500 			control |= M2M_CONTROL_SAH;
501 			control |= M2M_CONTROL_TM_RX;
502 		}
503 
504 		control |= M2M_CONTROL_NO_HDSK;
505 		control |= M2M_CONTROL_RSS_IDE;
506 		control |= M2M_CONTROL_PW_16;
507 		break;
508 
509 	default:
510 		return -EINVAL;
511 	}
512 
513 	writel(control, edmac->regs + M2M_CONTROL);
514 	return 0;
515 }
516 
517 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
518 {
519 	/* Just disable the channel */
520 	writel(0, edmac->regs + M2M_CONTROL);
521 }
522 
523 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
524 {
525 	struct ep93xx_dma_desc *desc;
526 
527 	desc = ep93xx_dma_get_active(edmac);
528 	if (!desc) {
529 		dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
530 		return;
531 	}
532 
533 	if (edmac->buffer == 0) {
534 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
535 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
536 		writel(desc->size, edmac->regs + M2M_BCR0);
537 	} else {
538 		writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
539 		writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
540 		writel(desc->size, edmac->regs + M2M_BCR1);
541 	}
542 
543 	edmac->buffer ^= 1;
544 }
545 
546 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
547 {
548 	struct ep93xx_dma_data *data = edmac->chan.private;
549 	u32 control = readl(edmac->regs + M2M_CONTROL);
550 
551 	/*
552 	 * Since we allow clients to configure PW (peripheral width) we always
553 	 * clear PW bits here and then set them according what is given in
554 	 * the runtime configuration.
555 	 */
556 	control &= ~M2M_CONTROL_PW_MASK;
557 	control |= edmac->runtime_ctrl;
558 
559 	m2m_fill_desc(edmac);
560 	control |= M2M_CONTROL_DONEINT;
561 
562 	if (ep93xx_dma_advance_active(edmac)) {
563 		m2m_fill_desc(edmac);
564 		control |= M2M_CONTROL_NFBINT;
565 	}
566 
567 	/*
568 	 * Now we can finally enable the channel. For M2M channel this must be
569 	 * done _after_ the BCRx registers are programmed.
570 	 */
571 	control |= M2M_CONTROL_ENABLE;
572 	writel(control, edmac->regs + M2M_CONTROL);
573 
574 	if (!data) {
575 		/*
576 		 * For memcpy channels the software trigger must be asserted
577 		 * in order to start the memcpy operation.
578 		 */
579 		control |= M2M_CONTROL_START;
580 		writel(control, edmac->regs + M2M_CONTROL);
581 	}
582 }
583 
584 /*
585  * According to EP93xx User's Guide, we should receive DONE interrupt when all
586  * M2M DMA controller transactions complete normally. This is not always the
587  * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
588  * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
589  * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
590  * In effect, disabling the channel when only DONE bit is set could stop
591  * currently running DMA transfer. To avoid this, we use Buffer FSM and
592  * Control FSM to check current state of DMA channel.
593  */
594 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
595 {
596 	u32 status = readl(edmac->regs + M2M_STATUS);
597 	u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
598 	u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
599 	bool done = status & M2M_STATUS_DONE;
600 	bool last_done;
601 	u32 control;
602 	struct ep93xx_dma_desc *desc;
603 
604 	/* Accept only DONE and NFB interrupts */
605 	if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
606 		return INTERRUPT_UNKNOWN;
607 
608 	if (done) {
609 		/* Clear the DONE bit */
610 		writel(0, edmac->regs + M2M_INTERRUPT);
611 	}
612 
613 	/*
614 	 * Check whether we are done with descriptors or not. This, together
615 	 * with DMA channel state, determines action to take in interrupt.
616 	 */
617 	desc = ep93xx_dma_get_active(edmac);
618 	last_done = !desc || desc->txd.cookie;
619 
620 	/*
621 	 * Use M2M DMA Buffer FSM and Control FSM to check current state of
622 	 * DMA channel. Using DONE and NFB bits from channel status register
623 	 * or bits from channel interrupt register is not reliable.
624 	 */
625 	if (!last_done &&
626 	    (buf_fsm == M2M_STATUS_BUF_NO ||
627 	     buf_fsm == M2M_STATUS_BUF_ON)) {
628 		/*
629 		 * Two buffers are ready for update when Buffer FSM is in
630 		 * DMA_NO_BUF state. Only one buffer can be prepared without
631 		 * disabling the channel or polling the DONE bit.
632 		 * To simplify things, always prepare only one buffer.
633 		 */
634 		if (ep93xx_dma_advance_active(edmac)) {
635 			m2m_fill_desc(edmac);
636 			if (done && !edmac->chan.private) {
637 				/* Software trigger for memcpy channel */
638 				control = readl(edmac->regs + M2M_CONTROL);
639 				control |= M2M_CONTROL_START;
640 				writel(control, edmac->regs + M2M_CONTROL);
641 			}
642 			return INTERRUPT_NEXT_BUFFER;
643 		} else {
644 			last_done = true;
645 		}
646 	}
647 
648 	/*
649 	 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
650 	 * and Control FSM is in DMA_STALL state.
651 	 */
652 	if (last_done &&
653 	    buf_fsm == M2M_STATUS_BUF_NO &&
654 	    ctl_fsm == M2M_STATUS_CTL_STALL) {
655 		/* Disable interrupts and the channel */
656 		control = readl(edmac->regs + M2M_CONTROL);
657 		control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
658 			    | M2M_CONTROL_ENABLE);
659 		writel(control, edmac->regs + M2M_CONTROL);
660 		return INTERRUPT_DONE;
661 	}
662 
663 	/*
664 	 * Nothing to do this time.
665 	 */
666 	return INTERRUPT_NEXT_BUFFER;
667 }
668 
669 /*
670  * DMA engine API implementation
671  */
672 
673 static struct ep93xx_dma_desc *
674 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
675 {
676 	struct ep93xx_dma_desc *desc, *_desc;
677 	struct ep93xx_dma_desc *ret = NULL;
678 	unsigned long flags;
679 
680 	spin_lock_irqsave(&edmac->lock, flags);
681 	list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
682 		if (async_tx_test_ack(&desc->txd)) {
683 			list_del_init(&desc->node);
684 
685 			/* Re-initialize the descriptor */
686 			desc->src_addr = 0;
687 			desc->dst_addr = 0;
688 			desc->size = 0;
689 			desc->complete = false;
690 			desc->txd.cookie = 0;
691 			desc->txd.callback = NULL;
692 			desc->txd.callback_param = NULL;
693 
694 			ret = desc;
695 			break;
696 		}
697 	}
698 	spin_unlock_irqrestore(&edmac->lock, flags);
699 	return ret;
700 }
701 
702 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
703 				struct ep93xx_dma_desc *desc)
704 {
705 	if (desc) {
706 		unsigned long flags;
707 
708 		spin_lock_irqsave(&edmac->lock, flags);
709 		list_splice_init(&desc->tx_list, &edmac->free_list);
710 		list_add(&desc->node, &edmac->free_list);
711 		spin_unlock_irqrestore(&edmac->lock, flags);
712 	}
713 }
714 
715 /**
716  * ep93xx_dma_advance_work - start processing the next pending transaction
717  * @edmac: channel
718  *
719  * If we have pending transactions queued and we are currently idling, this
720  * function takes the next queued transaction from the @edmac->queue and
721  * pushes it to the hardware for execution.
722  */
723 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
724 {
725 	struct ep93xx_dma_desc *new;
726 	unsigned long flags;
727 
728 	spin_lock_irqsave(&edmac->lock, flags);
729 	if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
730 		spin_unlock_irqrestore(&edmac->lock, flags);
731 		return;
732 	}
733 
734 	/* Take the next descriptor from the pending queue */
735 	new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
736 	list_del_init(&new->node);
737 
738 	ep93xx_dma_set_active(edmac, new);
739 
740 	/* Push it to the hardware */
741 	edmac->edma->hw_submit(edmac);
742 	spin_unlock_irqrestore(&edmac->lock, flags);
743 }
744 
745 static void ep93xx_dma_tasklet(unsigned long data)
746 {
747 	struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
748 	struct ep93xx_dma_desc *desc, *d;
749 	struct dmaengine_desc_callback cb;
750 	LIST_HEAD(list);
751 
752 	memset(&cb, 0, sizeof(cb));
753 	spin_lock_irq(&edmac->lock);
754 	/*
755 	 * If dma_terminate_all() was called before we get to run, the active
756 	 * list has become empty. If that happens we aren't supposed to do
757 	 * anything more than call ep93xx_dma_advance_work().
758 	 */
759 	desc = ep93xx_dma_get_active(edmac);
760 	if (desc) {
761 		if (desc->complete) {
762 			/* mark descriptor complete for non cyclic case only */
763 			if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
764 				dma_cookie_complete(&desc->txd);
765 			list_splice_init(&edmac->active, &list);
766 		}
767 		dmaengine_desc_get_callback(&desc->txd, &cb);
768 	}
769 	spin_unlock_irq(&edmac->lock);
770 
771 	/* Pick up the next descriptor from the queue */
772 	ep93xx_dma_advance_work(edmac);
773 
774 	/* Now we can release all the chained descriptors */
775 	list_for_each_entry_safe(desc, d, &list, node) {
776 		dma_descriptor_unmap(&desc->txd);
777 		ep93xx_dma_desc_put(edmac, desc);
778 	}
779 
780 	dmaengine_desc_callback_invoke(&cb, NULL);
781 }
782 
783 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
784 {
785 	struct ep93xx_dma_chan *edmac = dev_id;
786 	struct ep93xx_dma_desc *desc;
787 	irqreturn_t ret = IRQ_HANDLED;
788 
789 	spin_lock(&edmac->lock);
790 
791 	desc = ep93xx_dma_get_active(edmac);
792 	if (!desc) {
793 		dev_warn(chan2dev(edmac),
794 			 "got interrupt while active list is empty\n");
795 		spin_unlock(&edmac->lock);
796 		return IRQ_NONE;
797 	}
798 
799 	switch (edmac->edma->hw_interrupt(edmac)) {
800 	case INTERRUPT_DONE:
801 		desc->complete = true;
802 		tasklet_schedule(&edmac->tasklet);
803 		break;
804 
805 	case INTERRUPT_NEXT_BUFFER:
806 		if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
807 			tasklet_schedule(&edmac->tasklet);
808 		break;
809 
810 	default:
811 		dev_warn(chan2dev(edmac), "unknown interrupt!\n");
812 		ret = IRQ_NONE;
813 		break;
814 	}
815 
816 	spin_unlock(&edmac->lock);
817 	return ret;
818 }
819 
820 /**
821  * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
822  * @tx: descriptor to be executed
823  *
824  * Function will execute given descriptor on the hardware or if the hardware
825  * is busy, queue the descriptor to be executed later on. Returns cookie which
826  * can be used to poll the status of the descriptor.
827  */
828 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
829 {
830 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
831 	struct ep93xx_dma_desc *desc;
832 	dma_cookie_t cookie;
833 	unsigned long flags;
834 
835 	spin_lock_irqsave(&edmac->lock, flags);
836 	cookie = dma_cookie_assign(tx);
837 
838 	desc = container_of(tx, struct ep93xx_dma_desc, txd);
839 
840 	/*
841 	 * If nothing is currently prosessed, we push this descriptor
842 	 * directly to the hardware. Otherwise we put the descriptor
843 	 * to the pending queue.
844 	 */
845 	if (list_empty(&edmac->active)) {
846 		ep93xx_dma_set_active(edmac, desc);
847 		edmac->edma->hw_submit(edmac);
848 	} else {
849 		list_add_tail(&desc->node, &edmac->queue);
850 	}
851 
852 	spin_unlock_irqrestore(&edmac->lock, flags);
853 	return cookie;
854 }
855 
856 /**
857  * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
858  * @chan: channel to allocate resources
859  *
860  * Function allocates necessary resources for the given DMA channel and
861  * returns number of allocated descriptors for the channel. Negative errno
862  * is returned in case of failure.
863  */
864 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
865 {
866 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
867 	struct ep93xx_dma_data *data = chan->private;
868 	const char *name = dma_chan_name(chan);
869 	int ret, i;
870 
871 	/* Sanity check the channel parameters */
872 	if (!edmac->edma->m2m) {
873 		if (!data)
874 			return -EINVAL;
875 		if (data->port < EP93XX_DMA_I2S1 ||
876 		    data->port > EP93XX_DMA_IRDA)
877 			return -EINVAL;
878 		if (data->direction != ep93xx_dma_chan_direction(chan))
879 			return -EINVAL;
880 	} else {
881 		if (data) {
882 			switch (data->port) {
883 			case EP93XX_DMA_SSP:
884 			case EP93XX_DMA_IDE:
885 				if (!is_slave_direction(data->direction))
886 					return -EINVAL;
887 				break;
888 			default:
889 				return -EINVAL;
890 			}
891 		}
892 	}
893 
894 	if (data && data->name)
895 		name = data->name;
896 
897 	ret = clk_enable(edmac->clk);
898 	if (ret)
899 		return ret;
900 
901 	ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
902 	if (ret)
903 		goto fail_clk_disable;
904 
905 	spin_lock_irq(&edmac->lock);
906 	dma_cookie_init(&edmac->chan);
907 	ret = edmac->edma->hw_setup(edmac);
908 	spin_unlock_irq(&edmac->lock);
909 
910 	if (ret)
911 		goto fail_free_irq;
912 
913 	for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
914 		struct ep93xx_dma_desc *desc;
915 
916 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
917 		if (!desc) {
918 			dev_warn(chan2dev(edmac), "not enough descriptors\n");
919 			break;
920 		}
921 
922 		INIT_LIST_HEAD(&desc->tx_list);
923 
924 		dma_async_tx_descriptor_init(&desc->txd, chan);
925 		desc->txd.flags = DMA_CTRL_ACK;
926 		desc->txd.tx_submit = ep93xx_dma_tx_submit;
927 
928 		ep93xx_dma_desc_put(edmac, desc);
929 	}
930 
931 	return i;
932 
933 fail_free_irq:
934 	free_irq(edmac->irq, edmac);
935 fail_clk_disable:
936 	clk_disable(edmac->clk);
937 
938 	return ret;
939 }
940 
941 /**
942  * ep93xx_dma_free_chan_resources - release resources for the channel
943  * @chan: channel
944  *
945  * Function releases all the resources allocated for the given channel.
946  * The channel must be idle when this is called.
947  */
948 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
949 {
950 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
951 	struct ep93xx_dma_desc *desc, *d;
952 	unsigned long flags;
953 	LIST_HEAD(list);
954 
955 	BUG_ON(!list_empty(&edmac->active));
956 	BUG_ON(!list_empty(&edmac->queue));
957 
958 	spin_lock_irqsave(&edmac->lock, flags);
959 	edmac->edma->hw_shutdown(edmac);
960 	edmac->runtime_addr = 0;
961 	edmac->runtime_ctrl = 0;
962 	edmac->buffer = 0;
963 	list_splice_init(&edmac->free_list, &list);
964 	spin_unlock_irqrestore(&edmac->lock, flags);
965 
966 	list_for_each_entry_safe(desc, d, &list, node)
967 		kfree(desc);
968 
969 	clk_disable(edmac->clk);
970 	free_irq(edmac->irq, edmac);
971 }
972 
973 /**
974  * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
975  * @chan: channel
976  * @dest: destination bus address
977  * @src: source bus address
978  * @len: size of the transaction
979  * @flags: flags for the descriptor
980  *
981  * Returns a valid DMA descriptor or %NULL in case of failure.
982  */
983 static struct dma_async_tx_descriptor *
984 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
985 			   dma_addr_t src, size_t len, unsigned long flags)
986 {
987 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
988 	struct ep93xx_dma_desc *desc, *first;
989 	size_t bytes, offset;
990 
991 	first = NULL;
992 	for (offset = 0; offset < len; offset += bytes) {
993 		desc = ep93xx_dma_desc_get(edmac);
994 		if (!desc) {
995 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
996 			goto fail;
997 		}
998 
999 		bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
1000 
1001 		desc->src_addr = src + offset;
1002 		desc->dst_addr = dest + offset;
1003 		desc->size = bytes;
1004 
1005 		if (!first)
1006 			first = desc;
1007 		else
1008 			list_add_tail(&desc->node, &first->tx_list);
1009 	}
1010 
1011 	first->txd.cookie = -EBUSY;
1012 	first->txd.flags = flags;
1013 
1014 	return &first->txd;
1015 fail:
1016 	ep93xx_dma_desc_put(edmac, first);
1017 	return NULL;
1018 }
1019 
1020 /**
1021  * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1022  * @chan: channel
1023  * @sgl: list of buffers to transfer
1024  * @sg_len: number of entries in @sgl
1025  * @dir: direction of tha DMA transfer
1026  * @flags: flags for the descriptor
1027  * @context: operation context (ignored)
1028  *
1029  * Returns a valid DMA descriptor or %NULL in case of failure.
1030  */
1031 static struct dma_async_tx_descriptor *
1032 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1033 			 unsigned int sg_len, enum dma_transfer_direction dir,
1034 			 unsigned long flags, void *context)
1035 {
1036 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1037 	struct ep93xx_dma_desc *desc, *first;
1038 	struct scatterlist *sg;
1039 	int i;
1040 
1041 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1042 		dev_warn(chan2dev(edmac),
1043 			 "channel was configured with different direction\n");
1044 		return NULL;
1045 	}
1046 
1047 	if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1048 		dev_warn(chan2dev(edmac),
1049 			 "channel is already used for cyclic transfers\n");
1050 		return NULL;
1051 	}
1052 
1053 	first = NULL;
1054 	for_each_sg(sgl, sg, sg_len, i) {
1055 		size_t len = sg_dma_len(sg);
1056 
1057 		if (len > DMA_MAX_CHAN_BYTES) {
1058 			dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
1059 				 len);
1060 			goto fail;
1061 		}
1062 
1063 		desc = ep93xx_dma_desc_get(edmac);
1064 		if (!desc) {
1065 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1066 			goto fail;
1067 		}
1068 
1069 		if (dir == DMA_MEM_TO_DEV) {
1070 			desc->src_addr = sg_dma_address(sg);
1071 			desc->dst_addr = edmac->runtime_addr;
1072 		} else {
1073 			desc->src_addr = edmac->runtime_addr;
1074 			desc->dst_addr = sg_dma_address(sg);
1075 		}
1076 		desc->size = len;
1077 
1078 		if (!first)
1079 			first = desc;
1080 		else
1081 			list_add_tail(&desc->node, &first->tx_list);
1082 	}
1083 
1084 	first->txd.cookie = -EBUSY;
1085 	first->txd.flags = flags;
1086 
1087 	return &first->txd;
1088 
1089 fail:
1090 	ep93xx_dma_desc_put(edmac, first);
1091 	return NULL;
1092 }
1093 
1094 /**
1095  * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1096  * @chan: channel
1097  * @dma_addr: DMA mapped address of the buffer
1098  * @buf_len: length of the buffer (in bytes)
1099  * @period_len: length of a single period
1100  * @dir: direction of the operation
1101  * @flags: tx descriptor status flags
1102  *
1103  * Prepares a descriptor for cyclic DMA operation. This means that once the
1104  * descriptor is submitted, we will be submitting in a @period_len sized
1105  * buffers and calling callback once the period has been elapsed. Transfer
1106  * terminates only when client calls dmaengine_terminate_all() for this
1107  * channel.
1108  *
1109  * Returns a valid DMA descriptor or %NULL in case of failure.
1110  */
1111 static struct dma_async_tx_descriptor *
1112 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1113 			   size_t buf_len, size_t period_len,
1114 			   enum dma_transfer_direction dir, unsigned long flags)
1115 {
1116 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1117 	struct ep93xx_dma_desc *desc, *first;
1118 	size_t offset = 0;
1119 
1120 	if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1121 		dev_warn(chan2dev(edmac),
1122 			 "channel was configured with different direction\n");
1123 		return NULL;
1124 	}
1125 
1126 	if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1127 		dev_warn(chan2dev(edmac),
1128 			 "channel is already used for cyclic transfers\n");
1129 		return NULL;
1130 	}
1131 
1132 	if (period_len > DMA_MAX_CHAN_BYTES) {
1133 		dev_warn(chan2dev(edmac), "too big period length %zu\n",
1134 			 period_len);
1135 		return NULL;
1136 	}
1137 
1138 	/* Split the buffer into period size chunks */
1139 	first = NULL;
1140 	for (offset = 0; offset < buf_len; offset += period_len) {
1141 		desc = ep93xx_dma_desc_get(edmac);
1142 		if (!desc) {
1143 			dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1144 			goto fail;
1145 		}
1146 
1147 		if (dir == DMA_MEM_TO_DEV) {
1148 			desc->src_addr = dma_addr + offset;
1149 			desc->dst_addr = edmac->runtime_addr;
1150 		} else {
1151 			desc->src_addr = edmac->runtime_addr;
1152 			desc->dst_addr = dma_addr + offset;
1153 		}
1154 
1155 		desc->size = period_len;
1156 
1157 		if (!first)
1158 			first = desc;
1159 		else
1160 			list_add_tail(&desc->node, &first->tx_list);
1161 	}
1162 
1163 	first->txd.cookie = -EBUSY;
1164 
1165 	return &first->txd;
1166 
1167 fail:
1168 	ep93xx_dma_desc_put(edmac, first);
1169 	return NULL;
1170 }
1171 
1172 /**
1173  * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
1174  * current context.
1175  * @chan: channel
1176  *
1177  * Synchronizes the DMA channel termination to the current context. When this
1178  * function returns it is guaranteed that all transfers for previously issued
1179  * descriptors have stopped and and it is safe to free the memory associated
1180  * with them. Furthermore it is guaranteed that all complete callback functions
1181  * for a previously submitted descriptor have finished running and it is safe to
1182  * free resources accessed from within the complete callbacks.
1183  */
1184 static void ep93xx_dma_synchronize(struct dma_chan *chan)
1185 {
1186 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1187 
1188 	if (edmac->edma->hw_synchronize)
1189 		edmac->edma->hw_synchronize(edmac);
1190 }
1191 
1192 /**
1193  * ep93xx_dma_terminate_all - terminate all transactions
1194  * @chan: channel
1195  *
1196  * Stops all DMA transactions. All descriptors are put back to the
1197  * @edmac->free_list and callbacks are _not_ called.
1198  */
1199 static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1200 {
1201 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1202 	struct ep93xx_dma_desc *desc, *_d;
1203 	unsigned long flags;
1204 	LIST_HEAD(list);
1205 
1206 	spin_lock_irqsave(&edmac->lock, flags);
1207 	/* First we disable and flush the DMA channel */
1208 	edmac->edma->hw_shutdown(edmac);
1209 	clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1210 	list_splice_init(&edmac->active, &list);
1211 	list_splice_init(&edmac->queue, &list);
1212 	/*
1213 	 * We then re-enable the channel. This way we can continue submitting
1214 	 * the descriptors by just calling ->hw_submit() again.
1215 	 */
1216 	edmac->edma->hw_setup(edmac);
1217 	spin_unlock_irqrestore(&edmac->lock, flags);
1218 
1219 	list_for_each_entry_safe(desc, _d, &list, node)
1220 		ep93xx_dma_desc_put(edmac, desc);
1221 
1222 	return 0;
1223 }
1224 
1225 static int ep93xx_dma_slave_config(struct dma_chan *chan,
1226 				   struct dma_slave_config *config)
1227 {
1228 	struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1229 	enum dma_slave_buswidth width;
1230 	unsigned long flags;
1231 	u32 addr, ctrl;
1232 
1233 	if (!edmac->edma->m2m)
1234 		return -EINVAL;
1235 
1236 	switch (config->direction) {
1237 	case DMA_DEV_TO_MEM:
1238 		width = config->src_addr_width;
1239 		addr = config->src_addr;
1240 		break;
1241 
1242 	case DMA_MEM_TO_DEV:
1243 		width = config->dst_addr_width;
1244 		addr = config->dst_addr;
1245 		break;
1246 
1247 	default:
1248 		return -EINVAL;
1249 	}
1250 
1251 	switch (width) {
1252 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1253 		ctrl = 0;
1254 		break;
1255 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1256 		ctrl = M2M_CONTROL_PW_16;
1257 		break;
1258 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1259 		ctrl = M2M_CONTROL_PW_32;
1260 		break;
1261 	default:
1262 		return -EINVAL;
1263 	}
1264 
1265 	spin_lock_irqsave(&edmac->lock, flags);
1266 	edmac->runtime_addr = addr;
1267 	edmac->runtime_ctrl = ctrl;
1268 	spin_unlock_irqrestore(&edmac->lock, flags);
1269 
1270 	return 0;
1271 }
1272 
1273 /**
1274  * ep93xx_dma_tx_status - check if a transaction is completed
1275  * @chan: channel
1276  * @cookie: transaction specific cookie
1277  * @state: state of the transaction is stored here if given
1278  *
1279  * This function can be used to query state of a given transaction.
1280  */
1281 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1282 					    dma_cookie_t cookie,
1283 					    struct dma_tx_state *state)
1284 {
1285 	return dma_cookie_status(chan, cookie, state);
1286 }
1287 
1288 /**
1289  * ep93xx_dma_issue_pending - push pending transactions to the hardware
1290  * @chan: channel
1291  *
1292  * When this function is called, all pending transactions are pushed to the
1293  * hardware and executed.
1294  */
1295 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1296 {
1297 	ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1298 }
1299 
1300 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1301 {
1302 	struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1303 	struct ep93xx_dma_engine *edma;
1304 	struct dma_device *dma_dev;
1305 	size_t edma_size;
1306 	int ret, i;
1307 
1308 	edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1309 	edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1310 	if (!edma)
1311 		return -ENOMEM;
1312 
1313 	dma_dev = &edma->dma_dev;
1314 	edma->m2m = platform_get_device_id(pdev)->driver_data;
1315 	edma->num_channels = pdata->num_channels;
1316 
1317 	INIT_LIST_HEAD(&dma_dev->channels);
1318 	for (i = 0; i < pdata->num_channels; i++) {
1319 		const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1320 		struct ep93xx_dma_chan *edmac = &edma->channels[i];
1321 
1322 		edmac->chan.device = dma_dev;
1323 		edmac->regs = cdata->base;
1324 		edmac->irq = cdata->irq;
1325 		edmac->edma = edma;
1326 
1327 		edmac->clk = clk_get(NULL, cdata->name);
1328 		if (IS_ERR(edmac->clk)) {
1329 			dev_warn(&pdev->dev, "failed to get clock for %s\n",
1330 				 cdata->name);
1331 			continue;
1332 		}
1333 
1334 		spin_lock_init(&edmac->lock);
1335 		INIT_LIST_HEAD(&edmac->active);
1336 		INIT_LIST_HEAD(&edmac->queue);
1337 		INIT_LIST_HEAD(&edmac->free_list);
1338 		tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1339 			     (unsigned long)edmac);
1340 
1341 		list_add_tail(&edmac->chan.device_node,
1342 			      &dma_dev->channels);
1343 	}
1344 
1345 	dma_cap_zero(dma_dev->cap_mask);
1346 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1347 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1348 
1349 	dma_dev->dev = &pdev->dev;
1350 	dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1351 	dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1352 	dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1353 	dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1354 	dma_dev->device_config = ep93xx_dma_slave_config;
1355 	dma_dev->device_synchronize = ep93xx_dma_synchronize;
1356 	dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1357 	dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1358 	dma_dev->device_tx_status = ep93xx_dma_tx_status;
1359 
1360 	dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1361 
1362 	if (edma->m2m) {
1363 		dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1364 		dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1365 
1366 		edma->hw_setup = m2m_hw_setup;
1367 		edma->hw_shutdown = m2m_hw_shutdown;
1368 		edma->hw_submit = m2m_hw_submit;
1369 		edma->hw_interrupt = m2m_hw_interrupt;
1370 	} else {
1371 		dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1372 
1373 		edma->hw_synchronize = m2p_hw_synchronize;
1374 		edma->hw_setup = m2p_hw_setup;
1375 		edma->hw_shutdown = m2p_hw_shutdown;
1376 		edma->hw_submit = m2p_hw_submit;
1377 		edma->hw_interrupt = m2p_hw_interrupt;
1378 	}
1379 
1380 	ret = dma_async_device_register(dma_dev);
1381 	if (unlikely(ret)) {
1382 		for (i = 0; i < edma->num_channels; i++) {
1383 			struct ep93xx_dma_chan *edmac = &edma->channels[i];
1384 			if (!IS_ERR_OR_NULL(edmac->clk))
1385 				clk_put(edmac->clk);
1386 		}
1387 		kfree(edma);
1388 	} else {
1389 		dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1390 			 edma->m2m ? "M" : "P");
1391 	}
1392 
1393 	return ret;
1394 }
1395 
1396 static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1397 	{ "ep93xx-dma-m2p", 0 },
1398 	{ "ep93xx-dma-m2m", 1 },
1399 	{ },
1400 };
1401 
1402 static struct platform_driver ep93xx_dma_driver = {
1403 	.driver		= {
1404 		.name	= "ep93xx-dma",
1405 	},
1406 	.id_table	= ep93xx_dma_driver_ids,
1407 };
1408 
1409 static int __init ep93xx_dma_module_init(void)
1410 {
1411 	return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1412 }
1413 subsys_initcall(ep93xx_dma_module_init);
1414 
1415 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1416 MODULE_DESCRIPTION("EP93xx DMA driver");
1417 MODULE_LICENSE("GPL");
1418