xref: /openbmc/linux/drivers/dma/dw-edma/dw-edma-core.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
4  * Synopsys DesignWare eDMA core driver
5  *
6  * Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/dmaengine.h>
13 #include <linux/err.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/dma/edma.h>
17 #include <linux/dma-mapping.h>
18 
19 #include "dw-edma-core.h"
20 #include "dw-edma-v0-core.h"
21 #include "../dmaengine.h"
22 #include "../virt-dma.h"
23 
24 static inline
25 struct device *dchan2dev(struct dma_chan *dchan)
26 {
27 	return &dchan->dev->device;
28 }
29 
30 static inline
31 struct device *chan2dev(struct dw_edma_chan *chan)
32 {
33 	return &chan->vc.chan.dev->device;
34 }
35 
36 static inline
37 struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
38 {
39 	return container_of(vd, struct dw_edma_desc, vd);
40 }
41 
42 static inline
43 u64 dw_edma_get_pci_address(struct dw_edma_chan *chan, phys_addr_t cpu_addr)
44 {
45 	struct dw_edma_chip *chip = chan->dw->chip;
46 
47 	if (chip->ops->pci_address)
48 		return chip->ops->pci_address(chip->dev, cpu_addr);
49 
50 	return cpu_addr;
51 }
52 
53 static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
54 {
55 	struct dw_edma_burst *burst;
56 
57 	burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
58 	if (unlikely(!burst))
59 		return NULL;
60 
61 	INIT_LIST_HEAD(&burst->list);
62 	if (chunk->burst) {
63 		/* Create and add new element into the linked list */
64 		chunk->bursts_alloc++;
65 		list_add_tail(&burst->list, &chunk->burst->list);
66 	} else {
67 		/* List head */
68 		chunk->bursts_alloc = 0;
69 		chunk->burst = burst;
70 	}
71 
72 	return burst;
73 }
74 
75 static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
76 {
77 	struct dw_edma_chip *chip = desc->chan->dw->chip;
78 	struct dw_edma_chan *chan = desc->chan;
79 	struct dw_edma_chunk *chunk;
80 
81 	chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
82 	if (unlikely(!chunk))
83 		return NULL;
84 
85 	INIT_LIST_HEAD(&chunk->list);
86 	chunk->chan = chan;
87 	/* Toggling change bit (CB) in each chunk, this is a mechanism to
88 	 * inform the eDMA HW block that this is a new linked list ready
89 	 * to be consumed.
90 	 *  - Odd chunks originate CB equal to 0
91 	 *  - Even chunks originate CB equal to 1
92 	 */
93 	chunk->cb = !(desc->chunks_alloc % 2);
94 	if (chan->dir == EDMA_DIR_WRITE) {
95 		chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr;
96 		chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr;
97 	} else {
98 		chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr;
99 		chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr;
100 	}
101 
102 	if (desc->chunk) {
103 		/* Create and add new element into the linked list */
104 		if (!dw_edma_alloc_burst(chunk)) {
105 			kfree(chunk);
106 			return NULL;
107 		}
108 		desc->chunks_alloc++;
109 		list_add_tail(&chunk->list, &desc->chunk->list);
110 	} else {
111 		/* List head */
112 		chunk->burst = NULL;
113 		desc->chunks_alloc = 0;
114 		desc->chunk = chunk;
115 	}
116 
117 	return chunk;
118 }
119 
120 static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
121 {
122 	struct dw_edma_desc *desc;
123 
124 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
125 	if (unlikely(!desc))
126 		return NULL;
127 
128 	desc->chan = chan;
129 	if (!dw_edma_alloc_chunk(desc)) {
130 		kfree(desc);
131 		return NULL;
132 	}
133 
134 	return desc;
135 }
136 
137 static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
138 {
139 	struct dw_edma_burst *child, *_next;
140 
141 	/* Remove all the list elements */
142 	list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
143 		list_del(&child->list);
144 		kfree(child);
145 		chunk->bursts_alloc--;
146 	}
147 
148 	/* Remove the list head */
149 	kfree(child);
150 	chunk->burst = NULL;
151 }
152 
153 static void dw_edma_free_chunk(struct dw_edma_desc *desc)
154 {
155 	struct dw_edma_chunk *child, *_next;
156 
157 	if (!desc->chunk)
158 		return;
159 
160 	/* Remove all the list elements */
161 	list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
162 		dw_edma_free_burst(child);
163 		list_del(&child->list);
164 		kfree(child);
165 		desc->chunks_alloc--;
166 	}
167 
168 	/* Remove the list head */
169 	kfree(child);
170 	desc->chunk = NULL;
171 }
172 
173 static void dw_edma_free_desc(struct dw_edma_desc *desc)
174 {
175 	dw_edma_free_chunk(desc);
176 	kfree(desc);
177 }
178 
179 static void vchan_free_desc(struct virt_dma_desc *vdesc)
180 {
181 	dw_edma_free_desc(vd2dw_edma_desc(vdesc));
182 }
183 
184 static void dw_edma_start_transfer(struct dw_edma_chan *chan)
185 {
186 	struct dw_edma_chunk *child;
187 	struct dw_edma_desc *desc;
188 	struct virt_dma_desc *vd;
189 
190 	vd = vchan_next_desc(&chan->vc);
191 	if (!vd)
192 		return;
193 
194 	desc = vd2dw_edma_desc(vd);
195 	if (!desc)
196 		return;
197 
198 	child = list_first_entry_or_null(&desc->chunk->list,
199 					 struct dw_edma_chunk, list);
200 	if (!child)
201 		return;
202 
203 	dw_edma_v0_core_start(child, !desc->xfer_sz);
204 	desc->xfer_sz += child->ll_region.sz;
205 	dw_edma_free_burst(child);
206 	list_del(&child->list);
207 	kfree(child);
208 	desc->chunks_alloc--;
209 }
210 
211 static void dw_edma_device_caps(struct dma_chan *dchan,
212 				struct dma_slave_caps *caps)
213 {
214 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
215 
216 	if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
217 		if (chan->dir == EDMA_DIR_READ)
218 			caps->directions = BIT(DMA_DEV_TO_MEM);
219 		else
220 			caps->directions = BIT(DMA_MEM_TO_DEV);
221 	} else {
222 		if (chan->dir == EDMA_DIR_WRITE)
223 			caps->directions = BIT(DMA_DEV_TO_MEM);
224 		else
225 			caps->directions = BIT(DMA_MEM_TO_DEV);
226 	}
227 }
228 
229 static int dw_edma_device_config(struct dma_chan *dchan,
230 				 struct dma_slave_config *config)
231 {
232 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
233 
234 	memcpy(&chan->config, config, sizeof(*config));
235 	chan->configured = true;
236 
237 	return 0;
238 }
239 
240 static int dw_edma_device_pause(struct dma_chan *dchan)
241 {
242 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
243 	int err = 0;
244 
245 	if (!chan->configured)
246 		err = -EPERM;
247 	else if (chan->status != EDMA_ST_BUSY)
248 		err = -EPERM;
249 	else if (chan->request != EDMA_REQ_NONE)
250 		err = -EPERM;
251 	else
252 		chan->request = EDMA_REQ_PAUSE;
253 
254 	return err;
255 }
256 
257 static int dw_edma_device_resume(struct dma_chan *dchan)
258 {
259 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
260 	int err = 0;
261 
262 	if (!chan->configured) {
263 		err = -EPERM;
264 	} else if (chan->status != EDMA_ST_PAUSE) {
265 		err = -EPERM;
266 	} else if (chan->request != EDMA_REQ_NONE) {
267 		err = -EPERM;
268 	} else {
269 		chan->status = EDMA_ST_BUSY;
270 		dw_edma_start_transfer(chan);
271 	}
272 
273 	return err;
274 }
275 
276 static int dw_edma_device_terminate_all(struct dma_chan *dchan)
277 {
278 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
279 	int err = 0;
280 
281 	if (!chan->configured) {
282 		/* Do nothing */
283 	} else if (chan->status == EDMA_ST_PAUSE) {
284 		chan->status = EDMA_ST_IDLE;
285 		chan->configured = false;
286 	} else if (chan->status == EDMA_ST_IDLE) {
287 		chan->configured = false;
288 	} else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) {
289 		/*
290 		 * The channel is in a false BUSY state, probably didn't
291 		 * receive or lost an interrupt
292 		 */
293 		chan->status = EDMA_ST_IDLE;
294 		chan->configured = false;
295 	} else if (chan->request > EDMA_REQ_PAUSE) {
296 		err = -EPERM;
297 	} else {
298 		chan->request = EDMA_REQ_STOP;
299 	}
300 
301 	return err;
302 }
303 
304 static void dw_edma_device_issue_pending(struct dma_chan *dchan)
305 {
306 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&chan->vc.lock, flags);
310 	if (chan->configured && chan->request == EDMA_REQ_NONE &&
311 	    chan->status == EDMA_ST_IDLE && vchan_issue_pending(&chan->vc)) {
312 		chan->status = EDMA_ST_BUSY;
313 		dw_edma_start_transfer(chan);
314 	}
315 	spin_unlock_irqrestore(&chan->vc.lock, flags);
316 }
317 
318 static enum dma_status
319 dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
320 			 struct dma_tx_state *txstate)
321 {
322 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
323 	struct dw_edma_desc *desc;
324 	struct virt_dma_desc *vd;
325 	unsigned long flags;
326 	enum dma_status ret;
327 	u32 residue = 0;
328 
329 	ret = dma_cookie_status(dchan, cookie, txstate);
330 	if (ret == DMA_COMPLETE)
331 		return ret;
332 
333 	if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
334 		ret = DMA_PAUSED;
335 
336 	if (!txstate)
337 		goto ret_residue;
338 
339 	spin_lock_irqsave(&chan->vc.lock, flags);
340 	vd = vchan_find_desc(&chan->vc, cookie);
341 	if (vd) {
342 		desc = vd2dw_edma_desc(vd);
343 		if (desc)
344 			residue = desc->alloc_sz - desc->xfer_sz;
345 	}
346 	spin_unlock_irqrestore(&chan->vc.lock, flags);
347 
348 ret_residue:
349 	dma_set_residue(txstate, residue);
350 
351 	return ret;
352 }
353 
354 static struct dma_async_tx_descriptor *
355 dw_edma_device_transfer(struct dw_edma_transfer *xfer)
356 {
357 	struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
358 	enum dma_transfer_direction dir = xfer->direction;
359 	struct scatterlist *sg = NULL;
360 	struct dw_edma_chunk *chunk;
361 	struct dw_edma_burst *burst;
362 	struct dw_edma_desc *desc;
363 	u64 src_addr, dst_addr;
364 	size_t fsz = 0;
365 	u32 cnt = 0;
366 	int i;
367 
368 	if (!chan->configured)
369 		return NULL;
370 
371 	/*
372 	 * Local Root Port/End-point              Remote End-point
373 	 * +-----------------------+ PCIe bus +----------------------+
374 	 * |                       |    +-+   |                      |
375 	 * |    DEV_TO_MEM   Rx Ch <----+ +---+ Tx Ch  DEV_TO_MEM    |
376 	 * |                       |    | |   |                      |
377 	 * |    MEM_TO_DEV   Tx Ch +----+ +---> Rx Ch  MEM_TO_DEV    |
378 	 * |                       |    +-+   |                      |
379 	 * +-----------------------+          +----------------------+
380 	 *
381 	 * 1. Normal logic:
382 	 * If eDMA is embedded into the DW PCIe RP/EP and controlled from the
383 	 * CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used
384 	 * for the device read operations (DEV_TO_MEM) and the Tx channel
385 	 * (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV).
386 	 *
387 	 * 2. Inverted logic:
388 	 * If eDMA is embedded into a Remote PCIe EP and is controlled by the
389 	 * MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx
390 	 * channel (EDMA_DIR_WRITE) will be used for the device read operations
391 	 * (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write
392 	 * operations (MEM_TO_DEV).
393 	 *
394 	 * It is the client driver responsibility to choose a proper channel
395 	 * for the DMA transfers.
396 	 */
397 	if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
398 		if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) ||
399 		    (chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV))
400 			return NULL;
401 	} else {
402 		if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) ||
403 		    (chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV))
404 			return NULL;
405 	}
406 
407 	if (xfer->type == EDMA_XFER_CYCLIC) {
408 		if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
409 			return NULL;
410 	} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
411 		if (xfer->xfer.sg.len < 1)
412 			return NULL;
413 	} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
414 		if (!xfer->xfer.il->numf || xfer->xfer.il->frame_size < 1)
415 			return NULL;
416 		if (!xfer->xfer.il->src_inc || !xfer->xfer.il->dst_inc)
417 			return NULL;
418 	} else {
419 		return NULL;
420 	}
421 
422 	desc = dw_edma_alloc_desc(chan);
423 	if (unlikely(!desc))
424 		goto err_alloc;
425 
426 	chunk = dw_edma_alloc_chunk(desc);
427 	if (unlikely(!chunk))
428 		goto err_alloc;
429 
430 	if (xfer->type == EDMA_XFER_INTERLEAVED) {
431 		src_addr = xfer->xfer.il->src_start;
432 		dst_addr = xfer->xfer.il->dst_start;
433 	} else {
434 		src_addr = chan->config.src_addr;
435 		dst_addr = chan->config.dst_addr;
436 	}
437 
438 	if (dir == DMA_DEV_TO_MEM)
439 		src_addr = dw_edma_get_pci_address(chan, (phys_addr_t)src_addr);
440 	else
441 		dst_addr = dw_edma_get_pci_address(chan, (phys_addr_t)dst_addr);
442 
443 	if (xfer->type == EDMA_XFER_CYCLIC) {
444 		cnt = xfer->xfer.cyclic.cnt;
445 	} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
446 		cnt = xfer->xfer.sg.len;
447 		sg = xfer->xfer.sg.sgl;
448 	} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
449 		cnt = xfer->xfer.il->numf * xfer->xfer.il->frame_size;
450 		fsz = xfer->xfer.il->frame_size;
451 	}
452 
453 	for (i = 0; i < cnt; i++) {
454 		if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg)
455 			break;
456 
457 		if (chunk->bursts_alloc == chan->ll_max) {
458 			chunk = dw_edma_alloc_chunk(desc);
459 			if (unlikely(!chunk))
460 				goto err_alloc;
461 		}
462 
463 		burst = dw_edma_alloc_burst(chunk);
464 		if (unlikely(!burst))
465 			goto err_alloc;
466 
467 		if (xfer->type == EDMA_XFER_CYCLIC)
468 			burst->sz = xfer->xfer.cyclic.len;
469 		else if (xfer->type == EDMA_XFER_SCATTER_GATHER)
470 			burst->sz = sg_dma_len(sg);
471 		else if (xfer->type == EDMA_XFER_INTERLEAVED)
472 			burst->sz = xfer->xfer.il->sgl[i % fsz].size;
473 
474 		chunk->ll_region.sz += burst->sz;
475 		desc->alloc_sz += burst->sz;
476 
477 		if (dir == DMA_DEV_TO_MEM) {
478 			burst->sar = src_addr;
479 			if (xfer->type == EDMA_XFER_CYCLIC) {
480 				burst->dar = xfer->xfer.cyclic.paddr;
481 			} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
482 				src_addr += sg_dma_len(sg);
483 				burst->dar = sg_dma_address(sg);
484 				/* Unlike the typical assumption by other
485 				 * drivers/IPs the peripheral memory isn't
486 				 * a FIFO memory, in this case, it's a
487 				 * linear memory and that why the source
488 				 * and destination addresses are increased
489 				 * by the same portion (data length)
490 				 */
491 			} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
492 				burst->dar = dst_addr;
493 			}
494 		} else {
495 			burst->dar = dst_addr;
496 			if (xfer->type == EDMA_XFER_CYCLIC) {
497 				burst->sar = xfer->xfer.cyclic.paddr;
498 			} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
499 				dst_addr += sg_dma_len(sg);
500 				burst->sar = sg_dma_address(sg);
501 				/* Unlike the typical assumption by other
502 				 * drivers/IPs the peripheral memory isn't
503 				 * a FIFO memory, in this case, it's a
504 				 * linear memory and that why the source
505 				 * and destination addresses are increased
506 				 * by the same portion (data length)
507 				 */
508 			}  else if (xfer->type == EDMA_XFER_INTERLEAVED) {
509 				burst->sar = src_addr;
510 			}
511 		}
512 
513 		if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
514 			sg = sg_next(sg);
515 		} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
516 			struct dma_interleaved_template *il = xfer->xfer.il;
517 			struct data_chunk *dc = &il->sgl[i % fsz];
518 
519 			src_addr += burst->sz;
520 			if (il->src_sgl)
521 				src_addr += dmaengine_get_src_icg(il, dc);
522 
523 			dst_addr += burst->sz;
524 			if (il->dst_sgl)
525 				dst_addr += dmaengine_get_dst_icg(il, dc);
526 		}
527 	}
528 
529 	return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
530 
531 err_alloc:
532 	if (desc)
533 		dw_edma_free_desc(desc);
534 
535 	return NULL;
536 }
537 
538 static struct dma_async_tx_descriptor *
539 dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
540 			     unsigned int len,
541 			     enum dma_transfer_direction direction,
542 			     unsigned long flags, void *context)
543 {
544 	struct dw_edma_transfer xfer;
545 
546 	xfer.dchan = dchan;
547 	xfer.direction = direction;
548 	xfer.xfer.sg.sgl = sgl;
549 	xfer.xfer.sg.len = len;
550 	xfer.flags = flags;
551 	xfer.type = EDMA_XFER_SCATTER_GATHER;
552 
553 	return dw_edma_device_transfer(&xfer);
554 }
555 
556 static struct dma_async_tx_descriptor *
557 dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
558 			       size_t len, size_t count,
559 			       enum dma_transfer_direction direction,
560 			       unsigned long flags)
561 {
562 	struct dw_edma_transfer xfer;
563 
564 	xfer.dchan = dchan;
565 	xfer.direction = direction;
566 	xfer.xfer.cyclic.paddr = paddr;
567 	xfer.xfer.cyclic.len = len;
568 	xfer.xfer.cyclic.cnt = count;
569 	xfer.flags = flags;
570 	xfer.type = EDMA_XFER_CYCLIC;
571 
572 	return dw_edma_device_transfer(&xfer);
573 }
574 
575 static struct dma_async_tx_descriptor *
576 dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan,
577 				    struct dma_interleaved_template *ilt,
578 				    unsigned long flags)
579 {
580 	struct dw_edma_transfer xfer;
581 
582 	xfer.dchan = dchan;
583 	xfer.direction = ilt->dir;
584 	xfer.xfer.il = ilt;
585 	xfer.flags = flags;
586 	xfer.type = EDMA_XFER_INTERLEAVED;
587 
588 	return dw_edma_device_transfer(&xfer);
589 }
590 
591 static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
592 {
593 	struct dw_edma_desc *desc;
594 	struct virt_dma_desc *vd;
595 	unsigned long flags;
596 
597 	dw_edma_v0_core_clear_done_int(chan);
598 
599 	spin_lock_irqsave(&chan->vc.lock, flags);
600 	vd = vchan_next_desc(&chan->vc);
601 	if (vd) {
602 		switch (chan->request) {
603 		case EDMA_REQ_NONE:
604 			desc = vd2dw_edma_desc(vd);
605 			if (desc->chunks_alloc) {
606 				chan->status = EDMA_ST_BUSY;
607 				dw_edma_start_transfer(chan);
608 			} else {
609 				list_del(&vd->node);
610 				vchan_cookie_complete(vd);
611 				chan->status = EDMA_ST_IDLE;
612 			}
613 			break;
614 
615 		case EDMA_REQ_STOP:
616 			list_del(&vd->node);
617 			vchan_cookie_complete(vd);
618 			chan->request = EDMA_REQ_NONE;
619 			chan->status = EDMA_ST_IDLE;
620 			break;
621 
622 		case EDMA_REQ_PAUSE:
623 			chan->request = EDMA_REQ_NONE;
624 			chan->status = EDMA_ST_PAUSE;
625 			break;
626 
627 		default:
628 			break;
629 		}
630 	}
631 	spin_unlock_irqrestore(&chan->vc.lock, flags);
632 }
633 
634 static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
635 {
636 	struct virt_dma_desc *vd;
637 	unsigned long flags;
638 
639 	dw_edma_v0_core_clear_abort_int(chan);
640 
641 	spin_lock_irqsave(&chan->vc.lock, flags);
642 	vd = vchan_next_desc(&chan->vc);
643 	if (vd) {
644 		list_del(&vd->node);
645 		vchan_cookie_complete(vd);
646 	}
647 	spin_unlock_irqrestore(&chan->vc.lock, flags);
648 	chan->request = EDMA_REQ_NONE;
649 	chan->status = EDMA_ST_IDLE;
650 }
651 
652 static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write)
653 {
654 	struct dw_edma_irq *dw_irq = data;
655 	struct dw_edma *dw = dw_irq->dw;
656 	unsigned long total, pos, val;
657 	unsigned long off;
658 	u32 mask;
659 
660 	if (write) {
661 		total = dw->wr_ch_cnt;
662 		off = 0;
663 		mask = dw_irq->wr_mask;
664 	} else {
665 		total = dw->rd_ch_cnt;
666 		off = dw->wr_ch_cnt;
667 		mask = dw_irq->rd_mask;
668 	}
669 
670 	val = dw_edma_v0_core_status_done_int(dw, write ?
671 							  EDMA_DIR_WRITE :
672 							  EDMA_DIR_READ);
673 	val &= mask;
674 	for_each_set_bit(pos, &val, total) {
675 		struct dw_edma_chan *chan = &dw->chan[pos + off];
676 
677 		dw_edma_done_interrupt(chan);
678 	}
679 
680 	val = dw_edma_v0_core_status_abort_int(dw, write ?
681 							   EDMA_DIR_WRITE :
682 							   EDMA_DIR_READ);
683 	val &= mask;
684 	for_each_set_bit(pos, &val, total) {
685 		struct dw_edma_chan *chan = &dw->chan[pos + off];
686 
687 		dw_edma_abort_interrupt(chan);
688 	}
689 
690 	return IRQ_HANDLED;
691 }
692 
693 static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
694 {
695 	return dw_edma_interrupt(irq, data, true);
696 }
697 
698 static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
699 {
700 	return dw_edma_interrupt(irq, data, false);
701 }
702 
703 static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
704 {
705 	dw_edma_interrupt(irq, data, true);
706 	dw_edma_interrupt(irq, data, false);
707 
708 	return IRQ_HANDLED;
709 }
710 
711 static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
712 {
713 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
714 
715 	if (chan->status != EDMA_ST_IDLE)
716 		return -EBUSY;
717 
718 	return 0;
719 }
720 
721 static void dw_edma_free_chan_resources(struct dma_chan *dchan)
722 {
723 	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
724 	int ret;
725 
726 	while (time_before(jiffies, timeout)) {
727 		ret = dw_edma_device_terminate_all(dchan);
728 		if (!ret)
729 			break;
730 
731 		if (time_after_eq(jiffies, timeout))
732 			return;
733 
734 		cpu_relax();
735 	}
736 }
737 
738 static int dw_edma_channel_setup(struct dw_edma *dw, u32 wr_alloc, u32 rd_alloc)
739 {
740 	struct dw_edma_chip *chip = dw->chip;
741 	struct device *dev = chip->dev;
742 	struct dw_edma_chan *chan;
743 	struct dw_edma_irq *irq;
744 	struct dma_device *dma;
745 	u32 i, ch_cnt;
746 	u32 pos;
747 
748 	ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
749 	dma = &dw->dma;
750 
751 	INIT_LIST_HEAD(&dma->channels);
752 
753 	for (i = 0; i < ch_cnt; i++) {
754 		chan = &dw->chan[i];
755 
756 		chan->dw = dw;
757 
758 		if (i < dw->wr_ch_cnt) {
759 			chan->id = i;
760 			chan->dir = EDMA_DIR_WRITE;
761 		} else {
762 			chan->id = i - dw->wr_ch_cnt;
763 			chan->dir = EDMA_DIR_READ;
764 		}
765 
766 		chan->configured = false;
767 		chan->request = EDMA_REQ_NONE;
768 		chan->status = EDMA_ST_IDLE;
769 
770 		if (chan->dir == EDMA_DIR_WRITE)
771 			chan->ll_max = (chip->ll_region_wr[chan->id].sz / EDMA_LL_SZ);
772 		else
773 			chan->ll_max = (chip->ll_region_rd[chan->id].sz / EDMA_LL_SZ);
774 		chan->ll_max -= 1;
775 
776 		dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n",
777 			 chan->dir == EDMA_DIR_WRITE ? "write" : "read",
778 			 chan->id, chan->ll_max);
779 
780 		if (dw->nr_irqs == 1)
781 			pos = 0;
782 		else if (chan->dir == EDMA_DIR_WRITE)
783 			pos = chan->id % wr_alloc;
784 		else
785 			pos = wr_alloc + chan->id % rd_alloc;
786 
787 		irq = &dw->irq[pos];
788 
789 		if (chan->dir == EDMA_DIR_WRITE)
790 			irq->wr_mask |= BIT(chan->id);
791 		else
792 			irq->rd_mask |= BIT(chan->id);
793 
794 		irq->dw = dw;
795 		memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
796 
797 		dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
798 			 chan->dir == EDMA_DIR_WRITE  ? "write" : "read", chan->id,
799 			 chan->msi.address_hi, chan->msi.address_lo,
800 			 chan->msi.data);
801 
802 		chan->vc.desc_free = vchan_free_desc;
803 		chan->vc.chan.private = chan->dir == EDMA_DIR_WRITE ?
804 					&dw->chip->dt_region_wr[chan->id] :
805 					&dw->chip->dt_region_rd[chan->id];
806 
807 		vchan_init(&chan->vc, dma);
808 
809 		dw_edma_v0_core_device_config(chan);
810 	}
811 
812 	/* Set DMA channel capabilities */
813 	dma_cap_zero(dma->cap_mask);
814 	dma_cap_set(DMA_SLAVE, dma->cap_mask);
815 	dma_cap_set(DMA_CYCLIC, dma->cap_mask);
816 	dma_cap_set(DMA_PRIVATE, dma->cap_mask);
817 	dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
818 	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
819 	dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
820 	dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
821 	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
822 
823 	/* Set DMA channel callbacks */
824 	dma->dev = chip->dev;
825 	dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
826 	dma->device_free_chan_resources = dw_edma_free_chan_resources;
827 	dma->device_caps = dw_edma_device_caps;
828 	dma->device_config = dw_edma_device_config;
829 	dma->device_pause = dw_edma_device_pause;
830 	dma->device_resume = dw_edma_device_resume;
831 	dma->device_terminate_all = dw_edma_device_terminate_all;
832 	dma->device_issue_pending = dw_edma_device_issue_pending;
833 	dma->device_tx_status = dw_edma_device_tx_status;
834 	dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
835 	dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
836 	dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma;
837 
838 	dma_set_max_seg_size(dma->dev, U32_MAX);
839 
840 	/* Register DMA device */
841 	return dma_async_device_register(dma);
842 }
843 
844 static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
845 {
846 	if (*nr_irqs && *alloc < cnt) {
847 		(*alloc)++;
848 		(*nr_irqs)--;
849 	}
850 }
851 
852 static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
853 {
854 	while (*mask * alloc < cnt)
855 		(*mask)++;
856 }
857 
858 static int dw_edma_irq_request(struct dw_edma *dw,
859 			       u32 *wr_alloc, u32 *rd_alloc)
860 {
861 	struct dw_edma_chip *chip = dw->chip;
862 	struct device *dev = dw->chip->dev;
863 	u32 wr_mask = 1;
864 	u32 rd_mask = 1;
865 	int i, err = 0;
866 	u32 ch_cnt;
867 	int irq;
868 
869 	ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
870 
871 	if (chip->nr_irqs < 1 || !chip->ops->irq_vector)
872 		return -EINVAL;
873 
874 	dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL);
875 	if (!dw->irq)
876 		return -ENOMEM;
877 
878 	if (chip->nr_irqs == 1) {
879 		/* Common IRQ shared among all channels */
880 		irq = chip->ops->irq_vector(dev, 0);
881 		err = request_irq(irq, dw_edma_interrupt_common,
882 				  IRQF_SHARED, dw->name, &dw->irq[0]);
883 		if (err) {
884 			dw->nr_irqs = 0;
885 			return err;
886 		}
887 
888 		if (irq_get_msi_desc(irq))
889 			get_cached_msi_msg(irq, &dw->irq[0].msi);
890 
891 		dw->nr_irqs = 1;
892 	} else {
893 		/* Distribute IRQs equally among all channels */
894 		int tmp = chip->nr_irqs;
895 
896 		while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
897 			dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
898 			dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
899 		}
900 
901 		dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
902 		dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
903 
904 		for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
905 			irq = chip->ops->irq_vector(dev, i);
906 			err = request_irq(irq,
907 					  i < *wr_alloc ?
908 						dw_edma_interrupt_write :
909 						dw_edma_interrupt_read,
910 					  IRQF_SHARED, dw->name,
911 					  &dw->irq[i]);
912 			if (err)
913 				goto err_irq_free;
914 
915 			if (irq_get_msi_desc(irq))
916 				get_cached_msi_msg(irq, &dw->irq[i].msi);
917 		}
918 
919 		dw->nr_irqs = i;
920 	}
921 
922 	return 0;
923 
924 err_irq_free:
925 	for  (i--; i >= 0; i--) {
926 		irq = chip->ops->irq_vector(dev, i);
927 		free_irq(irq, &dw->irq[i]);
928 	}
929 
930 	return err;
931 }
932 
933 int dw_edma_probe(struct dw_edma_chip *chip)
934 {
935 	struct device *dev;
936 	struct dw_edma *dw;
937 	u32 wr_alloc = 0;
938 	u32 rd_alloc = 0;
939 	int i, err;
940 
941 	if (!chip)
942 		return -EINVAL;
943 
944 	dev = chip->dev;
945 	if (!dev || !chip->ops)
946 		return -EINVAL;
947 
948 	dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL);
949 	if (!dw)
950 		return -ENOMEM;
951 
952 	dw->chip = chip;
953 
954 	raw_spin_lock_init(&dw->lock);
955 
956 	dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt,
957 			      dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE));
958 	dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH);
959 
960 	dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt,
961 			      dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ));
962 	dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH);
963 
964 	if (!dw->wr_ch_cnt && !dw->rd_ch_cnt)
965 		return -EINVAL;
966 
967 	dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
968 		 dw->wr_ch_cnt, dw->rd_ch_cnt);
969 
970 	/* Allocate channels */
971 	dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
972 				sizeof(*dw->chan), GFP_KERNEL);
973 	if (!dw->chan)
974 		return -ENOMEM;
975 
976 	snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%s",
977 		 dev_name(chip->dev));
978 
979 	/* Disable eDMA, only to establish the ideal initial conditions */
980 	dw_edma_v0_core_off(dw);
981 
982 	/* Request IRQs */
983 	err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc);
984 	if (err)
985 		return err;
986 
987 	/* Setup write/read channels */
988 	err = dw_edma_channel_setup(dw, wr_alloc, rd_alloc);
989 	if (err)
990 		goto err_irq_free;
991 
992 	/* Turn debugfs on */
993 	dw_edma_v0_core_debugfs_on(dw);
994 
995 	chip->dw = dw;
996 
997 	return 0;
998 
999 err_irq_free:
1000 	for (i = (dw->nr_irqs - 1); i >= 0; i--)
1001 		free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
1002 
1003 	return err;
1004 }
1005 EXPORT_SYMBOL_GPL(dw_edma_probe);
1006 
1007 int dw_edma_remove(struct dw_edma_chip *chip)
1008 {
1009 	struct dw_edma_chan *chan, *_chan;
1010 	struct device *dev = chip->dev;
1011 	struct dw_edma *dw = chip->dw;
1012 	int i;
1013 
1014 	/* Skip removal if no private data found */
1015 	if (!dw)
1016 		return -ENODEV;
1017 
1018 	/* Disable eDMA */
1019 	dw_edma_v0_core_off(dw);
1020 
1021 	/* Free irqs */
1022 	for (i = (dw->nr_irqs - 1); i >= 0; i--)
1023 		free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
1024 
1025 	/* Deregister eDMA device */
1026 	dma_async_device_unregister(&dw->dma);
1027 	list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1028 				 vc.chan.device_node) {
1029 		tasklet_kill(&chan->vc.task);
1030 		list_del(&chan->vc.chan.device_node);
1031 	}
1032 
1033 	return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(dw_edma_remove);
1036 
1037 MODULE_LICENSE("GPL v2");
1038 MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
1039 MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");
1040