1 // SPDX-License-Identifier:  GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3 
4 /*
5  * Synopsys DesignWare AXI DMA Controller driver.
6  *
7  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30 
31 #include "dw-axi-dmac.h"
32 #include "../dmaengine.h"
33 #include "../virt-dma.h"
34 
35 /*
36  * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
37  * master data bus width up to 512 bits (for both AXI master interfaces), but
38  * it depends on IP block configurarion.
39  */
40 #define AXI_DMA_BUSWIDTHS		  \
41 	(DMA_SLAVE_BUSWIDTH_1_BYTE	| \
42 	DMA_SLAVE_BUSWIDTH_2_BYTES	| \
43 	DMA_SLAVE_BUSWIDTH_4_BYTES	| \
44 	DMA_SLAVE_BUSWIDTH_8_BYTES	| \
45 	DMA_SLAVE_BUSWIDTH_16_BYTES	| \
46 	DMA_SLAVE_BUSWIDTH_32_BYTES	| \
47 	DMA_SLAVE_BUSWIDTH_64_BYTES)
48 
49 static inline void
50 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
51 {
52 	iowrite32(val, chip->regs + reg);
53 }
54 
55 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
56 {
57 	return ioread32(chip->regs + reg);
58 }
59 
60 static inline void
61 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
62 {
63 	iowrite32(val, chan->chan_regs + reg);
64 }
65 
66 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
67 {
68 	return ioread32(chan->chan_regs + reg);
69 }
70 
71 static inline void
72 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
73 {
74 	/*
75 	 * We split one 64 bit write for two 32 bit write as some HW doesn't
76 	 * support 64 bit access.
77 	 */
78 	iowrite32(lower_32_bits(val), chan->chan_regs + reg);
79 	iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
80 }
81 
82 static inline void axi_dma_disable(struct axi_dma_chip *chip)
83 {
84 	u32 val;
85 
86 	val = axi_dma_ioread32(chip, DMAC_CFG);
87 	val &= ~DMAC_EN_MASK;
88 	axi_dma_iowrite32(chip, DMAC_CFG, val);
89 }
90 
91 static inline void axi_dma_enable(struct axi_dma_chip *chip)
92 {
93 	u32 val;
94 
95 	val = axi_dma_ioread32(chip, DMAC_CFG);
96 	val |= DMAC_EN_MASK;
97 	axi_dma_iowrite32(chip, DMAC_CFG, val);
98 }
99 
100 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
101 {
102 	u32 val;
103 
104 	val = axi_dma_ioread32(chip, DMAC_CFG);
105 	val &= ~INT_EN_MASK;
106 	axi_dma_iowrite32(chip, DMAC_CFG, val);
107 }
108 
109 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
110 {
111 	u32 val;
112 
113 	val = axi_dma_ioread32(chip, DMAC_CFG);
114 	val |= INT_EN_MASK;
115 	axi_dma_iowrite32(chip, DMAC_CFG, val);
116 }
117 
118 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
119 {
120 	u32 val;
121 
122 	if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
123 		axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
124 	} else {
125 		val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
126 		val &= ~irq_mask;
127 		axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
128 	}
129 }
130 
131 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
132 {
133 	axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
134 }
135 
136 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
137 {
138 	axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
139 }
140 
141 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
142 {
143 	axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
144 }
145 
146 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
147 {
148 	return axi_chan_ioread32(chan, CH_INTSTATUS);
149 }
150 
151 static inline void axi_chan_disable(struct axi_dma_chan *chan)
152 {
153 	u32 val;
154 
155 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
156 	val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
157 	val |=   BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
158 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
159 }
160 
161 static inline void axi_chan_enable(struct axi_dma_chan *chan)
162 {
163 	u32 val;
164 
165 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
166 	val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
167 	       BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
168 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
169 }
170 
171 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
172 {
173 	u32 val;
174 
175 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
176 
177 	return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
178 }
179 
180 static void axi_dma_hw_init(struct axi_dma_chip *chip)
181 {
182 	u32 i;
183 
184 	for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
185 		axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
186 		axi_chan_disable(&chip->dw->chan[i]);
187 	}
188 }
189 
190 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
191 				   dma_addr_t dst, size_t len)
192 {
193 	u32 max_width = chan->chip->dw->hdata->m_data_width;
194 
195 	return __ffs(src | dst | len | BIT(max_width));
196 }
197 
198 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
199 {
200 	return dma_chan_name(&chan->vc.chan);
201 }
202 
203 static struct axi_dma_desc *axi_desc_alloc(u32 num)
204 {
205 	struct axi_dma_desc *desc;
206 
207 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
208 	if (!desc)
209 		return NULL;
210 
211 	desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
212 	if (!desc->hw_desc) {
213 		kfree(desc);
214 		return NULL;
215 	}
216 
217 	return desc;
218 }
219 
220 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
221 					dma_addr_t *addr)
222 {
223 	struct axi_dma_lli *lli;
224 	dma_addr_t phys;
225 
226 	lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
227 	if (unlikely(!lli)) {
228 		dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
229 			axi_chan_name(chan));
230 		return NULL;
231 	}
232 
233 	atomic_inc(&chan->descs_allocated);
234 	*addr = phys;
235 
236 	return lli;
237 }
238 
239 static void axi_desc_put(struct axi_dma_desc *desc)
240 {
241 	struct axi_dma_chan *chan = desc->chan;
242 	int count = atomic_read(&chan->descs_allocated);
243 	struct axi_dma_hw_desc *hw_desc;
244 	int descs_put;
245 
246 	for (descs_put = 0; descs_put < count; descs_put++) {
247 		hw_desc = &desc->hw_desc[descs_put];
248 		dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
249 	}
250 
251 	kfree(desc->hw_desc);
252 	kfree(desc);
253 	atomic_sub(descs_put, &chan->descs_allocated);
254 	dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
255 		axi_chan_name(chan), descs_put,
256 		atomic_read(&chan->descs_allocated));
257 }
258 
259 static void vchan_desc_put(struct virt_dma_desc *vdesc)
260 {
261 	axi_desc_put(vd_to_axi_desc(vdesc));
262 }
263 
264 static enum dma_status
265 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
266 		  struct dma_tx_state *txstate)
267 {
268 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
269 	struct virt_dma_desc *vdesc;
270 	enum dma_status status;
271 	u32 completed_length;
272 	unsigned long flags;
273 	u32 completed_blocks;
274 	size_t bytes = 0;
275 	u32 length;
276 	u32 len;
277 
278 	status = dma_cookie_status(dchan, cookie, txstate);
279 	if (status == DMA_COMPLETE || !txstate)
280 		return status;
281 
282 	spin_lock_irqsave(&chan->vc.lock, flags);
283 
284 	vdesc = vchan_find_desc(&chan->vc, cookie);
285 	if (vdesc) {
286 		length = vd_to_axi_desc(vdesc)->length;
287 		completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
288 		len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
289 		completed_length = completed_blocks * len;
290 		bytes = length - completed_length;
291 	} else {
292 		bytes = vd_to_axi_desc(vdesc)->length;
293 	}
294 
295 	spin_unlock_irqrestore(&chan->vc.lock, flags);
296 	dma_set_residue(txstate, bytes);
297 
298 	return status;
299 }
300 
301 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
302 {
303 	desc->lli->llp = cpu_to_le64(adr);
304 }
305 
306 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
307 {
308 	axi_chan_iowrite64(chan, CH_LLP, adr);
309 }
310 
311 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
312 {
313 	u32 offset = DMAC_APB_BYTE_WR_CH_EN;
314 	u32 reg_width, val;
315 
316 	if (!chan->chip->apb_regs) {
317 		dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
318 		return;
319 	}
320 
321 	reg_width = __ffs(chan->config.dst_addr_width);
322 	if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
323 		offset = DMAC_APB_HALFWORD_WR_CH_EN;
324 
325 	val = ioread32(chan->chip->apb_regs + offset);
326 
327 	if (set)
328 		val |= BIT(chan->id);
329 	else
330 		val &= ~BIT(chan->id);
331 
332 	iowrite32(val, chan->chip->apb_regs + offset);
333 }
334 /* Called in chan locked context */
335 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
336 				      struct axi_dma_desc *first)
337 {
338 	u32 priority = chan->chip->dw->hdata->priority[chan->id];
339 	u32 reg, irq_mask;
340 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
341 
342 	if (unlikely(axi_chan_is_hw_enable(chan))) {
343 		dev_err(chan2dev(chan), "%s is non-idle!\n",
344 			axi_chan_name(chan));
345 
346 		return;
347 	}
348 
349 	axi_dma_enable(chan->chip);
350 
351 	reg = (DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_DST_MULTBLK_TYPE_POS |
352 	       DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
353 	axi_chan_iowrite32(chan, CH_CFG_L, reg);
354 
355 	reg = (DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC << CH_CFG_H_TT_FC_POS |
356 	       priority << CH_CFG_H_PRIORITY_POS |
357 	       DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_DST_POS |
358 	       DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_SRC_POS);
359 	switch (chan->direction) {
360 	case DMA_MEM_TO_DEV:
361 		dw_axi_dma_set_byte_halfword(chan, true);
362 		reg |= (chan->config.device_fc ?
363 			DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
364 			DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC)
365 			<< CH_CFG_H_TT_FC_POS;
366 		if (chan->chip->apb_regs)
367 			reg |= (chan->id << CH_CFG_H_DST_PER_POS);
368 		break;
369 	case DMA_DEV_TO_MEM:
370 		reg |= (chan->config.device_fc ?
371 			DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
372 			DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC)
373 			<< CH_CFG_H_TT_FC_POS;
374 		if (chan->chip->apb_regs)
375 			reg |= (chan->id << CH_CFG_H_SRC_PER_POS);
376 		break;
377 	default:
378 		break;
379 	}
380 	axi_chan_iowrite32(chan, CH_CFG_H, reg);
381 
382 	write_chan_llp(chan, first->hw_desc[0].llp | lms);
383 
384 	irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
385 	axi_chan_irq_sig_set(chan, irq_mask);
386 
387 	/* Generate 'suspend' status but don't generate interrupt */
388 	irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
389 	axi_chan_irq_set(chan, irq_mask);
390 
391 	axi_chan_enable(chan);
392 }
393 
394 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
395 {
396 	struct axi_dma_desc *desc;
397 	struct virt_dma_desc *vd;
398 
399 	vd = vchan_next_desc(&chan->vc);
400 	if (!vd)
401 		return;
402 
403 	desc = vd_to_axi_desc(vd);
404 	dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
405 		vd->tx.cookie);
406 	axi_chan_block_xfer_start(chan, desc);
407 }
408 
409 static void dma_chan_issue_pending(struct dma_chan *dchan)
410 {
411 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
412 	unsigned long flags;
413 
414 	spin_lock_irqsave(&chan->vc.lock, flags);
415 	if (vchan_issue_pending(&chan->vc))
416 		axi_chan_start_first_queued(chan);
417 	spin_unlock_irqrestore(&chan->vc.lock, flags);
418 }
419 
420 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
421 {
422 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
423 
424 	vchan_synchronize(&chan->vc);
425 }
426 
427 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
428 {
429 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
430 
431 	/* ASSERT: channel is idle */
432 	if (axi_chan_is_hw_enable(chan)) {
433 		dev_err(chan2dev(chan), "%s is non-idle!\n",
434 			axi_chan_name(chan));
435 		return -EBUSY;
436 	}
437 
438 	/* LLI address must be aligned to a 64-byte boundary */
439 	chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
440 					  chan->chip->dev,
441 					  sizeof(struct axi_dma_lli),
442 					  64, 0);
443 	if (!chan->desc_pool) {
444 		dev_err(chan2dev(chan), "No memory for descriptors\n");
445 		return -ENOMEM;
446 	}
447 	dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
448 
449 	pm_runtime_get(chan->chip->dev);
450 
451 	return 0;
452 }
453 
454 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
455 {
456 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
457 
458 	/* ASSERT: channel is idle */
459 	if (axi_chan_is_hw_enable(chan))
460 		dev_err(dchan2dev(dchan), "%s is non-idle!\n",
461 			axi_chan_name(chan));
462 
463 	axi_chan_disable(chan);
464 	axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
465 
466 	vchan_free_chan_resources(&chan->vc);
467 
468 	dma_pool_destroy(chan->desc_pool);
469 	chan->desc_pool = NULL;
470 	dev_vdbg(dchan2dev(dchan),
471 		 "%s: free resources, descriptor still allocated: %u\n",
472 		 axi_chan_name(chan), atomic_read(&chan->descs_allocated));
473 
474 	pm_runtime_put(chan->chip->dev);
475 }
476 
477 static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
478 {
479 	struct axi_dma_chip *chip = chan->chip;
480 	unsigned long reg_value, val;
481 
482 	if (!chip->apb_regs) {
483 		dev_err(chip->dev, "apb_regs not initialized\n");
484 		return;
485 	}
486 
487 	/*
488 	 * An unused DMA channel has a default value of 0x3F.
489 	 * Lock the DMA channel by assign a handshake number to the channel.
490 	 * Unlock the DMA channel by assign 0x3F to the channel.
491 	 */
492 	if (set)
493 		val = chan->hw_handshake_num;
494 	else
495 		val = UNUSED_CHANNEL;
496 
497 	reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
498 
499 	/* Channel is already allocated, set handshake as per channel ID */
500 	/* 64 bit write should handle for 8 channels */
501 
502 	reg_value &= ~(DMA_APB_HS_SEL_MASK <<
503 			(chan->id * DMA_APB_HS_SEL_BIT_SIZE));
504 	reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
505 	lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
506 
507 	return;
508 }
509 
510 /*
511  * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
512  * as 1, it understands that the current block is the final block in the
513  * transfer and completes the DMA transfer operation at the end of current
514  * block transfer.
515  */
516 static void set_desc_last(struct axi_dma_hw_desc *desc)
517 {
518 	u32 val;
519 
520 	val = le32_to_cpu(desc->lli->ctl_hi);
521 	val |= CH_CTL_H_LLI_LAST;
522 	desc->lli->ctl_hi = cpu_to_le32(val);
523 }
524 
525 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
526 {
527 	desc->lli->sar = cpu_to_le64(adr);
528 }
529 
530 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
531 {
532 	desc->lli->dar = cpu_to_le64(adr);
533 }
534 
535 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
536 {
537 	u32 val;
538 
539 	/* Select AXI0 for source master */
540 	val = le32_to_cpu(desc->lli->ctl_lo);
541 	val &= ~CH_CTL_L_SRC_MAST;
542 	desc->lli->ctl_lo = cpu_to_le32(val);
543 }
544 
545 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
546 				 struct axi_dma_desc *desc)
547 {
548 	u32 val;
549 
550 	/* Select AXI1 for source master if available */
551 	val = le32_to_cpu(hw_desc->lli->ctl_lo);
552 	if (desc->chan->chip->dw->hdata->nr_masters > 1)
553 		val |= CH_CTL_L_DST_MAST;
554 	else
555 		val &= ~CH_CTL_L_DST_MAST;
556 
557 	hw_desc->lli->ctl_lo = cpu_to_le32(val);
558 }
559 
560 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
561 				  struct axi_dma_hw_desc *hw_desc,
562 				  dma_addr_t mem_addr, size_t len)
563 {
564 	unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
565 	unsigned int reg_width;
566 	unsigned int mem_width;
567 	dma_addr_t device_addr;
568 	size_t axi_block_ts;
569 	size_t block_ts;
570 	u32 ctllo, ctlhi;
571 	u32 burst_len;
572 
573 	axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
574 
575 	mem_width = __ffs(data_width | mem_addr | len);
576 	if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
577 		mem_width = DWAXIDMAC_TRANS_WIDTH_32;
578 
579 	if (!IS_ALIGNED(mem_addr, 4)) {
580 		dev_err(chan->chip->dev, "invalid buffer alignment\n");
581 		return -EINVAL;
582 	}
583 
584 	switch (chan->direction) {
585 	case DMA_MEM_TO_DEV:
586 		reg_width = __ffs(chan->config.dst_addr_width);
587 		device_addr = chan->config.dst_addr;
588 		ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
589 			mem_width << CH_CTL_L_SRC_WIDTH_POS |
590 			DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
591 			DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
592 		block_ts = len >> mem_width;
593 		break;
594 	case DMA_DEV_TO_MEM:
595 		reg_width = __ffs(chan->config.src_addr_width);
596 		device_addr = chan->config.src_addr;
597 		ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
598 			mem_width << CH_CTL_L_DST_WIDTH_POS |
599 			DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
600 			DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
601 		block_ts = len >> reg_width;
602 		break;
603 	default:
604 		return -EINVAL;
605 	}
606 
607 	if (block_ts > axi_block_ts)
608 		return -EINVAL;
609 
610 	hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
611 	if (unlikely(!hw_desc->lli))
612 		return -ENOMEM;
613 
614 	ctlhi = CH_CTL_H_LLI_VALID;
615 
616 	if (chan->chip->dw->hdata->restrict_axi_burst_len) {
617 		burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
618 		ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
619 			 burst_len << CH_CTL_H_ARLEN_POS |
620 			 burst_len << CH_CTL_H_AWLEN_POS;
621 	}
622 
623 	hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
624 
625 	if (chan->direction == DMA_MEM_TO_DEV) {
626 		write_desc_sar(hw_desc, mem_addr);
627 		write_desc_dar(hw_desc, device_addr);
628 	} else {
629 		write_desc_sar(hw_desc, device_addr);
630 		write_desc_dar(hw_desc, mem_addr);
631 	}
632 
633 	hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
634 
635 	ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
636 		 DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
637 	hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
638 
639 	set_desc_src_master(hw_desc);
640 
641 	hw_desc->len = len;
642 	return 0;
643 }
644 
645 static size_t calculate_block_len(struct axi_dma_chan *chan,
646 				  dma_addr_t dma_addr, size_t buf_len,
647 				  enum dma_transfer_direction direction)
648 {
649 	u32 data_width, reg_width, mem_width;
650 	size_t axi_block_ts, block_len;
651 
652 	axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
653 
654 	switch (direction) {
655 	case DMA_MEM_TO_DEV:
656 		data_width = BIT(chan->chip->dw->hdata->m_data_width);
657 		mem_width = __ffs(data_width | dma_addr | buf_len);
658 		if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
659 			mem_width = DWAXIDMAC_TRANS_WIDTH_32;
660 
661 		block_len = axi_block_ts << mem_width;
662 		break;
663 	case DMA_DEV_TO_MEM:
664 		reg_width = __ffs(chan->config.src_addr_width);
665 		block_len = axi_block_ts << reg_width;
666 		break;
667 	default:
668 		block_len = 0;
669 	}
670 
671 	return block_len;
672 }
673 
674 static struct dma_async_tx_descriptor *
675 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
676 			    size_t buf_len, size_t period_len,
677 			    enum dma_transfer_direction direction,
678 			    unsigned long flags)
679 {
680 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
681 	struct axi_dma_hw_desc *hw_desc = NULL;
682 	struct axi_dma_desc *desc = NULL;
683 	dma_addr_t src_addr = dma_addr;
684 	u32 num_periods, num_segments;
685 	size_t axi_block_len;
686 	u32 total_segments;
687 	u32 segment_len;
688 	unsigned int i;
689 	int status;
690 	u64 llp = 0;
691 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
692 
693 	num_periods = buf_len / period_len;
694 
695 	axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
696 	if (axi_block_len == 0)
697 		return NULL;
698 
699 	num_segments = DIV_ROUND_UP(period_len, axi_block_len);
700 	segment_len = DIV_ROUND_UP(period_len, num_segments);
701 
702 	total_segments = num_periods * num_segments;
703 
704 	desc = axi_desc_alloc(total_segments);
705 	if (unlikely(!desc))
706 		goto err_desc_get;
707 
708 	chan->direction = direction;
709 	desc->chan = chan;
710 	chan->cyclic = true;
711 	desc->length = 0;
712 	desc->period_len = period_len;
713 
714 	for (i = 0; i < total_segments; i++) {
715 		hw_desc = &desc->hw_desc[i];
716 
717 		status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
718 						segment_len);
719 		if (status < 0)
720 			goto err_desc_get;
721 
722 		desc->length += hw_desc->len;
723 		/* Set end-of-link to the linked descriptor, so that cyclic
724 		 * callback function can be triggered during interrupt.
725 		 */
726 		set_desc_last(hw_desc);
727 
728 		src_addr += segment_len;
729 	}
730 
731 	llp = desc->hw_desc[0].llp;
732 
733 	/* Managed transfer list */
734 	do {
735 		hw_desc = &desc->hw_desc[--total_segments];
736 		write_desc_llp(hw_desc, llp | lms);
737 		llp = hw_desc->llp;
738 	} while (total_segments);
739 
740 	dw_axi_dma_set_hw_channel(chan, true);
741 
742 	return vchan_tx_prep(&chan->vc, &desc->vd, flags);
743 
744 err_desc_get:
745 	if (desc)
746 		axi_desc_put(desc);
747 
748 	return NULL;
749 }
750 
751 static struct dma_async_tx_descriptor *
752 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
753 			      unsigned int sg_len,
754 			      enum dma_transfer_direction direction,
755 			      unsigned long flags, void *context)
756 {
757 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
758 	struct axi_dma_hw_desc *hw_desc = NULL;
759 	struct axi_dma_desc *desc = NULL;
760 	u32 num_segments, segment_len;
761 	unsigned int loop = 0;
762 	struct scatterlist *sg;
763 	size_t axi_block_len;
764 	u32 len, num_sgs = 0;
765 	unsigned int i;
766 	dma_addr_t mem;
767 	int status;
768 	u64 llp = 0;
769 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
770 
771 	if (unlikely(!is_slave_direction(direction) || !sg_len))
772 		return NULL;
773 
774 	mem = sg_dma_address(sgl);
775 	len = sg_dma_len(sgl);
776 
777 	axi_block_len = calculate_block_len(chan, mem, len, direction);
778 	if (axi_block_len == 0)
779 		return NULL;
780 
781 	for_each_sg(sgl, sg, sg_len, i)
782 		num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
783 
784 	desc = axi_desc_alloc(num_sgs);
785 	if (unlikely(!desc))
786 		goto err_desc_get;
787 
788 	desc->chan = chan;
789 	desc->length = 0;
790 	chan->direction = direction;
791 
792 	for_each_sg(sgl, sg, sg_len, i) {
793 		mem = sg_dma_address(sg);
794 		len = sg_dma_len(sg);
795 		num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
796 		segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
797 
798 		do {
799 			hw_desc = &desc->hw_desc[loop++];
800 			status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
801 			if (status < 0)
802 				goto err_desc_get;
803 
804 			desc->length += hw_desc->len;
805 			len -= segment_len;
806 			mem += segment_len;
807 		} while (len >= segment_len);
808 	}
809 
810 	/* Set end-of-link to the last link descriptor of list */
811 	set_desc_last(&desc->hw_desc[num_sgs - 1]);
812 
813 	/* Managed transfer list */
814 	do {
815 		hw_desc = &desc->hw_desc[--num_sgs];
816 		write_desc_llp(hw_desc, llp | lms);
817 		llp = hw_desc->llp;
818 	} while (num_sgs);
819 
820 	dw_axi_dma_set_hw_channel(chan, true);
821 
822 	return vchan_tx_prep(&chan->vc, &desc->vd, flags);
823 
824 err_desc_get:
825 	if (desc)
826 		axi_desc_put(desc);
827 
828 	return NULL;
829 }
830 
831 static struct dma_async_tx_descriptor *
832 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
833 			 dma_addr_t src_adr, size_t len, unsigned long flags)
834 {
835 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
836 	size_t block_ts, max_block_ts, xfer_len;
837 	struct axi_dma_hw_desc *hw_desc = NULL;
838 	struct axi_dma_desc *desc = NULL;
839 	u32 xfer_width, reg, num;
840 	u64 llp = 0;
841 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
842 
843 	dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
844 		axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
845 
846 	max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
847 	xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
848 	num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
849 	desc = axi_desc_alloc(num);
850 	if (unlikely(!desc))
851 		goto err_desc_get;
852 
853 	desc->chan = chan;
854 	num = 0;
855 	desc->length = 0;
856 	while (len) {
857 		xfer_len = len;
858 
859 		hw_desc = &desc->hw_desc[num];
860 		/*
861 		 * Take care for the alignment.
862 		 * Actually source and destination widths can be different, but
863 		 * make them same to be simpler.
864 		 */
865 		xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
866 
867 		/*
868 		 * block_ts indicates the total number of data of width
869 		 * to be transferred in a DMA block transfer.
870 		 * BLOCK_TS register should be set to block_ts - 1
871 		 */
872 		block_ts = xfer_len >> xfer_width;
873 		if (block_ts > max_block_ts) {
874 			block_ts = max_block_ts;
875 			xfer_len = max_block_ts << xfer_width;
876 		}
877 
878 		hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
879 		if (unlikely(!hw_desc->lli))
880 			goto err_desc_get;
881 
882 		write_desc_sar(hw_desc, src_adr);
883 		write_desc_dar(hw_desc, dst_adr);
884 		hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
885 
886 		reg = CH_CTL_H_LLI_VALID;
887 		if (chan->chip->dw->hdata->restrict_axi_burst_len) {
888 			u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
889 
890 			reg |= (CH_CTL_H_ARLEN_EN |
891 				burst_len << CH_CTL_H_ARLEN_POS |
892 				CH_CTL_H_AWLEN_EN |
893 				burst_len << CH_CTL_H_AWLEN_POS);
894 		}
895 		hw_desc->lli->ctl_hi = cpu_to_le32(reg);
896 
897 		reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
898 		       DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
899 		       xfer_width << CH_CTL_L_DST_WIDTH_POS |
900 		       xfer_width << CH_CTL_L_SRC_WIDTH_POS |
901 		       DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
902 		       DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
903 		hw_desc->lli->ctl_lo = cpu_to_le32(reg);
904 
905 		set_desc_src_master(hw_desc);
906 		set_desc_dest_master(hw_desc, desc);
907 
908 		hw_desc->len = xfer_len;
909 		desc->length += hw_desc->len;
910 		/* update the length and addresses for the next loop cycle */
911 		len -= xfer_len;
912 		dst_adr += xfer_len;
913 		src_adr += xfer_len;
914 		num++;
915 	}
916 
917 	/* Set end-of-link to the last link descriptor of list */
918 	set_desc_last(&desc->hw_desc[num - 1]);
919 	/* Managed transfer list */
920 	do {
921 		hw_desc = &desc->hw_desc[--num];
922 		write_desc_llp(hw_desc, llp | lms);
923 		llp = hw_desc->llp;
924 	} while (num);
925 
926 	return vchan_tx_prep(&chan->vc, &desc->vd, flags);
927 
928 err_desc_get:
929 	if (desc)
930 		axi_desc_put(desc);
931 	return NULL;
932 }
933 
934 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
935 					struct dma_slave_config *config)
936 {
937 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
938 
939 	memcpy(&chan->config, config, sizeof(*config));
940 
941 	return 0;
942 }
943 
944 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
945 			      struct axi_dma_hw_desc *desc)
946 {
947 	dev_err(dchan2dev(&chan->vc.chan),
948 		"SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
949 		le64_to_cpu(desc->lli->sar),
950 		le64_to_cpu(desc->lli->dar),
951 		le64_to_cpu(desc->lli->llp),
952 		le32_to_cpu(desc->lli->block_ts_lo),
953 		le32_to_cpu(desc->lli->ctl_hi),
954 		le32_to_cpu(desc->lli->ctl_lo));
955 }
956 
957 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
958 				   struct axi_dma_desc *desc_head)
959 {
960 	int count = atomic_read(&chan->descs_allocated);
961 	int i;
962 
963 	for (i = 0; i < count; i++)
964 		axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
965 }
966 
967 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
968 {
969 	struct virt_dma_desc *vd;
970 	unsigned long flags;
971 
972 	spin_lock_irqsave(&chan->vc.lock, flags);
973 
974 	axi_chan_disable(chan);
975 
976 	/* The bad descriptor currently is in the head of vc list */
977 	vd = vchan_next_desc(&chan->vc);
978 	/* Remove the completed descriptor from issued list */
979 	list_del(&vd->node);
980 
981 	/* WARN about bad descriptor */
982 	dev_err(chan2dev(chan),
983 		"Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
984 		axi_chan_name(chan), vd->tx.cookie, status);
985 	axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
986 
987 	vchan_cookie_complete(vd);
988 
989 	/* Try to restart the controller */
990 	axi_chan_start_first_queued(chan);
991 
992 	spin_unlock_irqrestore(&chan->vc.lock, flags);
993 }
994 
995 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
996 {
997 	int count = atomic_read(&chan->descs_allocated);
998 	struct axi_dma_hw_desc *hw_desc;
999 	struct axi_dma_desc *desc;
1000 	struct virt_dma_desc *vd;
1001 	unsigned long flags;
1002 	u64 llp;
1003 	int i;
1004 
1005 	spin_lock_irqsave(&chan->vc.lock, flags);
1006 	if (unlikely(axi_chan_is_hw_enable(chan))) {
1007 		dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1008 			axi_chan_name(chan));
1009 		axi_chan_disable(chan);
1010 	}
1011 
1012 	/* The completed descriptor currently is in the head of vc list */
1013 	vd = vchan_next_desc(&chan->vc);
1014 
1015 	if (chan->cyclic) {
1016 		desc = vd_to_axi_desc(vd);
1017 		if (desc) {
1018 			llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1019 			for (i = 0; i < count; i++) {
1020 				hw_desc = &desc->hw_desc[i];
1021 				if (hw_desc->llp == llp) {
1022 					axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1023 					hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1024 					desc->completed_blocks = i;
1025 
1026 					if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1027 						vchan_cyclic_callback(vd);
1028 					break;
1029 				}
1030 			}
1031 
1032 			axi_chan_enable(chan);
1033 		}
1034 	} else {
1035 		/* Remove the completed descriptor from issued list before completing */
1036 		list_del(&vd->node);
1037 		vchan_cookie_complete(vd);
1038 
1039 		/* Submit queued descriptors after processing the completed ones */
1040 		axi_chan_start_first_queued(chan);
1041 	}
1042 
1043 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1044 }
1045 
1046 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1047 {
1048 	struct axi_dma_chip *chip = dev_id;
1049 	struct dw_axi_dma *dw = chip->dw;
1050 	struct axi_dma_chan *chan;
1051 
1052 	u32 status, i;
1053 
1054 	/* Disable DMAC inerrupts. We'll enable them after processing chanels */
1055 	axi_dma_irq_disable(chip);
1056 
1057 	/* Poll, clear and process every chanel interrupt status */
1058 	for (i = 0; i < dw->hdata->nr_channels; i++) {
1059 		chan = &dw->chan[i];
1060 		status = axi_chan_irq_read(chan);
1061 		axi_chan_irq_clear(chan, status);
1062 
1063 		dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1064 			axi_chan_name(chan), i, status);
1065 
1066 		if (status & DWAXIDMAC_IRQ_ALL_ERR)
1067 			axi_chan_handle_err(chan, status);
1068 		else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1069 			axi_chan_block_xfer_complete(chan);
1070 	}
1071 
1072 	/* Re-enable interrupts */
1073 	axi_dma_irq_enable(chip);
1074 
1075 	return IRQ_HANDLED;
1076 }
1077 
1078 static int dma_chan_terminate_all(struct dma_chan *dchan)
1079 {
1080 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1081 	u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1082 	unsigned long flags;
1083 	u32 val;
1084 	int ret;
1085 	LIST_HEAD(head);
1086 
1087 	axi_chan_disable(chan);
1088 
1089 	ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1090 					!(val & chan_active), 1000, 10000);
1091 	if (ret == -ETIMEDOUT)
1092 		dev_warn(dchan2dev(dchan),
1093 			 "%s failed to stop\n", axi_chan_name(chan));
1094 
1095 	if (chan->direction != DMA_MEM_TO_MEM)
1096 		dw_axi_dma_set_hw_channel(chan, false);
1097 	if (chan->direction == DMA_MEM_TO_DEV)
1098 		dw_axi_dma_set_byte_halfword(chan, false);
1099 
1100 	spin_lock_irqsave(&chan->vc.lock, flags);
1101 
1102 	vchan_get_all_descriptors(&chan->vc, &head);
1103 
1104 	chan->cyclic = false;
1105 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1106 
1107 	vchan_dma_desc_free_list(&chan->vc, &head);
1108 
1109 	dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1110 
1111 	return 0;
1112 }
1113 
1114 static int dma_chan_pause(struct dma_chan *dchan)
1115 {
1116 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1117 	unsigned long flags;
1118 	unsigned int timeout = 20; /* timeout iterations */
1119 	u32 val;
1120 
1121 	spin_lock_irqsave(&chan->vc.lock, flags);
1122 
1123 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1124 	val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1125 	       BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1126 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1127 
1128 	do  {
1129 		if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1130 			break;
1131 
1132 		udelay(2);
1133 	} while (--timeout);
1134 
1135 	axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1136 
1137 	chan->is_paused = true;
1138 
1139 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1140 
1141 	return timeout ? 0 : -EAGAIN;
1142 }
1143 
1144 /* Called in chan locked context */
1145 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1146 {
1147 	u32 val;
1148 
1149 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1150 	val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1151 	val |=  (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1152 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1153 
1154 	chan->is_paused = false;
1155 }
1156 
1157 static int dma_chan_resume(struct dma_chan *dchan)
1158 {
1159 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1160 	unsigned long flags;
1161 
1162 	spin_lock_irqsave(&chan->vc.lock, flags);
1163 
1164 	if (chan->is_paused)
1165 		axi_chan_resume(chan);
1166 
1167 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1168 
1169 	return 0;
1170 }
1171 
1172 static int axi_dma_suspend(struct axi_dma_chip *chip)
1173 {
1174 	axi_dma_irq_disable(chip);
1175 	axi_dma_disable(chip);
1176 
1177 	clk_disable_unprepare(chip->core_clk);
1178 	clk_disable_unprepare(chip->cfgr_clk);
1179 
1180 	return 0;
1181 }
1182 
1183 static int axi_dma_resume(struct axi_dma_chip *chip)
1184 {
1185 	int ret;
1186 
1187 	ret = clk_prepare_enable(chip->cfgr_clk);
1188 	if (ret < 0)
1189 		return ret;
1190 
1191 	ret = clk_prepare_enable(chip->core_clk);
1192 	if (ret < 0)
1193 		return ret;
1194 
1195 	axi_dma_enable(chip);
1196 	axi_dma_irq_enable(chip);
1197 
1198 	return 0;
1199 }
1200 
1201 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1202 {
1203 	struct axi_dma_chip *chip = dev_get_drvdata(dev);
1204 
1205 	return axi_dma_suspend(chip);
1206 }
1207 
1208 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1209 {
1210 	struct axi_dma_chip *chip = dev_get_drvdata(dev);
1211 
1212 	return axi_dma_resume(chip);
1213 }
1214 
1215 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1216 					    struct of_dma *ofdma)
1217 {
1218 	struct dw_axi_dma *dw = ofdma->of_dma_data;
1219 	struct axi_dma_chan *chan;
1220 	struct dma_chan *dchan;
1221 
1222 	dchan = dma_get_any_slave_channel(&dw->dma);
1223 	if (!dchan)
1224 		return NULL;
1225 
1226 	chan = dchan_to_axi_dma_chan(dchan);
1227 	chan->hw_handshake_num = dma_spec->args[0];
1228 	return dchan;
1229 }
1230 
1231 static int parse_device_properties(struct axi_dma_chip *chip)
1232 {
1233 	struct device *dev = chip->dev;
1234 	u32 tmp, carr[DMAC_MAX_CHANNELS];
1235 	int ret;
1236 
1237 	ret = device_property_read_u32(dev, "dma-channels", &tmp);
1238 	if (ret)
1239 		return ret;
1240 	if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1241 		return -EINVAL;
1242 
1243 	chip->dw->hdata->nr_channels = tmp;
1244 
1245 	ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1246 	if (ret)
1247 		return ret;
1248 	if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1249 		return -EINVAL;
1250 
1251 	chip->dw->hdata->nr_masters = tmp;
1252 
1253 	ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1254 	if (ret)
1255 		return ret;
1256 	if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1257 		return -EINVAL;
1258 
1259 	chip->dw->hdata->m_data_width = tmp;
1260 
1261 	ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1262 					     chip->dw->hdata->nr_channels);
1263 	if (ret)
1264 		return ret;
1265 	for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1266 		if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1267 			return -EINVAL;
1268 
1269 		chip->dw->hdata->block_size[tmp] = carr[tmp];
1270 	}
1271 
1272 	ret = device_property_read_u32_array(dev, "snps,priority", carr,
1273 					     chip->dw->hdata->nr_channels);
1274 	if (ret)
1275 		return ret;
1276 	/* Priority value must be programmed within [0:nr_channels-1] range */
1277 	for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1278 		if (carr[tmp] >= chip->dw->hdata->nr_channels)
1279 			return -EINVAL;
1280 
1281 		chip->dw->hdata->priority[tmp] = carr[tmp];
1282 	}
1283 
1284 	/* axi-max-burst-len is optional property */
1285 	ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1286 	if (!ret) {
1287 		if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1288 			return -EINVAL;
1289 		if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1290 			return -EINVAL;
1291 
1292 		chip->dw->hdata->restrict_axi_burst_len = true;
1293 		chip->dw->hdata->axi_rw_burst_len = tmp;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 static int dw_probe(struct platform_device *pdev)
1300 {
1301 	struct device_node *node = pdev->dev.of_node;
1302 	struct axi_dma_chip *chip;
1303 	struct resource *mem;
1304 	struct dw_axi_dma *dw;
1305 	struct dw_axi_dma_hcfg *hdata;
1306 	u32 i;
1307 	int ret;
1308 
1309 	chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1310 	if (!chip)
1311 		return -ENOMEM;
1312 
1313 	dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1314 	if (!dw)
1315 		return -ENOMEM;
1316 
1317 	hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1318 	if (!hdata)
1319 		return -ENOMEM;
1320 
1321 	chip->dw = dw;
1322 	chip->dev = &pdev->dev;
1323 	chip->dw->hdata = hdata;
1324 
1325 	chip->irq = platform_get_irq(pdev, 0);
1326 	if (chip->irq < 0)
1327 		return chip->irq;
1328 
1329 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1330 	chip->regs = devm_ioremap_resource(chip->dev, mem);
1331 	if (IS_ERR(chip->regs))
1332 		return PTR_ERR(chip->regs);
1333 
1334 	if (of_device_is_compatible(node, "intel,kmb-axi-dma")) {
1335 		chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1336 		if (IS_ERR(chip->apb_regs))
1337 			return PTR_ERR(chip->apb_regs);
1338 	}
1339 
1340 	chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1341 	if (IS_ERR(chip->core_clk))
1342 		return PTR_ERR(chip->core_clk);
1343 
1344 	chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1345 	if (IS_ERR(chip->cfgr_clk))
1346 		return PTR_ERR(chip->cfgr_clk);
1347 
1348 	ret = parse_device_properties(chip);
1349 	if (ret)
1350 		return ret;
1351 
1352 	dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1353 				sizeof(*dw->chan), GFP_KERNEL);
1354 	if (!dw->chan)
1355 		return -ENOMEM;
1356 
1357 	ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1358 			       IRQF_SHARED, KBUILD_MODNAME, chip);
1359 	if (ret)
1360 		return ret;
1361 
1362 	INIT_LIST_HEAD(&dw->dma.channels);
1363 	for (i = 0; i < hdata->nr_channels; i++) {
1364 		struct axi_dma_chan *chan = &dw->chan[i];
1365 
1366 		chan->chip = chip;
1367 		chan->id = i;
1368 		chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1369 		atomic_set(&chan->descs_allocated, 0);
1370 
1371 		chan->vc.desc_free = vchan_desc_put;
1372 		vchan_init(&chan->vc, &dw->dma);
1373 	}
1374 
1375 	/* Set capabilities */
1376 	dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1377 	dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1378 	dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1379 
1380 	/* DMA capabilities */
1381 	dw->dma.chancnt = hdata->nr_channels;
1382 	dw->dma.max_burst = hdata->axi_rw_burst_len;
1383 	dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1384 	dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1385 	dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1386 	dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1387 	dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1388 
1389 	dw->dma.dev = chip->dev;
1390 	dw->dma.device_tx_status = dma_chan_tx_status;
1391 	dw->dma.device_issue_pending = dma_chan_issue_pending;
1392 	dw->dma.device_terminate_all = dma_chan_terminate_all;
1393 	dw->dma.device_pause = dma_chan_pause;
1394 	dw->dma.device_resume = dma_chan_resume;
1395 
1396 	dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1397 	dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1398 
1399 	dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1400 	dw->dma.device_synchronize = dw_axi_dma_synchronize;
1401 	dw->dma.device_config = dw_axi_dma_chan_slave_config;
1402 	dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1403 	dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1404 
1405 	/*
1406 	 * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1407 	 * supported blocks is 1024. Device register width is 4 bytes.
1408 	 * Therefore, set constraint to 1024 * 4.
1409 	 */
1410 	dw->dma.dev->dma_parms = &dw->dma_parms;
1411 	dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1412 	platform_set_drvdata(pdev, chip);
1413 
1414 	pm_runtime_enable(chip->dev);
1415 
1416 	/*
1417 	 * We can't just call pm_runtime_get here instead of
1418 	 * pm_runtime_get_noresume + axi_dma_resume because we need
1419 	 * driver to work also without Runtime PM.
1420 	 */
1421 	pm_runtime_get_noresume(chip->dev);
1422 	ret = axi_dma_resume(chip);
1423 	if (ret < 0)
1424 		goto err_pm_disable;
1425 
1426 	axi_dma_hw_init(chip);
1427 
1428 	pm_runtime_put(chip->dev);
1429 
1430 	ret = dmaenginem_async_device_register(&dw->dma);
1431 	if (ret)
1432 		goto err_pm_disable;
1433 
1434 	/* Register with OF helpers for DMA lookups */
1435 	ret = of_dma_controller_register(pdev->dev.of_node,
1436 					 dw_axi_dma_of_xlate, dw);
1437 	if (ret < 0)
1438 		dev_warn(&pdev->dev,
1439 			 "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1440 
1441 	dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1442 		 dw->hdata->nr_channels);
1443 
1444 	return 0;
1445 
1446 err_pm_disable:
1447 	pm_runtime_disable(chip->dev);
1448 
1449 	return ret;
1450 }
1451 
1452 static int dw_remove(struct platform_device *pdev)
1453 {
1454 	struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1455 	struct dw_axi_dma *dw = chip->dw;
1456 	struct axi_dma_chan *chan, *_chan;
1457 	u32 i;
1458 
1459 	/* Enable clk before accessing to registers */
1460 	clk_prepare_enable(chip->cfgr_clk);
1461 	clk_prepare_enable(chip->core_clk);
1462 	axi_dma_irq_disable(chip);
1463 	for (i = 0; i < dw->hdata->nr_channels; i++) {
1464 		axi_chan_disable(&chip->dw->chan[i]);
1465 		axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1466 	}
1467 	axi_dma_disable(chip);
1468 
1469 	pm_runtime_disable(chip->dev);
1470 	axi_dma_suspend(chip);
1471 
1472 	devm_free_irq(chip->dev, chip->irq, chip);
1473 
1474 	of_dma_controller_free(chip->dev->of_node);
1475 
1476 	list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1477 			vc.chan.device_node) {
1478 		list_del(&chan->vc.chan.device_node);
1479 		tasklet_kill(&chan->vc.task);
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1486 	SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1487 };
1488 
1489 static const struct of_device_id dw_dma_of_id_table[] = {
1490 	{ .compatible = "snps,axi-dma-1.01a" },
1491 	{ .compatible = "intel,kmb-axi-dma" },
1492 	{}
1493 };
1494 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1495 
1496 static struct platform_driver dw_driver = {
1497 	.probe		= dw_probe,
1498 	.remove		= dw_remove,
1499 	.driver = {
1500 		.name	= KBUILD_MODNAME,
1501 		.of_match_table = dw_dma_of_id_table,
1502 		.pm = &dw_axi_dma_pm_ops,
1503 	},
1504 };
1505 module_platform_driver(dw_driver);
1506 
1507 MODULE_LICENSE("GPL v2");
1508 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1509 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");
1510