xref: /openbmc/linux/drivers/dma/dw-axi-dmac/dw-axi-dmac-platform.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier:  GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3 
4 /*
5  * Synopsys DesignWare AXI DMA Controller driver.
6  *
7  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30 
31 #include "dw-axi-dmac.h"
32 #include "../dmaengine.h"
33 #include "../virt-dma.h"
34 
35 /*
36  * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
37  * master data bus width up to 512 bits (for both AXI master interfaces), but
38  * it depends on IP block configurarion.
39  */
40 #define AXI_DMA_BUSWIDTHS		  \
41 	(DMA_SLAVE_BUSWIDTH_1_BYTE	| \
42 	DMA_SLAVE_BUSWIDTH_2_BYTES	| \
43 	DMA_SLAVE_BUSWIDTH_4_BYTES	| \
44 	DMA_SLAVE_BUSWIDTH_8_BYTES	| \
45 	DMA_SLAVE_BUSWIDTH_16_BYTES	| \
46 	DMA_SLAVE_BUSWIDTH_32_BYTES	| \
47 	DMA_SLAVE_BUSWIDTH_64_BYTES)
48 
49 static inline void
50 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
51 {
52 	iowrite32(val, chip->regs + reg);
53 }
54 
55 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
56 {
57 	return ioread32(chip->regs + reg);
58 }
59 
60 static inline void
61 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
62 {
63 	iowrite32(val, chan->chan_regs + reg);
64 }
65 
66 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
67 {
68 	return ioread32(chan->chan_regs + reg);
69 }
70 
71 static inline void
72 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
73 {
74 	/*
75 	 * We split one 64 bit write for two 32 bit write as some HW doesn't
76 	 * support 64 bit access.
77 	 */
78 	iowrite32(lower_32_bits(val), chan->chan_regs + reg);
79 	iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
80 }
81 
82 static inline void axi_dma_disable(struct axi_dma_chip *chip)
83 {
84 	u32 val;
85 
86 	val = axi_dma_ioread32(chip, DMAC_CFG);
87 	val &= ~DMAC_EN_MASK;
88 	axi_dma_iowrite32(chip, DMAC_CFG, val);
89 }
90 
91 static inline void axi_dma_enable(struct axi_dma_chip *chip)
92 {
93 	u32 val;
94 
95 	val = axi_dma_ioread32(chip, DMAC_CFG);
96 	val |= DMAC_EN_MASK;
97 	axi_dma_iowrite32(chip, DMAC_CFG, val);
98 }
99 
100 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
101 {
102 	u32 val;
103 
104 	val = axi_dma_ioread32(chip, DMAC_CFG);
105 	val &= ~INT_EN_MASK;
106 	axi_dma_iowrite32(chip, DMAC_CFG, val);
107 }
108 
109 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
110 {
111 	u32 val;
112 
113 	val = axi_dma_ioread32(chip, DMAC_CFG);
114 	val |= INT_EN_MASK;
115 	axi_dma_iowrite32(chip, DMAC_CFG, val);
116 }
117 
118 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
119 {
120 	u32 val;
121 
122 	if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
123 		axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
124 	} else {
125 		val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
126 		val &= ~irq_mask;
127 		axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
128 	}
129 }
130 
131 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
132 {
133 	axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
134 }
135 
136 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
137 {
138 	axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
139 }
140 
141 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
142 {
143 	axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
144 }
145 
146 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
147 {
148 	return axi_chan_ioread32(chan, CH_INTSTATUS);
149 }
150 
151 static inline void axi_chan_disable(struct axi_dma_chan *chan)
152 {
153 	u32 val;
154 
155 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
156 	val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
157 	val |=   BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
158 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
159 }
160 
161 static inline void axi_chan_enable(struct axi_dma_chan *chan)
162 {
163 	u32 val;
164 
165 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
166 	val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
167 	       BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
168 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
169 }
170 
171 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
172 {
173 	u32 val;
174 
175 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
176 
177 	return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
178 }
179 
180 static void axi_dma_hw_init(struct axi_dma_chip *chip)
181 {
182 	u32 i;
183 
184 	for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
185 		axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
186 		axi_chan_disable(&chip->dw->chan[i]);
187 	}
188 }
189 
190 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
191 				   dma_addr_t dst, size_t len)
192 {
193 	u32 max_width = chan->chip->dw->hdata->m_data_width;
194 
195 	return __ffs(src | dst | len | BIT(max_width));
196 }
197 
198 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
199 {
200 	return dma_chan_name(&chan->vc.chan);
201 }
202 
203 static struct axi_dma_desc *axi_desc_alloc(u32 num)
204 {
205 	struct axi_dma_desc *desc;
206 
207 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
208 	if (!desc)
209 		return NULL;
210 
211 	desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
212 	if (!desc->hw_desc) {
213 		kfree(desc);
214 		return NULL;
215 	}
216 
217 	return desc;
218 }
219 
220 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
221 					dma_addr_t *addr)
222 {
223 	struct axi_dma_lli *lli;
224 	dma_addr_t phys;
225 
226 	lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
227 	if (unlikely(!lli)) {
228 		dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
229 			axi_chan_name(chan));
230 		return NULL;
231 	}
232 
233 	atomic_inc(&chan->descs_allocated);
234 	*addr = phys;
235 
236 	return lli;
237 }
238 
239 static void axi_desc_put(struct axi_dma_desc *desc)
240 {
241 	struct axi_dma_chan *chan = desc->chan;
242 	int count = atomic_read(&chan->descs_allocated);
243 	struct axi_dma_hw_desc *hw_desc;
244 	int descs_put;
245 
246 	for (descs_put = 0; descs_put < count; descs_put++) {
247 		hw_desc = &desc->hw_desc[descs_put];
248 		dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
249 	}
250 
251 	kfree(desc->hw_desc);
252 	kfree(desc);
253 	atomic_sub(descs_put, &chan->descs_allocated);
254 	dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
255 		axi_chan_name(chan), descs_put,
256 		atomic_read(&chan->descs_allocated));
257 }
258 
259 static void vchan_desc_put(struct virt_dma_desc *vdesc)
260 {
261 	axi_desc_put(vd_to_axi_desc(vdesc));
262 }
263 
264 static enum dma_status
265 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
266 		  struct dma_tx_state *txstate)
267 {
268 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
269 	struct virt_dma_desc *vdesc;
270 	enum dma_status status;
271 	u32 completed_length;
272 	unsigned long flags;
273 	u32 completed_blocks;
274 	size_t bytes = 0;
275 	u32 length;
276 	u32 len;
277 
278 	status = dma_cookie_status(dchan, cookie, txstate);
279 	if (status == DMA_COMPLETE || !txstate)
280 		return status;
281 
282 	spin_lock_irqsave(&chan->vc.lock, flags);
283 
284 	vdesc = vchan_find_desc(&chan->vc, cookie);
285 	if (vdesc) {
286 		length = vd_to_axi_desc(vdesc)->length;
287 		completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
288 		len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
289 		completed_length = completed_blocks * len;
290 		bytes = length - completed_length;
291 	} else {
292 		bytes = vd_to_axi_desc(vdesc)->length;
293 	}
294 
295 	spin_unlock_irqrestore(&chan->vc.lock, flags);
296 	dma_set_residue(txstate, bytes);
297 
298 	return status;
299 }
300 
301 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
302 {
303 	desc->lli->llp = cpu_to_le64(adr);
304 }
305 
306 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
307 {
308 	axi_chan_iowrite64(chan, CH_LLP, adr);
309 }
310 
311 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
312 {
313 	u32 offset = DMAC_APB_BYTE_WR_CH_EN;
314 	u32 reg_width, val;
315 
316 	if (!chan->chip->apb_regs) {
317 		dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
318 		return;
319 	}
320 
321 	reg_width = __ffs(chan->config.dst_addr_width);
322 	if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
323 		offset = DMAC_APB_HALFWORD_WR_CH_EN;
324 
325 	val = ioread32(chan->chip->apb_regs + offset);
326 
327 	if (set)
328 		val |= BIT(chan->id);
329 	else
330 		val &= ~BIT(chan->id);
331 
332 	iowrite32(val, chan->chip->apb_regs + offset);
333 }
334 /* Called in chan locked context */
335 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
336 				      struct axi_dma_desc *first)
337 {
338 	u32 priority = chan->chip->dw->hdata->priority[chan->id];
339 	u32 reg, irq_mask;
340 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
341 
342 	if (unlikely(axi_chan_is_hw_enable(chan))) {
343 		dev_err(chan2dev(chan), "%s is non-idle!\n",
344 			axi_chan_name(chan));
345 
346 		return;
347 	}
348 
349 	axi_dma_enable(chan->chip);
350 
351 	reg = (DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_DST_MULTBLK_TYPE_POS |
352 	       DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
353 	axi_chan_iowrite32(chan, CH_CFG_L, reg);
354 
355 	reg = (DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC << CH_CFG_H_TT_FC_POS |
356 	       priority << CH_CFG_H_PRIORITY_POS |
357 	       DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_DST_POS |
358 	       DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_SRC_POS);
359 	switch (chan->direction) {
360 	case DMA_MEM_TO_DEV:
361 		dw_axi_dma_set_byte_halfword(chan, true);
362 		reg |= (chan->config.device_fc ?
363 			DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
364 			DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC)
365 			<< CH_CFG_H_TT_FC_POS;
366 		break;
367 	case DMA_DEV_TO_MEM:
368 		reg |= (chan->config.device_fc ?
369 			DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
370 			DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC)
371 			<< CH_CFG_H_TT_FC_POS;
372 		break;
373 	default:
374 		break;
375 	}
376 	axi_chan_iowrite32(chan, CH_CFG_H, reg);
377 
378 	write_chan_llp(chan, first->hw_desc[0].llp | lms);
379 
380 	irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
381 	axi_chan_irq_sig_set(chan, irq_mask);
382 
383 	/* Generate 'suspend' status but don't generate interrupt */
384 	irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
385 	axi_chan_irq_set(chan, irq_mask);
386 
387 	axi_chan_enable(chan);
388 }
389 
390 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
391 {
392 	struct axi_dma_desc *desc;
393 	struct virt_dma_desc *vd;
394 
395 	vd = vchan_next_desc(&chan->vc);
396 	if (!vd)
397 		return;
398 
399 	desc = vd_to_axi_desc(vd);
400 	dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
401 		vd->tx.cookie);
402 	axi_chan_block_xfer_start(chan, desc);
403 }
404 
405 static void dma_chan_issue_pending(struct dma_chan *dchan)
406 {
407 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
408 	unsigned long flags;
409 
410 	spin_lock_irqsave(&chan->vc.lock, flags);
411 	if (vchan_issue_pending(&chan->vc))
412 		axi_chan_start_first_queued(chan);
413 	spin_unlock_irqrestore(&chan->vc.lock, flags);
414 }
415 
416 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
417 {
418 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
419 
420 	vchan_synchronize(&chan->vc);
421 }
422 
423 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
424 {
425 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
426 
427 	/* ASSERT: channel is idle */
428 	if (axi_chan_is_hw_enable(chan)) {
429 		dev_err(chan2dev(chan), "%s is non-idle!\n",
430 			axi_chan_name(chan));
431 		return -EBUSY;
432 	}
433 
434 	/* LLI address must be aligned to a 64-byte boundary */
435 	chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
436 					  chan->chip->dev,
437 					  sizeof(struct axi_dma_lli),
438 					  64, 0);
439 	if (!chan->desc_pool) {
440 		dev_err(chan2dev(chan), "No memory for descriptors\n");
441 		return -ENOMEM;
442 	}
443 	dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
444 
445 	pm_runtime_get(chan->chip->dev);
446 
447 	return 0;
448 }
449 
450 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
451 {
452 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
453 
454 	/* ASSERT: channel is idle */
455 	if (axi_chan_is_hw_enable(chan))
456 		dev_err(dchan2dev(dchan), "%s is non-idle!\n",
457 			axi_chan_name(chan));
458 
459 	axi_chan_disable(chan);
460 	axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
461 
462 	vchan_free_chan_resources(&chan->vc);
463 
464 	dma_pool_destroy(chan->desc_pool);
465 	chan->desc_pool = NULL;
466 	dev_vdbg(dchan2dev(dchan),
467 		 "%s: free resources, descriptor still allocated: %u\n",
468 		 axi_chan_name(chan), atomic_read(&chan->descs_allocated));
469 
470 	pm_runtime_put(chan->chip->dev);
471 }
472 
473 static void dw_axi_dma_set_hw_channel(struct axi_dma_chip *chip,
474 				      u32 handshake_num, bool set)
475 {
476 	unsigned long start = 0;
477 	unsigned long reg_value;
478 	unsigned long reg_mask;
479 	unsigned long reg_set;
480 	unsigned long mask;
481 	unsigned long val;
482 
483 	if (!chip->apb_regs) {
484 		dev_dbg(chip->dev, "apb_regs not initialized\n");
485 		return;
486 	}
487 
488 	/*
489 	 * An unused DMA channel has a default value of 0x3F.
490 	 * Lock the DMA channel by assign a handshake number to the channel.
491 	 * Unlock the DMA channel by assign 0x3F to the channel.
492 	 */
493 	if (set) {
494 		reg_set = UNUSED_CHANNEL;
495 		val = handshake_num;
496 	} else {
497 		reg_set = handshake_num;
498 		val = UNUSED_CHANNEL;
499 	}
500 
501 	reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
502 
503 	for_each_set_clump8(start, reg_mask, &reg_value, 64) {
504 		if (reg_mask == reg_set) {
505 			mask = GENMASK_ULL(start + 7, start);
506 			reg_value &= ~mask;
507 			reg_value |= rol64(val, start);
508 			lo_hi_writeq(reg_value,
509 				     chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
510 			break;
511 		}
512 	}
513 }
514 
515 /*
516  * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
517  * as 1, it understands that the current block is the final block in the
518  * transfer and completes the DMA transfer operation at the end of current
519  * block transfer.
520  */
521 static void set_desc_last(struct axi_dma_hw_desc *desc)
522 {
523 	u32 val;
524 
525 	val = le32_to_cpu(desc->lli->ctl_hi);
526 	val |= CH_CTL_H_LLI_LAST;
527 	desc->lli->ctl_hi = cpu_to_le32(val);
528 }
529 
530 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
531 {
532 	desc->lli->sar = cpu_to_le64(adr);
533 }
534 
535 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
536 {
537 	desc->lli->dar = cpu_to_le64(adr);
538 }
539 
540 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
541 {
542 	u32 val;
543 
544 	/* Select AXI0 for source master */
545 	val = le32_to_cpu(desc->lli->ctl_lo);
546 	val &= ~CH_CTL_L_SRC_MAST;
547 	desc->lli->ctl_lo = cpu_to_le32(val);
548 }
549 
550 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
551 				 struct axi_dma_desc *desc)
552 {
553 	u32 val;
554 
555 	/* Select AXI1 for source master if available */
556 	val = le32_to_cpu(hw_desc->lli->ctl_lo);
557 	if (desc->chan->chip->dw->hdata->nr_masters > 1)
558 		val |= CH_CTL_L_DST_MAST;
559 	else
560 		val &= ~CH_CTL_L_DST_MAST;
561 
562 	hw_desc->lli->ctl_lo = cpu_to_le32(val);
563 }
564 
565 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
566 				  struct axi_dma_hw_desc *hw_desc,
567 				  dma_addr_t mem_addr, size_t len)
568 {
569 	unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
570 	unsigned int reg_width;
571 	unsigned int mem_width;
572 	dma_addr_t device_addr;
573 	size_t axi_block_ts;
574 	size_t block_ts;
575 	u32 ctllo, ctlhi;
576 	u32 burst_len;
577 
578 	axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
579 
580 	mem_width = __ffs(data_width | mem_addr | len);
581 	if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
582 		mem_width = DWAXIDMAC_TRANS_WIDTH_32;
583 
584 	if (!IS_ALIGNED(mem_addr, 4)) {
585 		dev_err(chan->chip->dev, "invalid buffer alignment\n");
586 		return -EINVAL;
587 	}
588 
589 	switch (chan->direction) {
590 	case DMA_MEM_TO_DEV:
591 		reg_width = __ffs(chan->config.dst_addr_width);
592 		device_addr = chan->config.dst_addr;
593 		ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
594 			mem_width << CH_CTL_L_SRC_WIDTH_POS |
595 			DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
596 			DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
597 		block_ts = len >> mem_width;
598 		break;
599 	case DMA_DEV_TO_MEM:
600 		reg_width = __ffs(chan->config.src_addr_width);
601 		device_addr = chan->config.src_addr;
602 		ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
603 			mem_width << CH_CTL_L_DST_WIDTH_POS |
604 			DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
605 			DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
606 		block_ts = len >> reg_width;
607 		break;
608 	default:
609 		return -EINVAL;
610 	}
611 
612 	if (block_ts > axi_block_ts)
613 		return -EINVAL;
614 
615 	hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
616 	if (unlikely(!hw_desc->lli))
617 		return -ENOMEM;
618 
619 	ctlhi = CH_CTL_H_LLI_VALID;
620 
621 	if (chan->chip->dw->hdata->restrict_axi_burst_len) {
622 		burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
623 		ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
624 			 burst_len << CH_CTL_H_ARLEN_POS |
625 			 burst_len << CH_CTL_H_AWLEN_POS;
626 	}
627 
628 	hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
629 
630 	if (chan->direction == DMA_MEM_TO_DEV) {
631 		write_desc_sar(hw_desc, mem_addr);
632 		write_desc_dar(hw_desc, device_addr);
633 	} else {
634 		write_desc_sar(hw_desc, device_addr);
635 		write_desc_dar(hw_desc, mem_addr);
636 	}
637 
638 	hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
639 
640 	ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
641 		 DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
642 	hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
643 
644 	set_desc_src_master(hw_desc);
645 
646 	hw_desc->len = len;
647 	return 0;
648 }
649 
650 static size_t calculate_block_len(struct axi_dma_chan *chan,
651 				  dma_addr_t dma_addr, size_t buf_len,
652 				  enum dma_transfer_direction direction)
653 {
654 	u32 data_width, reg_width, mem_width;
655 	size_t axi_block_ts, block_len;
656 
657 	axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
658 
659 	switch (direction) {
660 	case DMA_MEM_TO_DEV:
661 		data_width = BIT(chan->chip->dw->hdata->m_data_width);
662 		mem_width = __ffs(data_width | dma_addr | buf_len);
663 		if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
664 			mem_width = DWAXIDMAC_TRANS_WIDTH_32;
665 
666 		block_len = axi_block_ts << mem_width;
667 		break;
668 	case DMA_DEV_TO_MEM:
669 		reg_width = __ffs(chan->config.src_addr_width);
670 		block_len = axi_block_ts << reg_width;
671 		break;
672 	default:
673 		block_len = 0;
674 	}
675 
676 	return block_len;
677 }
678 
679 static struct dma_async_tx_descriptor *
680 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
681 			    size_t buf_len, size_t period_len,
682 			    enum dma_transfer_direction direction,
683 			    unsigned long flags)
684 {
685 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
686 	struct axi_dma_hw_desc *hw_desc = NULL;
687 	struct axi_dma_desc *desc = NULL;
688 	dma_addr_t src_addr = dma_addr;
689 	u32 num_periods, num_segments;
690 	size_t axi_block_len;
691 	u32 total_segments;
692 	u32 segment_len;
693 	unsigned int i;
694 	int status;
695 	u64 llp = 0;
696 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
697 
698 	num_periods = buf_len / period_len;
699 
700 	axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
701 	if (axi_block_len == 0)
702 		return NULL;
703 
704 	num_segments = DIV_ROUND_UP(period_len, axi_block_len);
705 	segment_len = DIV_ROUND_UP(period_len, num_segments);
706 
707 	total_segments = num_periods * num_segments;
708 
709 	desc = axi_desc_alloc(total_segments);
710 	if (unlikely(!desc))
711 		goto err_desc_get;
712 
713 	chan->direction = direction;
714 	desc->chan = chan;
715 	chan->cyclic = true;
716 	desc->length = 0;
717 	desc->period_len = period_len;
718 
719 	for (i = 0; i < total_segments; i++) {
720 		hw_desc = &desc->hw_desc[i];
721 
722 		status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
723 						segment_len);
724 		if (status < 0)
725 			goto err_desc_get;
726 
727 		desc->length += hw_desc->len;
728 		/* Set end-of-link to the linked descriptor, so that cyclic
729 		 * callback function can be triggered during interrupt.
730 		 */
731 		set_desc_last(hw_desc);
732 
733 		src_addr += segment_len;
734 	}
735 
736 	llp = desc->hw_desc[0].llp;
737 
738 	/* Managed transfer list */
739 	do {
740 		hw_desc = &desc->hw_desc[--total_segments];
741 		write_desc_llp(hw_desc, llp | lms);
742 		llp = hw_desc->llp;
743 	} while (total_segments);
744 
745 	dw_axi_dma_set_hw_channel(chan->chip, chan->hw_handshake_num, true);
746 
747 	return vchan_tx_prep(&chan->vc, &desc->vd, flags);
748 
749 err_desc_get:
750 	if (desc)
751 		axi_desc_put(desc);
752 
753 	return NULL;
754 }
755 
756 static struct dma_async_tx_descriptor *
757 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
758 			      unsigned int sg_len,
759 			      enum dma_transfer_direction direction,
760 			      unsigned long flags, void *context)
761 {
762 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
763 	struct axi_dma_hw_desc *hw_desc = NULL;
764 	struct axi_dma_desc *desc = NULL;
765 	u32 num_segments, segment_len;
766 	unsigned int loop = 0;
767 	struct scatterlist *sg;
768 	size_t axi_block_len;
769 	u32 len, num_sgs = 0;
770 	unsigned int i;
771 	dma_addr_t mem;
772 	int status;
773 	u64 llp = 0;
774 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
775 
776 	if (unlikely(!is_slave_direction(direction) || !sg_len))
777 		return NULL;
778 
779 	mem = sg_dma_address(sgl);
780 	len = sg_dma_len(sgl);
781 
782 	axi_block_len = calculate_block_len(chan, mem, len, direction);
783 	if (axi_block_len == 0)
784 		return NULL;
785 
786 	for_each_sg(sgl, sg, sg_len, i)
787 		num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
788 
789 	desc = axi_desc_alloc(num_sgs);
790 	if (unlikely(!desc))
791 		goto err_desc_get;
792 
793 	desc->chan = chan;
794 	desc->length = 0;
795 	chan->direction = direction;
796 
797 	for_each_sg(sgl, sg, sg_len, i) {
798 		mem = sg_dma_address(sg);
799 		len = sg_dma_len(sg);
800 		num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
801 		segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
802 
803 		do {
804 			hw_desc = &desc->hw_desc[loop++];
805 			status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
806 			if (status < 0)
807 				goto err_desc_get;
808 
809 			desc->length += hw_desc->len;
810 			len -= segment_len;
811 			mem += segment_len;
812 		} while (len >= segment_len);
813 	}
814 
815 	/* Set end-of-link to the last link descriptor of list */
816 	set_desc_last(&desc->hw_desc[num_sgs - 1]);
817 
818 	/* Managed transfer list */
819 	do {
820 		hw_desc = &desc->hw_desc[--num_sgs];
821 		write_desc_llp(hw_desc, llp | lms);
822 		llp = hw_desc->llp;
823 	} while (num_sgs);
824 
825 	dw_axi_dma_set_hw_channel(chan->chip, chan->hw_handshake_num, true);
826 
827 	return vchan_tx_prep(&chan->vc, &desc->vd, flags);
828 
829 err_desc_get:
830 	if (desc)
831 		axi_desc_put(desc);
832 
833 	return NULL;
834 }
835 
836 static struct dma_async_tx_descriptor *
837 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
838 			 dma_addr_t src_adr, size_t len, unsigned long flags)
839 {
840 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
841 	size_t block_ts, max_block_ts, xfer_len;
842 	struct axi_dma_hw_desc *hw_desc = NULL;
843 	struct axi_dma_desc *desc = NULL;
844 	u32 xfer_width, reg, num;
845 	u64 llp = 0;
846 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
847 
848 	dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
849 		axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
850 
851 	max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
852 	xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
853 	num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
854 	desc = axi_desc_alloc(num);
855 	if (unlikely(!desc))
856 		goto err_desc_get;
857 
858 	desc->chan = chan;
859 	num = 0;
860 	desc->length = 0;
861 	while (len) {
862 		xfer_len = len;
863 
864 		hw_desc = &desc->hw_desc[num];
865 		/*
866 		 * Take care for the alignment.
867 		 * Actually source and destination widths can be different, but
868 		 * make them same to be simpler.
869 		 */
870 		xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
871 
872 		/*
873 		 * block_ts indicates the total number of data of width
874 		 * to be transferred in a DMA block transfer.
875 		 * BLOCK_TS register should be set to block_ts - 1
876 		 */
877 		block_ts = xfer_len >> xfer_width;
878 		if (block_ts > max_block_ts) {
879 			block_ts = max_block_ts;
880 			xfer_len = max_block_ts << xfer_width;
881 		}
882 
883 		hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
884 		if (unlikely(!hw_desc->lli))
885 			goto err_desc_get;
886 
887 		write_desc_sar(hw_desc, src_adr);
888 		write_desc_dar(hw_desc, dst_adr);
889 		hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
890 
891 		reg = CH_CTL_H_LLI_VALID;
892 		if (chan->chip->dw->hdata->restrict_axi_burst_len) {
893 			u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
894 
895 			reg |= (CH_CTL_H_ARLEN_EN |
896 				burst_len << CH_CTL_H_ARLEN_POS |
897 				CH_CTL_H_AWLEN_EN |
898 				burst_len << CH_CTL_H_AWLEN_POS);
899 		}
900 		hw_desc->lli->ctl_hi = cpu_to_le32(reg);
901 
902 		reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
903 		       DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
904 		       xfer_width << CH_CTL_L_DST_WIDTH_POS |
905 		       xfer_width << CH_CTL_L_SRC_WIDTH_POS |
906 		       DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
907 		       DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
908 		hw_desc->lli->ctl_lo = cpu_to_le32(reg);
909 
910 		set_desc_src_master(hw_desc);
911 		set_desc_dest_master(hw_desc, desc);
912 
913 		hw_desc->len = xfer_len;
914 		desc->length += hw_desc->len;
915 		/* update the length and addresses for the next loop cycle */
916 		len -= xfer_len;
917 		dst_adr += xfer_len;
918 		src_adr += xfer_len;
919 		num++;
920 	}
921 
922 	/* Set end-of-link to the last link descriptor of list */
923 	set_desc_last(&desc->hw_desc[num - 1]);
924 	/* Managed transfer list */
925 	do {
926 		hw_desc = &desc->hw_desc[--num];
927 		write_desc_llp(hw_desc, llp | lms);
928 		llp = hw_desc->llp;
929 	} while (num);
930 
931 	return vchan_tx_prep(&chan->vc, &desc->vd, flags);
932 
933 err_desc_get:
934 	if (desc)
935 		axi_desc_put(desc);
936 	return NULL;
937 }
938 
939 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
940 					struct dma_slave_config *config)
941 {
942 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
943 
944 	memcpy(&chan->config, config, sizeof(*config));
945 
946 	return 0;
947 }
948 
949 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
950 			      struct axi_dma_hw_desc *desc)
951 {
952 	dev_err(dchan2dev(&chan->vc.chan),
953 		"SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
954 		le64_to_cpu(desc->lli->sar),
955 		le64_to_cpu(desc->lli->dar),
956 		le64_to_cpu(desc->lli->llp),
957 		le32_to_cpu(desc->lli->block_ts_lo),
958 		le32_to_cpu(desc->lli->ctl_hi),
959 		le32_to_cpu(desc->lli->ctl_lo));
960 }
961 
962 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
963 				   struct axi_dma_desc *desc_head)
964 {
965 	int count = atomic_read(&chan->descs_allocated);
966 	int i;
967 
968 	for (i = 0; i < count; i++)
969 		axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
970 }
971 
972 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
973 {
974 	struct virt_dma_desc *vd;
975 	unsigned long flags;
976 
977 	spin_lock_irqsave(&chan->vc.lock, flags);
978 
979 	axi_chan_disable(chan);
980 
981 	/* The bad descriptor currently is in the head of vc list */
982 	vd = vchan_next_desc(&chan->vc);
983 	/* Remove the completed descriptor from issued list */
984 	list_del(&vd->node);
985 
986 	/* WARN about bad descriptor */
987 	dev_err(chan2dev(chan),
988 		"Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
989 		axi_chan_name(chan), vd->tx.cookie, status);
990 	axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
991 
992 	vchan_cookie_complete(vd);
993 
994 	/* Try to restart the controller */
995 	axi_chan_start_first_queued(chan);
996 
997 	spin_unlock_irqrestore(&chan->vc.lock, flags);
998 }
999 
1000 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1001 {
1002 	int count = atomic_read(&chan->descs_allocated);
1003 	struct axi_dma_hw_desc *hw_desc;
1004 	struct axi_dma_desc *desc;
1005 	struct virt_dma_desc *vd;
1006 	unsigned long flags;
1007 	u64 llp;
1008 	int i;
1009 
1010 	spin_lock_irqsave(&chan->vc.lock, flags);
1011 	if (unlikely(axi_chan_is_hw_enable(chan))) {
1012 		dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1013 			axi_chan_name(chan));
1014 		axi_chan_disable(chan);
1015 	}
1016 
1017 	/* The completed descriptor currently is in the head of vc list */
1018 	vd = vchan_next_desc(&chan->vc);
1019 
1020 	if (chan->cyclic) {
1021 		desc = vd_to_axi_desc(vd);
1022 		if (desc) {
1023 			llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1024 			for (i = 0; i < count; i++) {
1025 				hw_desc = &desc->hw_desc[i];
1026 				if (hw_desc->llp == llp) {
1027 					axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1028 					hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1029 					desc->completed_blocks = i;
1030 
1031 					if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1032 						vchan_cyclic_callback(vd);
1033 					break;
1034 				}
1035 			}
1036 
1037 			axi_chan_enable(chan);
1038 		}
1039 	} else {
1040 		/* Remove the completed descriptor from issued list before completing */
1041 		list_del(&vd->node);
1042 		vchan_cookie_complete(vd);
1043 
1044 		/* Submit queued descriptors after processing the completed ones */
1045 		axi_chan_start_first_queued(chan);
1046 	}
1047 
1048 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1049 }
1050 
1051 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1052 {
1053 	struct axi_dma_chip *chip = dev_id;
1054 	struct dw_axi_dma *dw = chip->dw;
1055 	struct axi_dma_chan *chan;
1056 
1057 	u32 status, i;
1058 
1059 	/* Disable DMAC inerrupts. We'll enable them after processing chanels */
1060 	axi_dma_irq_disable(chip);
1061 
1062 	/* Poll, clear and process every chanel interrupt status */
1063 	for (i = 0; i < dw->hdata->nr_channels; i++) {
1064 		chan = &dw->chan[i];
1065 		status = axi_chan_irq_read(chan);
1066 		axi_chan_irq_clear(chan, status);
1067 
1068 		dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1069 			axi_chan_name(chan), i, status);
1070 
1071 		if (status & DWAXIDMAC_IRQ_ALL_ERR)
1072 			axi_chan_handle_err(chan, status);
1073 		else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1074 			axi_chan_block_xfer_complete(chan);
1075 	}
1076 
1077 	/* Re-enable interrupts */
1078 	axi_dma_irq_enable(chip);
1079 
1080 	return IRQ_HANDLED;
1081 }
1082 
1083 static int dma_chan_terminate_all(struct dma_chan *dchan)
1084 {
1085 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1086 	u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1087 	unsigned long flags;
1088 	u32 val;
1089 	int ret;
1090 	LIST_HEAD(head);
1091 
1092 	axi_chan_disable(chan);
1093 
1094 	ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1095 					!(val & chan_active), 1000, 10000);
1096 	if (ret == -ETIMEDOUT)
1097 		dev_warn(dchan2dev(dchan),
1098 			 "%s failed to stop\n", axi_chan_name(chan));
1099 
1100 	if (chan->direction != DMA_MEM_TO_MEM)
1101 		dw_axi_dma_set_hw_channel(chan->chip,
1102 					  chan->hw_handshake_num, false);
1103 	if (chan->direction == DMA_MEM_TO_DEV)
1104 		dw_axi_dma_set_byte_halfword(chan, false);
1105 
1106 	spin_lock_irqsave(&chan->vc.lock, flags);
1107 
1108 	vchan_get_all_descriptors(&chan->vc, &head);
1109 
1110 	chan->cyclic = false;
1111 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1112 
1113 	vchan_dma_desc_free_list(&chan->vc, &head);
1114 
1115 	dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1116 
1117 	return 0;
1118 }
1119 
1120 static int dma_chan_pause(struct dma_chan *dchan)
1121 {
1122 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1123 	unsigned long flags;
1124 	unsigned int timeout = 20; /* timeout iterations */
1125 	u32 val;
1126 
1127 	spin_lock_irqsave(&chan->vc.lock, flags);
1128 
1129 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1130 	val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1131 	       BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1132 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1133 
1134 	do  {
1135 		if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1136 			break;
1137 
1138 		udelay(2);
1139 	} while (--timeout);
1140 
1141 	axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1142 
1143 	chan->is_paused = true;
1144 
1145 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1146 
1147 	return timeout ? 0 : -EAGAIN;
1148 }
1149 
1150 /* Called in chan locked context */
1151 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1152 {
1153 	u32 val;
1154 
1155 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1156 	val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1157 	val |=  (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1158 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1159 
1160 	chan->is_paused = false;
1161 }
1162 
1163 static int dma_chan_resume(struct dma_chan *dchan)
1164 {
1165 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1166 	unsigned long flags;
1167 
1168 	spin_lock_irqsave(&chan->vc.lock, flags);
1169 
1170 	if (chan->is_paused)
1171 		axi_chan_resume(chan);
1172 
1173 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1174 
1175 	return 0;
1176 }
1177 
1178 static int axi_dma_suspend(struct axi_dma_chip *chip)
1179 {
1180 	axi_dma_irq_disable(chip);
1181 	axi_dma_disable(chip);
1182 
1183 	clk_disable_unprepare(chip->core_clk);
1184 	clk_disable_unprepare(chip->cfgr_clk);
1185 
1186 	return 0;
1187 }
1188 
1189 static int axi_dma_resume(struct axi_dma_chip *chip)
1190 {
1191 	int ret;
1192 
1193 	ret = clk_prepare_enable(chip->cfgr_clk);
1194 	if (ret < 0)
1195 		return ret;
1196 
1197 	ret = clk_prepare_enable(chip->core_clk);
1198 	if (ret < 0)
1199 		return ret;
1200 
1201 	axi_dma_enable(chip);
1202 	axi_dma_irq_enable(chip);
1203 
1204 	return 0;
1205 }
1206 
1207 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1208 {
1209 	struct axi_dma_chip *chip = dev_get_drvdata(dev);
1210 
1211 	return axi_dma_suspend(chip);
1212 }
1213 
1214 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1215 {
1216 	struct axi_dma_chip *chip = dev_get_drvdata(dev);
1217 
1218 	return axi_dma_resume(chip);
1219 }
1220 
1221 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1222 					    struct of_dma *ofdma)
1223 {
1224 	struct dw_axi_dma *dw = ofdma->of_dma_data;
1225 	struct axi_dma_chan *chan;
1226 	struct dma_chan *dchan;
1227 
1228 	dchan = dma_get_any_slave_channel(&dw->dma);
1229 	if (!dchan)
1230 		return NULL;
1231 
1232 	chan = dchan_to_axi_dma_chan(dchan);
1233 	chan->hw_handshake_num = dma_spec->args[0];
1234 	return dchan;
1235 }
1236 
1237 static int parse_device_properties(struct axi_dma_chip *chip)
1238 {
1239 	struct device *dev = chip->dev;
1240 	u32 tmp, carr[DMAC_MAX_CHANNELS];
1241 	int ret;
1242 
1243 	ret = device_property_read_u32(dev, "dma-channels", &tmp);
1244 	if (ret)
1245 		return ret;
1246 	if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1247 		return -EINVAL;
1248 
1249 	chip->dw->hdata->nr_channels = tmp;
1250 
1251 	ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1252 	if (ret)
1253 		return ret;
1254 	if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1255 		return -EINVAL;
1256 
1257 	chip->dw->hdata->nr_masters = tmp;
1258 
1259 	ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1260 	if (ret)
1261 		return ret;
1262 	if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1263 		return -EINVAL;
1264 
1265 	chip->dw->hdata->m_data_width = tmp;
1266 
1267 	ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1268 					     chip->dw->hdata->nr_channels);
1269 	if (ret)
1270 		return ret;
1271 	for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1272 		if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1273 			return -EINVAL;
1274 
1275 		chip->dw->hdata->block_size[tmp] = carr[tmp];
1276 	}
1277 
1278 	ret = device_property_read_u32_array(dev, "snps,priority", carr,
1279 					     chip->dw->hdata->nr_channels);
1280 	if (ret)
1281 		return ret;
1282 	/* Priority value must be programmed within [0:nr_channels-1] range */
1283 	for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1284 		if (carr[tmp] >= chip->dw->hdata->nr_channels)
1285 			return -EINVAL;
1286 
1287 		chip->dw->hdata->priority[tmp] = carr[tmp];
1288 	}
1289 
1290 	/* axi-max-burst-len is optional property */
1291 	ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1292 	if (!ret) {
1293 		if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1294 			return -EINVAL;
1295 		if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1296 			return -EINVAL;
1297 
1298 		chip->dw->hdata->restrict_axi_burst_len = true;
1299 		chip->dw->hdata->axi_rw_burst_len = tmp - 1;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 static int dw_probe(struct platform_device *pdev)
1306 {
1307 	struct device_node *node = pdev->dev.of_node;
1308 	struct axi_dma_chip *chip;
1309 	struct resource *mem;
1310 	struct dw_axi_dma *dw;
1311 	struct dw_axi_dma_hcfg *hdata;
1312 	u32 i;
1313 	int ret;
1314 
1315 	chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1316 	if (!chip)
1317 		return -ENOMEM;
1318 
1319 	dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1320 	if (!dw)
1321 		return -ENOMEM;
1322 
1323 	hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1324 	if (!hdata)
1325 		return -ENOMEM;
1326 
1327 	chip->dw = dw;
1328 	chip->dev = &pdev->dev;
1329 	chip->dw->hdata = hdata;
1330 
1331 	chip->irq = platform_get_irq(pdev, 0);
1332 	if (chip->irq < 0)
1333 		return chip->irq;
1334 
1335 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1336 	chip->regs = devm_ioremap_resource(chip->dev, mem);
1337 	if (IS_ERR(chip->regs))
1338 		return PTR_ERR(chip->regs);
1339 
1340 	if (of_device_is_compatible(node, "intel,kmb-axi-dma")) {
1341 		chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1342 		if (IS_ERR(chip->apb_regs))
1343 			return PTR_ERR(chip->apb_regs);
1344 	}
1345 
1346 	chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1347 	if (IS_ERR(chip->core_clk))
1348 		return PTR_ERR(chip->core_clk);
1349 
1350 	chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1351 	if (IS_ERR(chip->cfgr_clk))
1352 		return PTR_ERR(chip->cfgr_clk);
1353 
1354 	ret = parse_device_properties(chip);
1355 	if (ret)
1356 		return ret;
1357 
1358 	dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1359 				sizeof(*dw->chan), GFP_KERNEL);
1360 	if (!dw->chan)
1361 		return -ENOMEM;
1362 
1363 	ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1364 			       IRQF_SHARED, KBUILD_MODNAME, chip);
1365 	if (ret)
1366 		return ret;
1367 
1368 
1369 	INIT_LIST_HEAD(&dw->dma.channels);
1370 	for (i = 0; i < hdata->nr_channels; i++) {
1371 		struct axi_dma_chan *chan = &dw->chan[i];
1372 
1373 		chan->chip = chip;
1374 		chan->id = i;
1375 		chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1376 		atomic_set(&chan->descs_allocated, 0);
1377 
1378 		chan->vc.desc_free = vchan_desc_put;
1379 		vchan_init(&chan->vc, &dw->dma);
1380 	}
1381 
1382 	/* Set capabilities */
1383 	dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1384 	dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1385 	dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1386 
1387 	/* DMA capabilities */
1388 	dw->dma.chancnt = hdata->nr_channels;
1389 	dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1390 	dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1391 	dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1392 	dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1393 	dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1394 
1395 	dw->dma.dev = chip->dev;
1396 	dw->dma.device_tx_status = dma_chan_tx_status;
1397 	dw->dma.device_issue_pending = dma_chan_issue_pending;
1398 	dw->dma.device_terminate_all = dma_chan_terminate_all;
1399 	dw->dma.device_pause = dma_chan_pause;
1400 	dw->dma.device_resume = dma_chan_resume;
1401 
1402 	dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1403 	dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1404 
1405 	dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1406 	dw->dma.device_synchronize = dw_axi_dma_synchronize;
1407 	dw->dma.device_config = dw_axi_dma_chan_slave_config;
1408 	dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1409 	dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1410 
1411 	/*
1412 	 * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1413 	 * supported blocks is 1024. Device register width is 4 bytes.
1414 	 * Therefore, set constraint to 1024 * 4.
1415 	 */
1416 	dw->dma.dev->dma_parms = &dw->dma_parms;
1417 	dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1418 	platform_set_drvdata(pdev, chip);
1419 
1420 	pm_runtime_enable(chip->dev);
1421 
1422 	/*
1423 	 * We can't just call pm_runtime_get here instead of
1424 	 * pm_runtime_get_noresume + axi_dma_resume because we need
1425 	 * driver to work also without Runtime PM.
1426 	 */
1427 	pm_runtime_get_noresume(chip->dev);
1428 	ret = axi_dma_resume(chip);
1429 	if (ret < 0)
1430 		goto err_pm_disable;
1431 
1432 	axi_dma_hw_init(chip);
1433 
1434 	pm_runtime_put(chip->dev);
1435 
1436 	ret = dmaenginem_async_device_register(&dw->dma);
1437 	if (ret)
1438 		goto err_pm_disable;
1439 
1440 	/* Register with OF helpers for DMA lookups */
1441 	ret = of_dma_controller_register(pdev->dev.of_node,
1442 					 dw_axi_dma_of_xlate, dw);
1443 	if (ret < 0)
1444 		dev_warn(&pdev->dev,
1445 			 "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1446 
1447 	dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1448 		 dw->hdata->nr_channels);
1449 
1450 	return 0;
1451 
1452 err_pm_disable:
1453 	pm_runtime_disable(chip->dev);
1454 
1455 	return ret;
1456 }
1457 
1458 static int dw_remove(struct platform_device *pdev)
1459 {
1460 	struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1461 	struct dw_axi_dma *dw = chip->dw;
1462 	struct axi_dma_chan *chan, *_chan;
1463 	u32 i;
1464 
1465 	/* Enable clk before accessing to registers */
1466 	clk_prepare_enable(chip->cfgr_clk);
1467 	clk_prepare_enable(chip->core_clk);
1468 	axi_dma_irq_disable(chip);
1469 	for (i = 0; i < dw->hdata->nr_channels; i++) {
1470 		axi_chan_disable(&chip->dw->chan[i]);
1471 		axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1472 	}
1473 	axi_dma_disable(chip);
1474 
1475 	pm_runtime_disable(chip->dev);
1476 	axi_dma_suspend(chip);
1477 
1478 	devm_free_irq(chip->dev, chip->irq, chip);
1479 
1480 	of_dma_controller_free(chip->dev->of_node);
1481 
1482 	list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1483 			vc.chan.device_node) {
1484 		list_del(&chan->vc.chan.device_node);
1485 		tasklet_kill(&chan->vc.task);
1486 	}
1487 
1488 	return 0;
1489 }
1490 
1491 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1492 	SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1493 };
1494 
1495 static const struct of_device_id dw_dma_of_id_table[] = {
1496 	{ .compatible = "snps,axi-dma-1.01a" },
1497 	{ .compatible = "intel,kmb-axi-dma" },
1498 	{}
1499 };
1500 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1501 
1502 static struct platform_driver dw_driver = {
1503 	.probe		= dw_probe,
1504 	.remove		= dw_remove,
1505 	.driver = {
1506 		.name	= KBUILD_MODNAME,
1507 		.of_match_table = dw_dma_of_id_table,
1508 		.pm = &dw_axi_dma_pm_ops,
1509 	},
1510 };
1511 module_platform_driver(dw_driver);
1512 
1513 MODULE_LICENSE("GPL v2");
1514 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1515 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");
1516