xref: /openbmc/linux/drivers/dma/dw-edma/dw-edma-core.c (revision 56ea353ea49ad21dd4c14e7baa235493ec27e766)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
4  * Synopsys DesignWare eDMA core driver
5  *
6  * Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/dmaengine.h>
13 #include <linux/err.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/dma/edma.h>
17 #include <linux/dma-mapping.h>
18 
19 #include "dw-edma-core.h"
20 #include "dw-edma-v0-core.h"
21 #include "../dmaengine.h"
22 #include "../virt-dma.h"
23 
24 static inline
25 struct device *dchan2dev(struct dma_chan *dchan)
26 {
27 	return &dchan->dev->device;
28 }
29 
30 static inline
31 struct device *chan2dev(struct dw_edma_chan *chan)
32 {
33 	return &chan->vc.chan.dev->device;
34 }
35 
36 static inline
37 struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
38 {
39 	return container_of(vd, struct dw_edma_desc, vd);
40 }
41 
42 static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
43 {
44 	struct dw_edma_burst *burst;
45 
46 	burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
47 	if (unlikely(!burst))
48 		return NULL;
49 
50 	INIT_LIST_HEAD(&burst->list);
51 	if (chunk->burst) {
52 		/* Create and add new element into the linked list */
53 		chunk->bursts_alloc++;
54 		list_add_tail(&burst->list, &chunk->burst->list);
55 	} else {
56 		/* List head */
57 		chunk->bursts_alloc = 0;
58 		chunk->burst = burst;
59 	}
60 
61 	return burst;
62 }
63 
64 static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
65 {
66 	struct dw_edma_chip *chip = desc->chan->dw->chip;
67 	struct dw_edma_chan *chan = desc->chan;
68 	struct dw_edma_chunk *chunk;
69 
70 	chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
71 	if (unlikely(!chunk))
72 		return NULL;
73 
74 	INIT_LIST_HEAD(&chunk->list);
75 	chunk->chan = chan;
76 	/* Toggling change bit (CB) in each chunk, this is a mechanism to
77 	 * inform the eDMA HW block that this is a new linked list ready
78 	 * to be consumed.
79 	 *  - Odd chunks originate CB equal to 0
80 	 *  - Even chunks originate CB equal to 1
81 	 */
82 	chunk->cb = !(desc->chunks_alloc % 2);
83 	if (chan->dir == EDMA_DIR_WRITE) {
84 		chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr;
85 		chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr;
86 	} else {
87 		chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr;
88 		chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr;
89 	}
90 
91 	if (desc->chunk) {
92 		/* Create and add new element into the linked list */
93 		if (!dw_edma_alloc_burst(chunk)) {
94 			kfree(chunk);
95 			return NULL;
96 		}
97 		desc->chunks_alloc++;
98 		list_add_tail(&chunk->list, &desc->chunk->list);
99 	} else {
100 		/* List head */
101 		chunk->burst = NULL;
102 		desc->chunks_alloc = 0;
103 		desc->chunk = chunk;
104 	}
105 
106 	return chunk;
107 }
108 
109 static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
110 {
111 	struct dw_edma_desc *desc;
112 
113 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
114 	if (unlikely(!desc))
115 		return NULL;
116 
117 	desc->chan = chan;
118 	if (!dw_edma_alloc_chunk(desc)) {
119 		kfree(desc);
120 		return NULL;
121 	}
122 
123 	return desc;
124 }
125 
126 static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
127 {
128 	struct dw_edma_burst *child, *_next;
129 
130 	/* Remove all the list elements */
131 	list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
132 		list_del(&child->list);
133 		kfree(child);
134 		chunk->bursts_alloc--;
135 	}
136 
137 	/* Remove the list head */
138 	kfree(child);
139 	chunk->burst = NULL;
140 }
141 
142 static void dw_edma_free_chunk(struct dw_edma_desc *desc)
143 {
144 	struct dw_edma_chunk *child, *_next;
145 
146 	if (!desc->chunk)
147 		return;
148 
149 	/* Remove all the list elements */
150 	list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
151 		dw_edma_free_burst(child);
152 		list_del(&child->list);
153 		kfree(child);
154 		desc->chunks_alloc--;
155 	}
156 
157 	/* Remove the list head */
158 	kfree(child);
159 	desc->chunk = NULL;
160 }
161 
162 static void dw_edma_free_desc(struct dw_edma_desc *desc)
163 {
164 	dw_edma_free_chunk(desc);
165 	kfree(desc);
166 }
167 
168 static void vchan_free_desc(struct virt_dma_desc *vdesc)
169 {
170 	dw_edma_free_desc(vd2dw_edma_desc(vdesc));
171 }
172 
173 static void dw_edma_start_transfer(struct dw_edma_chan *chan)
174 {
175 	struct dw_edma_chunk *child;
176 	struct dw_edma_desc *desc;
177 	struct virt_dma_desc *vd;
178 
179 	vd = vchan_next_desc(&chan->vc);
180 	if (!vd)
181 		return;
182 
183 	desc = vd2dw_edma_desc(vd);
184 	if (!desc)
185 		return;
186 
187 	child = list_first_entry_or_null(&desc->chunk->list,
188 					 struct dw_edma_chunk, list);
189 	if (!child)
190 		return;
191 
192 	dw_edma_v0_core_start(child, !desc->xfer_sz);
193 	desc->xfer_sz += child->ll_region.sz;
194 	dw_edma_free_burst(child);
195 	list_del(&child->list);
196 	kfree(child);
197 	desc->chunks_alloc--;
198 }
199 
200 static int dw_edma_device_config(struct dma_chan *dchan,
201 				 struct dma_slave_config *config)
202 {
203 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
204 
205 	memcpy(&chan->config, config, sizeof(*config));
206 	chan->configured = true;
207 
208 	return 0;
209 }
210 
211 static int dw_edma_device_pause(struct dma_chan *dchan)
212 {
213 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
214 	int err = 0;
215 
216 	if (!chan->configured)
217 		err = -EPERM;
218 	else if (chan->status != EDMA_ST_BUSY)
219 		err = -EPERM;
220 	else if (chan->request != EDMA_REQ_NONE)
221 		err = -EPERM;
222 	else
223 		chan->request = EDMA_REQ_PAUSE;
224 
225 	return err;
226 }
227 
228 static int dw_edma_device_resume(struct dma_chan *dchan)
229 {
230 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
231 	int err = 0;
232 
233 	if (!chan->configured) {
234 		err = -EPERM;
235 	} else if (chan->status != EDMA_ST_PAUSE) {
236 		err = -EPERM;
237 	} else if (chan->request != EDMA_REQ_NONE) {
238 		err = -EPERM;
239 	} else {
240 		chan->status = EDMA_ST_BUSY;
241 		dw_edma_start_transfer(chan);
242 	}
243 
244 	return err;
245 }
246 
247 static int dw_edma_device_terminate_all(struct dma_chan *dchan)
248 {
249 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
250 	int err = 0;
251 
252 	if (!chan->configured) {
253 		/* Do nothing */
254 	} else if (chan->status == EDMA_ST_PAUSE) {
255 		chan->status = EDMA_ST_IDLE;
256 		chan->configured = false;
257 	} else if (chan->status == EDMA_ST_IDLE) {
258 		chan->configured = false;
259 	} else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) {
260 		/*
261 		 * The channel is in a false BUSY state, probably didn't
262 		 * receive or lost an interrupt
263 		 */
264 		chan->status = EDMA_ST_IDLE;
265 		chan->configured = false;
266 	} else if (chan->request > EDMA_REQ_PAUSE) {
267 		err = -EPERM;
268 	} else {
269 		chan->request = EDMA_REQ_STOP;
270 	}
271 
272 	return err;
273 }
274 
275 static void dw_edma_device_issue_pending(struct dma_chan *dchan)
276 {
277 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
278 	unsigned long flags;
279 
280 	spin_lock_irqsave(&chan->vc.lock, flags);
281 	if (chan->configured && chan->request == EDMA_REQ_NONE &&
282 	    chan->status == EDMA_ST_IDLE && vchan_issue_pending(&chan->vc)) {
283 		chan->status = EDMA_ST_BUSY;
284 		dw_edma_start_transfer(chan);
285 	}
286 	spin_unlock_irqrestore(&chan->vc.lock, flags);
287 }
288 
289 static enum dma_status
290 dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
291 			 struct dma_tx_state *txstate)
292 {
293 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
294 	struct dw_edma_desc *desc;
295 	struct virt_dma_desc *vd;
296 	unsigned long flags;
297 	enum dma_status ret;
298 	u32 residue = 0;
299 
300 	ret = dma_cookie_status(dchan, cookie, txstate);
301 	if (ret == DMA_COMPLETE)
302 		return ret;
303 
304 	if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
305 		ret = DMA_PAUSED;
306 
307 	if (!txstate)
308 		goto ret_residue;
309 
310 	spin_lock_irqsave(&chan->vc.lock, flags);
311 	vd = vchan_find_desc(&chan->vc, cookie);
312 	if (vd) {
313 		desc = vd2dw_edma_desc(vd);
314 		if (desc)
315 			residue = desc->alloc_sz - desc->xfer_sz;
316 	}
317 	spin_unlock_irqrestore(&chan->vc.lock, flags);
318 
319 ret_residue:
320 	dma_set_residue(txstate, residue);
321 
322 	return ret;
323 }
324 
325 static struct dma_async_tx_descriptor *
326 dw_edma_device_transfer(struct dw_edma_transfer *xfer)
327 {
328 	struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
329 	enum dma_transfer_direction dir = xfer->direction;
330 	phys_addr_t src_addr, dst_addr;
331 	struct scatterlist *sg = NULL;
332 	struct dw_edma_chunk *chunk;
333 	struct dw_edma_burst *burst;
334 	struct dw_edma_desc *desc;
335 	u32 cnt = 0;
336 	int i;
337 
338 	if (!chan->configured)
339 		return NULL;
340 
341 	/*
342 	 * Local Root Port/End-point              Remote End-point
343 	 * +-----------------------+ PCIe bus +----------------------+
344 	 * |                       |    +-+   |                      |
345 	 * |    DEV_TO_MEM   Rx Ch <----+ +---+ Tx Ch  DEV_TO_MEM    |
346 	 * |                       |    | |   |                      |
347 	 * |    MEM_TO_DEV   Tx Ch +----+ +---> Rx Ch  MEM_TO_DEV    |
348 	 * |                       |    +-+   |                      |
349 	 * +-----------------------+          +----------------------+
350 	 *
351 	 * 1. Normal logic:
352 	 * If eDMA is embedded into the DW PCIe RP/EP and controlled from the
353 	 * CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used
354 	 * for the device read operations (DEV_TO_MEM) and the Tx channel
355 	 * (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV).
356 	 *
357 	 * 2. Inverted logic:
358 	 * If eDMA is embedded into a Remote PCIe EP and is controlled by the
359 	 * MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx
360 	 * channel (EDMA_DIR_WRITE) will be used for the device read operations
361 	 * (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write
362 	 * operations (MEM_TO_DEV).
363 	 *
364 	 * It is the client driver responsibility to choose a proper channel
365 	 * for the DMA transfers.
366 	 */
367 	if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
368 		if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) ||
369 		    (chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV))
370 			return NULL;
371 	} else {
372 		if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) ||
373 		    (chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV))
374 			return NULL;
375 	}
376 
377 	if (xfer->type == EDMA_XFER_CYCLIC) {
378 		if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
379 			return NULL;
380 	} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
381 		if (xfer->xfer.sg.len < 1)
382 			return NULL;
383 	} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
384 		if (!xfer->xfer.il->numf)
385 			return NULL;
386 		if (xfer->xfer.il->numf > 0 && xfer->xfer.il->frame_size > 0)
387 			return NULL;
388 	} else {
389 		return NULL;
390 	}
391 
392 	desc = dw_edma_alloc_desc(chan);
393 	if (unlikely(!desc))
394 		goto err_alloc;
395 
396 	chunk = dw_edma_alloc_chunk(desc);
397 	if (unlikely(!chunk))
398 		goto err_alloc;
399 
400 	if (xfer->type == EDMA_XFER_INTERLEAVED) {
401 		src_addr = xfer->xfer.il->src_start;
402 		dst_addr = xfer->xfer.il->dst_start;
403 	} else {
404 		src_addr = chan->config.src_addr;
405 		dst_addr = chan->config.dst_addr;
406 	}
407 
408 	if (xfer->type == EDMA_XFER_CYCLIC) {
409 		cnt = xfer->xfer.cyclic.cnt;
410 	} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
411 		cnt = xfer->xfer.sg.len;
412 		sg = xfer->xfer.sg.sgl;
413 	} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
414 		if (xfer->xfer.il->numf > 0)
415 			cnt = xfer->xfer.il->numf;
416 		else
417 			cnt = xfer->xfer.il->frame_size;
418 	}
419 
420 	for (i = 0; i < cnt; i++) {
421 		if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg)
422 			break;
423 
424 		if (chunk->bursts_alloc == chan->ll_max) {
425 			chunk = dw_edma_alloc_chunk(desc);
426 			if (unlikely(!chunk))
427 				goto err_alloc;
428 		}
429 
430 		burst = dw_edma_alloc_burst(chunk);
431 		if (unlikely(!burst))
432 			goto err_alloc;
433 
434 		if (xfer->type == EDMA_XFER_CYCLIC)
435 			burst->sz = xfer->xfer.cyclic.len;
436 		else if (xfer->type == EDMA_XFER_SCATTER_GATHER)
437 			burst->sz = sg_dma_len(sg);
438 		else if (xfer->type == EDMA_XFER_INTERLEAVED)
439 			burst->sz = xfer->xfer.il->sgl[i].size;
440 
441 		chunk->ll_region.sz += burst->sz;
442 		desc->alloc_sz += burst->sz;
443 
444 		if (dir == DMA_DEV_TO_MEM) {
445 			burst->sar = src_addr;
446 			if (xfer->type == EDMA_XFER_CYCLIC) {
447 				burst->dar = xfer->xfer.cyclic.paddr;
448 			} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
449 				src_addr += sg_dma_len(sg);
450 				burst->dar = sg_dma_address(sg);
451 				/* Unlike the typical assumption by other
452 				 * drivers/IPs the peripheral memory isn't
453 				 * a FIFO memory, in this case, it's a
454 				 * linear memory and that why the source
455 				 * and destination addresses are increased
456 				 * by the same portion (data length)
457 				 */
458 			}
459 		} else {
460 			burst->dar = dst_addr;
461 			if (xfer->type == EDMA_XFER_CYCLIC) {
462 				burst->sar = xfer->xfer.cyclic.paddr;
463 			} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
464 				dst_addr += sg_dma_len(sg);
465 				burst->sar = sg_dma_address(sg);
466 				/* Unlike the typical assumption by other
467 				 * drivers/IPs the peripheral memory isn't
468 				 * a FIFO memory, in this case, it's a
469 				 * linear memory and that why the source
470 				 * and destination addresses are increased
471 				 * by the same portion (data length)
472 				 */
473 			}
474 		}
475 
476 		if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
477 			sg = sg_next(sg);
478 		} else if (xfer->type == EDMA_XFER_INTERLEAVED &&
479 			   xfer->xfer.il->frame_size > 0) {
480 			struct dma_interleaved_template *il = xfer->xfer.il;
481 			struct data_chunk *dc = &il->sgl[i];
482 
483 			if (il->src_sgl) {
484 				src_addr += burst->sz;
485 				src_addr += dmaengine_get_src_icg(il, dc);
486 			}
487 
488 			if (il->dst_sgl) {
489 				dst_addr += burst->sz;
490 				dst_addr += dmaengine_get_dst_icg(il, dc);
491 			}
492 		}
493 	}
494 
495 	return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
496 
497 err_alloc:
498 	if (desc)
499 		dw_edma_free_desc(desc);
500 
501 	return NULL;
502 }
503 
504 static struct dma_async_tx_descriptor *
505 dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
506 			     unsigned int len,
507 			     enum dma_transfer_direction direction,
508 			     unsigned long flags, void *context)
509 {
510 	struct dw_edma_transfer xfer;
511 
512 	xfer.dchan = dchan;
513 	xfer.direction = direction;
514 	xfer.xfer.sg.sgl = sgl;
515 	xfer.xfer.sg.len = len;
516 	xfer.flags = flags;
517 	xfer.type = EDMA_XFER_SCATTER_GATHER;
518 
519 	return dw_edma_device_transfer(&xfer);
520 }
521 
522 static struct dma_async_tx_descriptor *
523 dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
524 			       size_t len, size_t count,
525 			       enum dma_transfer_direction direction,
526 			       unsigned long flags)
527 {
528 	struct dw_edma_transfer xfer;
529 
530 	xfer.dchan = dchan;
531 	xfer.direction = direction;
532 	xfer.xfer.cyclic.paddr = paddr;
533 	xfer.xfer.cyclic.len = len;
534 	xfer.xfer.cyclic.cnt = count;
535 	xfer.flags = flags;
536 	xfer.type = EDMA_XFER_CYCLIC;
537 
538 	return dw_edma_device_transfer(&xfer);
539 }
540 
541 static struct dma_async_tx_descriptor *
542 dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan,
543 				    struct dma_interleaved_template *ilt,
544 				    unsigned long flags)
545 {
546 	struct dw_edma_transfer xfer;
547 
548 	xfer.dchan = dchan;
549 	xfer.direction = ilt->dir;
550 	xfer.xfer.il = ilt;
551 	xfer.flags = flags;
552 	xfer.type = EDMA_XFER_INTERLEAVED;
553 
554 	return dw_edma_device_transfer(&xfer);
555 }
556 
557 static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
558 {
559 	struct dw_edma_desc *desc;
560 	struct virt_dma_desc *vd;
561 	unsigned long flags;
562 
563 	dw_edma_v0_core_clear_done_int(chan);
564 
565 	spin_lock_irqsave(&chan->vc.lock, flags);
566 	vd = vchan_next_desc(&chan->vc);
567 	if (vd) {
568 		switch (chan->request) {
569 		case EDMA_REQ_NONE:
570 			desc = vd2dw_edma_desc(vd);
571 			if (desc->chunks_alloc) {
572 				chan->status = EDMA_ST_BUSY;
573 				dw_edma_start_transfer(chan);
574 			} else {
575 				list_del(&vd->node);
576 				vchan_cookie_complete(vd);
577 				chan->status = EDMA_ST_IDLE;
578 			}
579 			break;
580 
581 		case EDMA_REQ_STOP:
582 			list_del(&vd->node);
583 			vchan_cookie_complete(vd);
584 			chan->request = EDMA_REQ_NONE;
585 			chan->status = EDMA_ST_IDLE;
586 			break;
587 
588 		case EDMA_REQ_PAUSE:
589 			chan->request = EDMA_REQ_NONE;
590 			chan->status = EDMA_ST_PAUSE;
591 			break;
592 
593 		default:
594 			break;
595 		}
596 	}
597 	spin_unlock_irqrestore(&chan->vc.lock, flags);
598 }
599 
600 static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
601 {
602 	struct virt_dma_desc *vd;
603 	unsigned long flags;
604 
605 	dw_edma_v0_core_clear_abort_int(chan);
606 
607 	spin_lock_irqsave(&chan->vc.lock, flags);
608 	vd = vchan_next_desc(&chan->vc);
609 	if (vd) {
610 		list_del(&vd->node);
611 		vchan_cookie_complete(vd);
612 	}
613 	spin_unlock_irqrestore(&chan->vc.lock, flags);
614 	chan->request = EDMA_REQ_NONE;
615 	chan->status = EDMA_ST_IDLE;
616 }
617 
618 static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write)
619 {
620 	struct dw_edma_irq *dw_irq = data;
621 	struct dw_edma *dw = dw_irq->dw;
622 	unsigned long total, pos, val;
623 	unsigned long off;
624 	u32 mask;
625 
626 	if (write) {
627 		total = dw->wr_ch_cnt;
628 		off = 0;
629 		mask = dw_irq->wr_mask;
630 	} else {
631 		total = dw->rd_ch_cnt;
632 		off = dw->wr_ch_cnt;
633 		mask = dw_irq->rd_mask;
634 	}
635 
636 	val = dw_edma_v0_core_status_done_int(dw, write ?
637 							  EDMA_DIR_WRITE :
638 							  EDMA_DIR_READ);
639 	val &= mask;
640 	for_each_set_bit(pos, &val, total) {
641 		struct dw_edma_chan *chan = &dw->chan[pos + off];
642 
643 		dw_edma_done_interrupt(chan);
644 	}
645 
646 	val = dw_edma_v0_core_status_abort_int(dw, write ?
647 							   EDMA_DIR_WRITE :
648 							   EDMA_DIR_READ);
649 	val &= mask;
650 	for_each_set_bit(pos, &val, total) {
651 		struct dw_edma_chan *chan = &dw->chan[pos + off];
652 
653 		dw_edma_abort_interrupt(chan);
654 	}
655 
656 	return IRQ_HANDLED;
657 }
658 
659 static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
660 {
661 	return dw_edma_interrupt(irq, data, true);
662 }
663 
664 static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
665 {
666 	return dw_edma_interrupt(irq, data, false);
667 }
668 
669 static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
670 {
671 	dw_edma_interrupt(irq, data, true);
672 	dw_edma_interrupt(irq, data, false);
673 
674 	return IRQ_HANDLED;
675 }
676 
677 static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
678 {
679 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
680 
681 	if (chan->status != EDMA_ST_IDLE)
682 		return -EBUSY;
683 
684 	return 0;
685 }
686 
687 static void dw_edma_free_chan_resources(struct dma_chan *dchan)
688 {
689 	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
690 	int ret;
691 
692 	while (time_before(jiffies, timeout)) {
693 		ret = dw_edma_device_terminate_all(dchan);
694 		if (!ret)
695 			break;
696 
697 		if (time_after_eq(jiffies, timeout))
698 			return;
699 
700 		cpu_relax();
701 	}
702 }
703 
704 static int dw_edma_channel_setup(struct dw_edma *dw, bool write,
705 				 u32 wr_alloc, u32 rd_alloc)
706 {
707 	struct dw_edma_chip *chip = dw->chip;
708 	struct dw_edma_region *dt_region;
709 	struct device *dev = chip->dev;
710 	struct dw_edma_chan *chan;
711 	struct dw_edma_irq *irq;
712 	struct dma_device *dma;
713 	u32 alloc, off_alloc;
714 	u32 i, j, cnt;
715 	int err = 0;
716 	u32 pos;
717 
718 	if (write) {
719 		i = 0;
720 		cnt = dw->wr_ch_cnt;
721 		dma = &dw->wr_edma;
722 		alloc = wr_alloc;
723 		off_alloc = 0;
724 	} else {
725 		i = dw->wr_ch_cnt;
726 		cnt = dw->rd_ch_cnt;
727 		dma = &dw->rd_edma;
728 		alloc = rd_alloc;
729 		off_alloc = wr_alloc;
730 	}
731 
732 	INIT_LIST_HEAD(&dma->channels);
733 	for (j = 0; (alloc || dw->nr_irqs == 1) && j < cnt; j++, i++) {
734 		chan = &dw->chan[i];
735 
736 		dt_region = devm_kzalloc(dev, sizeof(*dt_region), GFP_KERNEL);
737 		if (!dt_region)
738 			return -ENOMEM;
739 
740 		chan->vc.chan.private = dt_region;
741 
742 		chan->dw = dw;
743 		chan->id = j;
744 		chan->dir = write ? EDMA_DIR_WRITE : EDMA_DIR_READ;
745 		chan->configured = false;
746 		chan->request = EDMA_REQ_NONE;
747 		chan->status = EDMA_ST_IDLE;
748 
749 		if (write)
750 			chan->ll_max = (chip->ll_region_wr[j].sz / EDMA_LL_SZ);
751 		else
752 			chan->ll_max = (chip->ll_region_rd[j].sz / EDMA_LL_SZ);
753 		chan->ll_max -= 1;
754 
755 		dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n",
756 			 write ? "write" : "read", j, chan->ll_max);
757 
758 		if (dw->nr_irqs == 1)
759 			pos = 0;
760 		else
761 			pos = off_alloc + (j % alloc);
762 
763 		irq = &dw->irq[pos];
764 
765 		if (write)
766 			irq->wr_mask |= BIT(j);
767 		else
768 			irq->rd_mask |= BIT(j);
769 
770 		irq->dw = dw;
771 		memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
772 
773 		dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
774 			 write ? "write" : "read", j,
775 			 chan->msi.address_hi, chan->msi.address_lo,
776 			 chan->msi.data);
777 
778 		chan->vc.desc_free = vchan_free_desc;
779 		vchan_init(&chan->vc, dma);
780 
781 		if (write) {
782 			dt_region->paddr = chip->dt_region_wr[j].paddr;
783 			dt_region->vaddr = chip->dt_region_wr[j].vaddr;
784 			dt_region->sz = chip->dt_region_wr[j].sz;
785 		} else {
786 			dt_region->paddr = chip->dt_region_rd[j].paddr;
787 			dt_region->vaddr = chip->dt_region_rd[j].vaddr;
788 			dt_region->sz = chip->dt_region_rd[j].sz;
789 		}
790 
791 		dw_edma_v0_core_device_config(chan);
792 	}
793 
794 	/* Set DMA channel capabilities */
795 	dma_cap_zero(dma->cap_mask);
796 	dma_cap_set(DMA_SLAVE, dma->cap_mask);
797 	dma_cap_set(DMA_CYCLIC, dma->cap_mask);
798 	dma_cap_set(DMA_PRIVATE, dma->cap_mask);
799 	dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
800 	dma->directions = BIT(write ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV);
801 	dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
802 	dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
803 	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
804 	dma->chancnt = cnt;
805 
806 	/* Set DMA channel callbacks */
807 	dma->dev = chip->dev;
808 	dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
809 	dma->device_free_chan_resources = dw_edma_free_chan_resources;
810 	dma->device_config = dw_edma_device_config;
811 	dma->device_pause = dw_edma_device_pause;
812 	dma->device_resume = dw_edma_device_resume;
813 	dma->device_terminate_all = dw_edma_device_terminate_all;
814 	dma->device_issue_pending = dw_edma_device_issue_pending;
815 	dma->device_tx_status = dw_edma_device_tx_status;
816 	dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
817 	dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
818 	dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma;
819 
820 	dma_set_max_seg_size(dma->dev, U32_MAX);
821 
822 	/* Register DMA device */
823 	err = dma_async_device_register(dma);
824 
825 	return err;
826 }
827 
828 static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
829 {
830 	if (*nr_irqs && *alloc < cnt) {
831 		(*alloc)++;
832 		(*nr_irqs)--;
833 	}
834 }
835 
836 static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
837 {
838 	while (*mask * alloc < cnt)
839 		(*mask)++;
840 }
841 
842 static int dw_edma_irq_request(struct dw_edma *dw,
843 			       u32 *wr_alloc, u32 *rd_alloc)
844 {
845 	struct dw_edma_chip *chip = dw->chip;
846 	struct device *dev = dw->chip->dev;
847 	u32 wr_mask = 1;
848 	u32 rd_mask = 1;
849 	int i, err = 0;
850 	u32 ch_cnt;
851 	int irq;
852 
853 	ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
854 
855 	if (chip->nr_irqs < 1 || !chip->ops->irq_vector)
856 		return -EINVAL;
857 
858 	dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL);
859 	if (!dw->irq)
860 		return -ENOMEM;
861 
862 	if (chip->nr_irqs == 1) {
863 		/* Common IRQ shared among all channels */
864 		irq = chip->ops->irq_vector(dev, 0);
865 		err = request_irq(irq, dw_edma_interrupt_common,
866 				  IRQF_SHARED, dw->name, &dw->irq[0]);
867 		if (err) {
868 			dw->nr_irqs = 0;
869 			return err;
870 		}
871 
872 		if (irq_get_msi_desc(irq))
873 			get_cached_msi_msg(irq, &dw->irq[0].msi);
874 
875 		dw->nr_irqs = 1;
876 	} else {
877 		/* Distribute IRQs equally among all channels */
878 		int tmp = chip->nr_irqs;
879 
880 		while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
881 			dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
882 			dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
883 		}
884 
885 		dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
886 		dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
887 
888 		for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
889 			irq = chip->ops->irq_vector(dev, i);
890 			err = request_irq(irq,
891 					  i < *wr_alloc ?
892 						dw_edma_interrupt_write :
893 						dw_edma_interrupt_read,
894 					  IRQF_SHARED, dw->name,
895 					  &dw->irq[i]);
896 			if (err) {
897 				dw->nr_irqs = i;
898 				return err;
899 			}
900 
901 			if (irq_get_msi_desc(irq))
902 				get_cached_msi_msg(irq, &dw->irq[i].msi);
903 		}
904 
905 		dw->nr_irqs = i;
906 	}
907 
908 	return err;
909 }
910 
911 int dw_edma_probe(struct dw_edma_chip *chip)
912 {
913 	struct device *dev;
914 	struct dw_edma *dw;
915 	u32 wr_alloc = 0;
916 	u32 rd_alloc = 0;
917 	int i, err;
918 
919 	if (!chip)
920 		return -EINVAL;
921 
922 	dev = chip->dev;
923 	if (!dev || !chip->ops)
924 		return -EINVAL;
925 
926 	dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL);
927 	if (!dw)
928 		return -ENOMEM;
929 
930 	dw->chip = chip;
931 
932 	raw_spin_lock_init(&dw->lock);
933 
934 	dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt,
935 			      dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE));
936 	dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH);
937 
938 	dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt,
939 			      dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ));
940 	dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH);
941 
942 	if (!dw->wr_ch_cnt && !dw->rd_ch_cnt)
943 		return -EINVAL;
944 
945 	dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
946 		 dw->wr_ch_cnt, dw->rd_ch_cnt);
947 
948 	/* Allocate channels */
949 	dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
950 				sizeof(*dw->chan), GFP_KERNEL);
951 	if (!dw->chan)
952 		return -ENOMEM;
953 
954 	snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%d", chip->id);
955 
956 	/* Disable eDMA, only to establish the ideal initial conditions */
957 	dw_edma_v0_core_off(dw);
958 
959 	/* Request IRQs */
960 	err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc);
961 	if (err)
962 		return err;
963 
964 	/* Setup write channels */
965 	err = dw_edma_channel_setup(dw, true, wr_alloc, rd_alloc);
966 	if (err)
967 		goto err_irq_free;
968 
969 	/* Setup read channels */
970 	err = dw_edma_channel_setup(dw, false, wr_alloc, rd_alloc);
971 	if (err)
972 		goto err_irq_free;
973 
974 	/* Turn debugfs on */
975 	dw_edma_v0_core_debugfs_on(dw);
976 
977 	chip->dw = dw;
978 
979 	return 0;
980 
981 err_irq_free:
982 	for (i = (dw->nr_irqs - 1); i >= 0; i--)
983 		free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
984 
985 	return err;
986 }
987 EXPORT_SYMBOL_GPL(dw_edma_probe);
988 
989 int dw_edma_remove(struct dw_edma_chip *chip)
990 {
991 	struct dw_edma_chan *chan, *_chan;
992 	struct device *dev = chip->dev;
993 	struct dw_edma *dw = chip->dw;
994 	int i;
995 
996 	/* Disable eDMA */
997 	dw_edma_v0_core_off(dw);
998 
999 	/* Free irqs */
1000 	for (i = (dw->nr_irqs - 1); i >= 0; i--)
1001 		free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
1002 
1003 	/* Deregister eDMA device */
1004 	dma_async_device_unregister(&dw->wr_edma);
1005 	list_for_each_entry_safe(chan, _chan, &dw->wr_edma.channels,
1006 				 vc.chan.device_node) {
1007 		tasklet_kill(&chan->vc.task);
1008 		list_del(&chan->vc.chan.device_node);
1009 	}
1010 
1011 	dma_async_device_unregister(&dw->rd_edma);
1012 	list_for_each_entry_safe(chan, _chan, &dw->rd_edma.channels,
1013 				 vc.chan.device_node) {
1014 		tasklet_kill(&chan->vc.task);
1015 		list_del(&chan->vc.chan.device_node);
1016 	}
1017 
1018 	/* Turn debugfs off */
1019 	dw_edma_v0_core_debugfs_off(dw);
1020 
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(dw_edma_remove);
1024 
1025 MODULE_LICENSE("GPL v2");
1026 MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
1027 MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");
1028