1 // SPDX-License-Identifier: GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3
4 /*
5 * Synopsys DesignWare AXI DMA Controller driver.
6 *
7 * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8 */
9
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/reset.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
31
32 #include "dw-axi-dmac.h"
33 #include "../dmaengine.h"
34 #include "../virt-dma.h"
35
36 /*
37 * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
38 * master data bus width up to 512 bits (for both AXI master interfaces), but
39 * it depends on IP block configuration.
40 */
41 #define AXI_DMA_BUSWIDTHS \
42 (DMA_SLAVE_BUSWIDTH_1_BYTE | \
43 DMA_SLAVE_BUSWIDTH_2_BYTES | \
44 DMA_SLAVE_BUSWIDTH_4_BYTES | \
45 DMA_SLAVE_BUSWIDTH_8_BYTES | \
46 DMA_SLAVE_BUSWIDTH_16_BYTES | \
47 DMA_SLAVE_BUSWIDTH_32_BYTES | \
48 DMA_SLAVE_BUSWIDTH_64_BYTES)
49
50 #define AXI_DMA_FLAG_HAS_APB_REGS BIT(0)
51 #define AXI_DMA_FLAG_HAS_RESETS BIT(1)
52 #define AXI_DMA_FLAG_USE_CFG2 BIT(2)
53
54 static inline void
axi_dma_iowrite32(struct axi_dma_chip * chip,u32 reg,u32 val)55 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
56 {
57 iowrite32(val, chip->regs + reg);
58 }
59
axi_dma_ioread32(struct axi_dma_chip * chip,u32 reg)60 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
61 {
62 return ioread32(chip->regs + reg);
63 }
64
65 static inline void
axi_chan_iowrite32(struct axi_dma_chan * chan,u32 reg,u32 val)66 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
67 {
68 iowrite32(val, chan->chan_regs + reg);
69 }
70
axi_chan_ioread32(struct axi_dma_chan * chan,u32 reg)71 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
72 {
73 return ioread32(chan->chan_regs + reg);
74 }
75
76 static inline void
axi_chan_iowrite64(struct axi_dma_chan * chan,u32 reg,u64 val)77 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
78 {
79 /*
80 * We split one 64 bit write for two 32 bit write as some HW doesn't
81 * support 64 bit access.
82 */
83 iowrite32(lower_32_bits(val), chan->chan_regs + reg);
84 iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
85 }
86
axi_chan_config_write(struct axi_dma_chan * chan,struct axi_dma_chan_config * config)87 static inline void axi_chan_config_write(struct axi_dma_chan *chan,
88 struct axi_dma_chan_config *config)
89 {
90 u32 cfg_lo, cfg_hi;
91
92 cfg_lo = (config->dst_multblk_type << CH_CFG_L_DST_MULTBLK_TYPE_POS |
93 config->src_multblk_type << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
94 if (chan->chip->dw->hdata->reg_map_8_channels &&
95 !chan->chip->dw->hdata->use_cfg2) {
96 cfg_hi = config->tt_fc << CH_CFG_H_TT_FC_POS |
97 config->hs_sel_src << CH_CFG_H_HS_SEL_SRC_POS |
98 config->hs_sel_dst << CH_CFG_H_HS_SEL_DST_POS |
99 config->src_per << CH_CFG_H_SRC_PER_POS |
100 config->dst_per << CH_CFG_H_DST_PER_POS |
101 config->prior << CH_CFG_H_PRIORITY_POS;
102 } else {
103 cfg_lo |= config->src_per << CH_CFG2_L_SRC_PER_POS |
104 config->dst_per << CH_CFG2_L_DST_PER_POS;
105 cfg_hi = config->tt_fc << CH_CFG2_H_TT_FC_POS |
106 config->hs_sel_src << CH_CFG2_H_HS_SEL_SRC_POS |
107 config->hs_sel_dst << CH_CFG2_H_HS_SEL_DST_POS |
108 config->prior << CH_CFG2_H_PRIORITY_POS;
109 }
110 axi_chan_iowrite32(chan, CH_CFG_L, cfg_lo);
111 axi_chan_iowrite32(chan, CH_CFG_H, cfg_hi);
112 }
113
axi_dma_disable(struct axi_dma_chip * chip)114 static inline void axi_dma_disable(struct axi_dma_chip *chip)
115 {
116 u32 val;
117
118 val = axi_dma_ioread32(chip, DMAC_CFG);
119 val &= ~DMAC_EN_MASK;
120 axi_dma_iowrite32(chip, DMAC_CFG, val);
121 }
122
axi_dma_enable(struct axi_dma_chip * chip)123 static inline void axi_dma_enable(struct axi_dma_chip *chip)
124 {
125 u32 val;
126
127 val = axi_dma_ioread32(chip, DMAC_CFG);
128 val |= DMAC_EN_MASK;
129 axi_dma_iowrite32(chip, DMAC_CFG, val);
130 }
131
axi_dma_irq_disable(struct axi_dma_chip * chip)132 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
133 {
134 u32 val;
135
136 val = axi_dma_ioread32(chip, DMAC_CFG);
137 val &= ~INT_EN_MASK;
138 axi_dma_iowrite32(chip, DMAC_CFG, val);
139 }
140
axi_dma_irq_enable(struct axi_dma_chip * chip)141 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
142 {
143 u32 val;
144
145 val = axi_dma_ioread32(chip, DMAC_CFG);
146 val |= INT_EN_MASK;
147 axi_dma_iowrite32(chip, DMAC_CFG, val);
148 }
149
axi_chan_irq_disable(struct axi_dma_chan * chan,u32 irq_mask)150 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
151 {
152 u32 val;
153
154 if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
155 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
156 } else {
157 val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
158 val &= ~irq_mask;
159 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
160 }
161 }
162
axi_chan_irq_set(struct axi_dma_chan * chan,u32 irq_mask)163 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
164 {
165 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
166 }
167
axi_chan_irq_sig_set(struct axi_dma_chan * chan,u32 irq_mask)168 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
169 {
170 axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
171 }
172
axi_chan_irq_clear(struct axi_dma_chan * chan,u32 irq_mask)173 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
174 {
175 axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
176 }
177
axi_chan_irq_read(struct axi_dma_chan * chan)178 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
179 {
180 return axi_chan_ioread32(chan, CH_INTSTATUS);
181 }
182
axi_chan_disable(struct axi_dma_chan * chan)183 static inline void axi_chan_disable(struct axi_dma_chan *chan)
184 {
185 u32 val;
186
187 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
188 val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
189 if (chan->chip->dw->hdata->reg_map_8_channels)
190 val |= BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
191 else
192 val |= BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
193 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
194 }
195
axi_chan_enable(struct axi_dma_chan * chan)196 static inline void axi_chan_enable(struct axi_dma_chan *chan)
197 {
198 u32 val;
199
200 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
201 if (chan->chip->dw->hdata->reg_map_8_channels)
202 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
203 BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
204 else
205 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
206 BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
207 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
208 }
209
axi_chan_is_hw_enable(struct axi_dma_chan * chan)210 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
211 {
212 u32 val;
213
214 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
215
216 return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
217 }
218
axi_dma_hw_init(struct axi_dma_chip * chip)219 static void axi_dma_hw_init(struct axi_dma_chip *chip)
220 {
221 int ret;
222 u32 i;
223
224 for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
225 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
226 axi_chan_disable(&chip->dw->chan[i]);
227 }
228 ret = dma_set_mask_and_coherent(chip->dev, DMA_BIT_MASK(64));
229 if (ret)
230 dev_warn(chip->dev, "Unable to set coherent mask\n");
231 }
232
axi_chan_get_xfer_width(struct axi_dma_chan * chan,dma_addr_t src,dma_addr_t dst,size_t len)233 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
234 dma_addr_t dst, size_t len)
235 {
236 u32 max_width = chan->chip->dw->hdata->m_data_width;
237
238 return __ffs(src | dst | len | BIT(max_width));
239 }
240
axi_chan_name(struct axi_dma_chan * chan)241 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
242 {
243 return dma_chan_name(&chan->vc.chan);
244 }
245
axi_desc_alloc(u32 num)246 static struct axi_dma_desc *axi_desc_alloc(u32 num)
247 {
248 struct axi_dma_desc *desc;
249
250 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
251 if (!desc)
252 return NULL;
253
254 desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
255 if (!desc->hw_desc) {
256 kfree(desc);
257 return NULL;
258 }
259 desc->nr_hw_descs = num;
260
261 return desc;
262 }
263
axi_desc_get(struct axi_dma_chan * chan,dma_addr_t * addr)264 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
265 dma_addr_t *addr)
266 {
267 struct axi_dma_lli *lli;
268 dma_addr_t phys;
269
270 lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
271 if (unlikely(!lli)) {
272 dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
273 axi_chan_name(chan));
274 return NULL;
275 }
276
277 atomic_inc(&chan->descs_allocated);
278 *addr = phys;
279
280 return lli;
281 }
282
axi_desc_put(struct axi_dma_desc * desc)283 static void axi_desc_put(struct axi_dma_desc *desc)
284 {
285 struct axi_dma_chan *chan = desc->chan;
286 int count = desc->nr_hw_descs;
287 struct axi_dma_hw_desc *hw_desc;
288 int descs_put;
289
290 for (descs_put = 0; descs_put < count; descs_put++) {
291 hw_desc = &desc->hw_desc[descs_put];
292 dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
293 }
294
295 kfree(desc->hw_desc);
296 kfree(desc);
297 atomic_sub(descs_put, &chan->descs_allocated);
298 dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
299 axi_chan_name(chan), descs_put,
300 atomic_read(&chan->descs_allocated));
301 }
302
vchan_desc_put(struct virt_dma_desc * vdesc)303 static void vchan_desc_put(struct virt_dma_desc *vdesc)
304 {
305 axi_desc_put(vd_to_axi_desc(vdesc));
306 }
307
308 static enum dma_status
dma_chan_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * txstate)309 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
310 struct dma_tx_state *txstate)
311 {
312 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
313 struct virt_dma_desc *vdesc;
314 enum dma_status status;
315 u32 completed_length;
316 unsigned long flags;
317 u32 completed_blocks;
318 size_t bytes = 0;
319 u32 length;
320 u32 len;
321
322 status = dma_cookie_status(dchan, cookie, txstate);
323 if (status == DMA_COMPLETE || !txstate)
324 return status;
325
326 spin_lock_irqsave(&chan->vc.lock, flags);
327
328 vdesc = vchan_find_desc(&chan->vc, cookie);
329 if (vdesc) {
330 length = vd_to_axi_desc(vdesc)->length;
331 completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
332 len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
333 completed_length = completed_blocks * len;
334 bytes = length - completed_length;
335 }
336
337 spin_unlock_irqrestore(&chan->vc.lock, flags);
338 dma_set_residue(txstate, bytes);
339
340 return status;
341 }
342
write_desc_llp(struct axi_dma_hw_desc * desc,dma_addr_t adr)343 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
344 {
345 desc->lli->llp = cpu_to_le64(adr);
346 }
347
write_chan_llp(struct axi_dma_chan * chan,dma_addr_t adr)348 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
349 {
350 axi_chan_iowrite64(chan, CH_LLP, adr);
351 }
352
dw_axi_dma_set_byte_halfword(struct axi_dma_chan * chan,bool set)353 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
354 {
355 u32 offset = DMAC_APB_BYTE_WR_CH_EN;
356 u32 reg_width, val;
357
358 if (!chan->chip->apb_regs) {
359 dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
360 return;
361 }
362
363 reg_width = __ffs(chan->config.dst_addr_width);
364 if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
365 offset = DMAC_APB_HALFWORD_WR_CH_EN;
366
367 val = ioread32(chan->chip->apb_regs + offset);
368
369 if (set)
370 val |= BIT(chan->id);
371 else
372 val &= ~BIT(chan->id);
373
374 iowrite32(val, chan->chip->apb_regs + offset);
375 }
376 /* Called in chan locked context */
axi_chan_block_xfer_start(struct axi_dma_chan * chan,struct axi_dma_desc * first)377 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
378 struct axi_dma_desc *first)
379 {
380 u32 priority = chan->chip->dw->hdata->priority[chan->id];
381 struct axi_dma_chan_config config = {};
382 u32 irq_mask;
383 u8 lms = 0; /* Select AXI0 master for LLI fetching */
384
385 if (unlikely(axi_chan_is_hw_enable(chan))) {
386 dev_err(chan2dev(chan), "%s is non-idle!\n",
387 axi_chan_name(chan));
388
389 return;
390 }
391
392 axi_dma_enable(chan->chip);
393
394 config.dst_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
395 config.src_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
396 config.tt_fc = DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC;
397 config.prior = priority;
398 config.hs_sel_dst = DWAXIDMAC_HS_SEL_HW;
399 config.hs_sel_src = DWAXIDMAC_HS_SEL_HW;
400 switch (chan->direction) {
401 case DMA_MEM_TO_DEV:
402 dw_axi_dma_set_byte_halfword(chan, true);
403 config.tt_fc = chan->config.device_fc ?
404 DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
405 DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC;
406 if (chan->chip->apb_regs)
407 config.dst_per = chan->id;
408 else
409 config.dst_per = chan->hw_handshake_num;
410 break;
411 case DMA_DEV_TO_MEM:
412 config.tt_fc = chan->config.device_fc ?
413 DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
414 DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC;
415 if (chan->chip->apb_regs)
416 config.src_per = chan->id;
417 else
418 config.src_per = chan->hw_handshake_num;
419 break;
420 default:
421 break;
422 }
423 axi_chan_config_write(chan, &config);
424
425 write_chan_llp(chan, first->hw_desc[0].llp | lms);
426
427 irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
428 axi_chan_irq_sig_set(chan, irq_mask);
429
430 /* Generate 'suspend' status but don't generate interrupt */
431 irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
432 axi_chan_irq_set(chan, irq_mask);
433
434 axi_chan_enable(chan);
435 }
436
axi_chan_start_first_queued(struct axi_dma_chan * chan)437 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
438 {
439 struct axi_dma_desc *desc;
440 struct virt_dma_desc *vd;
441
442 vd = vchan_next_desc(&chan->vc);
443 if (!vd)
444 return;
445
446 desc = vd_to_axi_desc(vd);
447 dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
448 vd->tx.cookie);
449 axi_chan_block_xfer_start(chan, desc);
450 }
451
dma_chan_issue_pending(struct dma_chan * dchan)452 static void dma_chan_issue_pending(struct dma_chan *dchan)
453 {
454 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
455 unsigned long flags;
456
457 spin_lock_irqsave(&chan->vc.lock, flags);
458 if (vchan_issue_pending(&chan->vc))
459 axi_chan_start_first_queued(chan);
460 spin_unlock_irqrestore(&chan->vc.lock, flags);
461 }
462
dw_axi_dma_synchronize(struct dma_chan * dchan)463 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
464 {
465 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
466
467 vchan_synchronize(&chan->vc);
468 }
469
dma_chan_alloc_chan_resources(struct dma_chan * dchan)470 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
471 {
472 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
473
474 /* ASSERT: channel is idle */
475 if (axi_chan_is_hw_enable(chan)) {
476 dev_err(chan2dev(chan), "%s is non-idle!\n",
477 axi_chan_name(chan));
478 return -EBUSY;
479 }
480
481 /* LLI address must be aligned to a 64-byte boundary */
482 chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
483 chan->chip->dev,
484 sizeof(struct axi_dma_lli),
485 64, 0);
486 if (!chan->desc_pool) {
487 dev_err(chan2dev(chan), "No memory for descriptors\n");
488 return -ENOMEM;
489 }
490 dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
491
492 pm_runtime_get(chan->chip->dev);
493
494 return 0;
495 }
496
dma_chan_free_chan_resources(struct dma_chan * dchan)497 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
498 {
499 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
500
501 /* ASSERT: channel is idle */
502 if (axi_chan_is_hw_enable(chan))
503 dev_err(dchan2dev(dchan), "%s is non-idle!\n",
504 axi_chan_name(chan));
505
506 axi_chan_disable(chan);
507 axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
508
509 vchan_free_chan_resources(&chan->vc);
510
511 dma_pool_destroy(chan->desc_pool);
512 chan->desc_pool = NULL;
513 dev_vdbg(dchan2dev(dchan),
514 "%s: free resources, descriptor still allocated: %u\n",
515 axi_chan_name(chan), atomic_read(&chan->descs_allocated));
516
517 pm_runtime_put(chan->chip->dev);
518 }
519
dw_axi_dma_set_hw_channel(struct axi_dma_chan * chan,bool set)520 static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
521 {
522 struct axi_dma_chip *chip = chan->chip;
523 unsigned long reg_value, val;
524
525 if (!chip->apb_regs) {
526 dev_err(chip->dev, "apb_regs not initialized\n");
527 return;
528 }
529
530 /*
531 * An unused DMA channel has a default value of 0x3F.
532 * Lock the DMA channel by assign a handshake number to the channel.
533 * Unlock the DMA channel by assign 0x3F to the channel.
534 */
535 if (set)
536 val = chan->hw_handshake_num;
537 else
538 val = UNUSED_CHANNEL;
539
540 reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
541
542 /* Channel is already allocated, set handshake as per channel ID */
543 /* 64 bit write should handle for 8 channels */
544
545 reg_value &= ~(DMA_APB_HS_SEL_MASK <<
546 (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
547 reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
548 lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
549
550 return;
551 }
552
553 /*
554 * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
555 * as 1, it understands that the current block is the final block in the
556 * transfer and completes the DMA transfer operation at the end of current
557 * block transfer.
558 */
set_desc_last(struct axi_dma_hw_desc * desc)559 static void set_desc_last(struct axi_dma_hw_desc *desc)
560 {
561 u32 val;
562
563 val = le32_to_cpu(desc->lli->ctl_hi);
564 val |= CH_CTL_H_LLI_LAST;
565 desc->lli->ctl_hi = cpu_to_le32(val);
566 }
567
write_desc_sar(struct axi_dma_hw_desc * desc,dma_addr_t adr)568 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
569 {
570 desc->lli->sar = cpu_to_le64(adr);
571 }
572
write_desc_dar(struct axi_dma_hw_desc * desc,dma_addr_t adr)573 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
574 {
575 desc->lli->dar = cpu_to_le64(adr);
576 }
577
set_desc_src_master(struct axi_dma_hw_desc * desc)578 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
579 {
580 u32 val;
581
582 /* Select AXI0 for source master */
583 val = le32_to_cpu(desc->lli->ctl_lo);
584 val &= ~CH_CTL_L_SRC_MAST;
585 desc->lli->ctl_lo = cpu_to_le32(val);
586 }
587
set_desc_dest_master(struct axi_dma_hw_desc * hw_desc,struct axi_dma_desc * desc)588 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
589 struct axi_dma_desc *desc)
590 {
591 u32 val;
592
593 /* Select AXI1 for source master if available */
594 val = le32_to_cpu(hw_desc->lli->ctl_lo);
595 if (desc->chan->chip->dw->hdata->nr_masters > 1)
596 val |= CH_CTL_L_DST_MAST;
597 else
598 val &= ~CH_CTL_L_DST_MAST;
599
600 hw_desc->lli->ctl_lo = cpu_to_le32(val);
601 }
602
dw_axi_dma_set_hw_desc(struct axi_dma_chan * chan,struct axi_dma_hw_desc * hw_desc,dma_addr_t mem_addr,size_t len)603 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
604 struct axi_dma_hw_desc *hw_desc,
605 dma_addr_t mem_addr, size_t len)
606 {
607 unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
608 unsigned int reg_width;
609 unsigned int mem_width;
610 dma_addr_t device_addr;
611 size_t axi_block_ts;
612 size_t block_ts;
613 u32 ctllo, ctlhi;
614 u32 burst_len;
615
616 axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
617
618 mem_width = __ffs(data_width | mem_addr | len);
619 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
620 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
621
622 if (!IS_ALIGNED(mem_addr, 4)) {
623 dev_err(chan->chip->dev, "invalid buffer alignment\n");
624 return -EINVAL;
625 }
626
627 switch (chan->direction) {
628 case DMA_MEM_TO_DEV:
629 reg_width = __ffs(chan->config.dst_addr_width);
630 device_addr = chan->config.dst_addr;
631 ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
632 mem_width << CH_CTL_L_SRC_WIDTH_POS |
633 DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
634 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
635 block_ts = len >> mem_width;
636 break;
637 case DMA_DEV_TO_MEM:
638 reg_width = __ffs(chan->config.src_addr_width);
639 device_addr = chan->config.src_addr;
640 ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
641 mem_width << CH_CTL_L_DST_WIDTH_POS |
642 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
643 DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
644 block_ts = len >> reg_width;
645 break;
646 default:
647 return -EINVAL;
648 }
649
650 if (block_ts > axi_block_ts)
651 return -EINVAL;
652
653 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
654 if (unlikely(!hw_desc->lli))
655 return -ENOMEM;
656
657 ctlhi = CH_CTL_H_LLI_VALID;
658
659 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
660 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
661 ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
662 burst_len << CH_CTL_H_ARLEN_POS |
663 burst_len << CH_CTL_H_AWLEN_POS;
664 }
665
666 hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
667
668 if (chan->direction == DMA_MEM_TO_DEV) {
669 write_desc_sar(hw_desc, mem_addr);
670 write_desc_dar(hw_desc, device_addr);
671 } else {
672 write_desc_sar(hw_desc, device_addr);
673 write_desc_dar(hw_desc, mem_addr);
674 }
675
676 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
677
678 ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
679 DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
680 hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
681
682 set_desc_src_master(hw_desc);
683
684 hw_desc->len = len;
685 return 0;
686 }
687
calculate_block_len(struct axi_dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,enum dma_transfer_direction direction)688 static size_t calculate_block_len(struct axi_dma_chan *chan,
689 dma_addr_t dma_addr, size_t buf_len,
690 enum dma_transfer_direction direction)
691 {
692 u32 data_width, reg_width, mem_width;
693 size_t axi_block_ts, block_len;
694
695 axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
696
697 switch (direction) {
698 case DMA_MEM_TO_DEV:
699 data_width = BIT(chan->chip->dw->hdata->m_data_width);
700 mem_width = __ffs(data_width | dma_addr | buf_len);
701 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
702 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
703
704 block_len = axi_block_ts << mem_width;
705 break;
706 case DMA_DEV_TO_MEM:
707 reg_width = __ffs(chan->config.src_addr_width);
708 block_len = axi_block_ts << reg_width;
709 break;
710 default:
711 block_len = 0;
712 }
713
714 return block_len;
715 }
716
717 static struct dma_async_tx_descriptor *
dw_axi_dma_chan_prep_cyclic(struct dma_chan * dchan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)718 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
719 size_t buf_len, size_t period_len,
720 enum dma_transfer_direction direction,
721 unsigned long flags)
722 {
723 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
724 struct axi_dma_hw_desc *hw_desc = NULL;
725 struct axi_dma_desc *desc = NULL;
726 dma_addr_t src_addr = dma_addr;
727 u32 num_periods, num_segments;
728 size_t axi_block_len;
729 u32 total_segments;
730 u32 segment_len;
731 unsigned int i;
732 int status;
733 u64 llp = 0;
734 u8 lms = 0; /* Select AXI0 master for LLI fetching */
735
736 num_periods = buf_len / period_len;
737
738 axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
739 if (axi_block_len == 0)
740 return NULL;
741
742 num_segments = DIV_ROUND_UP(period_len, axi_block_len);
743 segment_len = DIV_ROUND_UP(period_len, num_segments);
744
745 total_segments = num_periods * num_segments;
746
747 desc = axi_desc_alloc(total_segments);
748 if (unlikely(!desc))
749 goto err_desc_get;
750
751 chan->direction = direction;
752 desc->chan = chan;
753 chan->cyclic = true;
754 desc->length = 0;
755 desc->period_len = period_len;
756
757 for (i = 0; i < total_segments; i++) {
758 hw_desc = &desc->hw_desc[i];
759
760 status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
761 segment_len);
762 if (status < 0)
763 goto err_desc_get;
764
765 desc->length += hw_desc->len;
766 /* Set end-of-link to the linked descriptor, so that cyclic
767 * callback function can be triggered during interrupt.
768 */
769 set_desc_last(hw_desc);
770
771 src_addr += segment_len;
772 }
773
774 llp = desc->hw_desc[0].llp;
775
776 /* Managed transfer list */
777 do {
778 hw_desc = &desc->hw_desc[--total_segments];
779 write_desc_llp(hw_desc, llp | lms);
780 llp = hw_desc->llp;
781 } while (total_segments);
782
783 dw_axi_dma_set_hw_channel(chan, true);
784
785 return vchan_tx_prep(&chan->vc, &desc->vd, flags);
786
787 err_desc_get:
788 if (desc)
789 axi_desc_put(desc);
790
791 return NULL;
792 }
793
794 static struct dma_async_tx_descriptor *
dw_axi_dma_chan_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)795 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
796 unsigned int sg_len,
797 enum dma_transfer_direction direction,
798 unsigned long flags, void *context)
799 {
800 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
801 struct axi_dma_hw_desc *hw_desc = NULL;
802 struct axi_dma_desc *desc = NULL;
803 u32 num_segments, segment_len;
804 unsigned int loop = 0;
805 struct scatterlist *sg;
806 size_t axi_block_len;
807 u32 len, num_sgs = 0;
808 unsigned int i;
809 dma_addr_t mem;
810 int status;
811 u64 llp = 0;
812 u8 lms = 0; /* Select AXI0 master for LLI fetching */
813
814 if (unlikely(!is_slave_direction(direction) || !sg_len))
815 return NULL;
816
817 mem = sg_dma_address(sgl);
818 len = sg_dma_len(sgl);
819
820 axi_block_len = calculate_block_len(chan, mem, len, direction);
821 if (axi_block_len == 0)
822 return NULL;
823
824 for_each_sg(sgl, sg, sg_len, i)
825 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
826
827 desc = axi_desc_alloc(num_sgs);
828 if (unlikely(!desc))
829 goto err_desc_get;
830
831 desc->chan = chan;
832 desc->length = 0;
833 chan->direction = direction;
834
835 for_each_sg(sgl, sg, sg_len, i) {
836 mem = sg_dma_address(sg);
837 len = sg_dma_len(sg);
838 num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
839 segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
840
841 do {
842 hw_desc = &desc->hw_desc[loop++];
843 status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
844 if (status < 0)
845 goto err_desc_get;
846
847 desc->length += hw_desc->len;
848 len -= segment_len;
849 mem += segment_len;
850 } while (len >= segment_len);
851 }
852
853 /* Set end-of-link to the last link descriptor of list */
854 set_desc_last(&desc->hw_desc[num_sgs - 1]);
855
856 /* Managed transfer list */
857 do {
858 hw_desc = &desc->hw_desc[--num_sgs];
859 write_desc_llp(hw_desc, llp | lms);
860 llp = hw_desc->llp;
861 } while (num_sgs);
862
863 dw_axi_dma_set_hw_channel(chan, true);
864
865 return vchan_tx_prep(&chan->vc, &desc->vd, flags);
866
867 err_desc_get:
868 if (desc)
869 axi_desc_put(desc);
870
871 return NULL;
872 }
873
874 static struct dma_async_tx_descriptor *
dma_chan_prep_dma_memcpy(struct dma_chan * dchan,dma_addr_t dst_adr,dma_addr_t src_adr,size_t len,unsigned long flags)875 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
876 dma_addr_t src_adr, size_t len, unsigned long flags)
877 {
878 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
879 size_t block_ts, max_block_ts, xfer_len;
880 struct axi_dma_hw_desc *hw_desc = NULL;
881 struct axi_dma_desc *desc = NULL;
882 u32 xfer_width, reg, num;
883 u64 llp = 0;
884 u8 lms = 0; /* Select AXI0 master for LLI fetching */
885
886 dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
887 axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
888
889 max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
890 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
891 num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
892 desc = axi_desc_alloc(num);
893 if (unlikely(!desc))
894 goto err_desc_get;
895
896 desc->chan = chan;
897 num = 0;
898 desc->length = 0;
899 while (len) {
900 xfer_len = len;
901
902 hw_desc = &desc->hw_desc[num];
903 /*
904 * Take care for the alignment.
905 * Actually source and destination widths can be different, but
906 * make them same to be simpler.
907 */
908 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
909
910 /*
911 * block_ts indicates the total number of data of width
912 * to be transferred in a DMA block transfer.
913 * BLOCK_TS register should be set to block_ts - 1
914 */
915 block_ts = xfer_len >> xfer_width;
916 if (block_ts > max_block_ts) {
917 block_ts = max_block_ts;
918 xfer_len = max_block_ts << xfer_width;
919 }
920
921 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
922 if (unlikely(!hw_desc->lli))
923 goto err_desc_get;
924
925 write_desc_sar(hw_desc, src_adr);
926 write_desc_dar(hw_desc, dst_adr);
927 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
928
929 reg = CH_CTL_H_LLI_VALID;
930 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
931 u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
932
933 reg |= (CH_CTL_H_ARLEN_EN |
934 burst_len << CH_CTL_H_ARLEN_POS |
935 CH_CTL_H_AWLEN_EN |
936 burst_len << CH_CTL_H_AWLEN_POS);
937 }
938 hw_desc->lli->ctl_hi = cpu_to_le32(reg);
939
940 reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
941 DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
942 xfer_width << CH_CTL_L_DST_WIDTH_POS |
943 xfer_width << CH_CTL_L_SRC_WIDTH_POS |
944 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
945 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
946 hw_desc->lli->ctl_lo = cpu_to_le32(reg);
947
948 set_desc_src_master(hw_desc);
949 set_desc_dest_master(hw_desc, desc);
950
951 hw_desc->len = xfer_len;
952 desc->length += hw_desc->len;
953 /* update the length and addresses for the next loop cycle */
954 len -= xfer_len;
955 dst_adr += xfer_len;
956 src_adr += xfer_len;
957 num++;
958 }
959
960 /* Set end-of-link to the last link descriptor of list */
961 set_desc_last(&desc->hw_desc[num - 1]);
962 /* Managed transfer list */
963 do {
964 hw_desc = &desc->hw_desc[--num];
965 write_desc_llp(hw_desc, llp | lms);
966 llp = hw_desc->llp;
967 } while (num);
968
969 return vchan_tx_prep(&chan->vc, &desc->vd, flags);
970
971 err_desc_get:
972 if (desc)
973 axi_desc_put(desc);
974 return NULL;
975 }
976
dw_axi_dma_chan_slave_config(struct dma_chan * dchan,struct dma_slave_config * config)977 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
978 struct dma_slave_config *config)
979 {
980 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
981
982 memcpy(&chan->config, config, sizeof(*config));
983
984 return 0;
985 }
986
axi_chan_dump_lli(struct axi_dma_chan * chan,struct axi_dma_hw_desc * desc)987 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
988 struct axi_dma_hw_desc *desc)
989 {
990 if (!desc->lli) {
991 dev_err(dchan2dev(&chan->vc.chan), "NULL LLI\n");
992 return;
993 }
994
995 dev_err(dchan2dev(&chan->vc.chan),
996 "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
997 le64_to_cpu(desc->lli->sar),
998 le64_to_cpu(desc->lli->dar),
999 le64_to_cpu(desc->lli->llp),
1000 le32_to_cpu(desc->lli->block_ts_lo),
1001 le32_to_cpu(desc->lli->ctl_hi),
1002 le32_to_cpu(desc->lli->ctl_lo));
1003 }
1004
axi_chan_list_dump_lli(struct axi_dma_chan * chan,struct axi_dma_desc * desc_head)1005 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
1006 struct axi_dma_desc *desc_head)
1007 {
1008 int count = atomic_read(&chan->descs_allocated);
1009 int i;
1010
1011 for (i = 0; i < count; i++)
1012 axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
1013 }
1014
axi_chan_handle_err(struct axi_dma_chan * chan,u32 status)1015 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
1016 {
1017 struct virt_dma_desc *vd;
1018 unsigned long flags;
1019
1020 spin_lock_irqsave(&chan->vc.lock, flags);
1021
1022 axi_chan_disable(chan);
1023
1024 /* The bad descriptor currently is in the head of vc list */
1025 vd = vchan_next_desc(&chan->vc);
1026 if (!vd) {
1027 dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1028 axi_chan_name(chan));
1029 goto out;
1030 }
1031 /* Remove the completed descriptor from issued list */
1032 list_del(&vd->node);
1033
1034 /* WARN about bad descriptor */
1035 dev_err(chan2dev(chan),
1036 "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
1037 axi_chan_name(chan), vd->tx.cookie, status);
1038 axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
1039
1040 vchan_cookie_complete(vd);
1041
1042 /* Try to restart the controller */
1043 axi_chan_start_first_queued(chan);
1044
1045 out:
1046 spin_unlock_irqrestore(&chan->vc.lock, flags);
1047 }
1048
axi_chan_block_xfer_complete(struct axi_dma_chan * chan)1049 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1050 {
1051 int count = atomic_read(&chan->descs_allocated);
1052 struct axi_dma_hw_desc *hw_desc;
1053 struct axi_dma_desc *desc;
1054 struct virt_dma_desc *vd;
1055 unsigned long flags;
1056 u64 llp;
1057 int i;
1058
1059 spin_lock_irqsave(&chan->vc.lock, flags);
1060 if (unlikely(axi_chan_is_hw_enable(chan))) {
1061 dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1062 axi_chan_name(chan));
1063 axi_chan_disable(chan);
1064 }
1065
1066 /* The completed descriptor currently is in the head of vc list */
1067 vd = vchan_next_desc(&chan->vc);
1068 if (!vd) {
1069 dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1070 axi_chan_name(chan));
1071 goto out;
1072 }
1073
1074 if (chan->cyclic) {
1075 desc = vd_to_axi_desc(vd);
1076 if (desc) {
1077 llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1078 for (i = 0; i < count; i++) {
1079 hw_desc = &desc->hw_desc[i];
1080 if (hw_desc->llp == llp) {
1081 axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1082 hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1083 desc->completed_blocks = i;
1084
1085 if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1086 vchan_cyclic_callback(vd);
1087 break;
1088 }
1089 }
1090
1091 axi_chan_enable(chan);
1092 }
1093 } else {
1094 /* Remove the completed descriptor from issued list before completing */
1095 list_del(&vd->node);
1096 vchan_cookie_complete(vd);
1097 }
1098
1099 out:
1100 spin_unlock_irqrestore(&chan->vc.lock, flags);
1101 }
1102
dw_axi_dma_interrupt(int irq,void * dev_id)1103 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1104 {
1105 struct axi_dma_chip *chip = dev_id;
1106 struct dw_axi_dma *dw = chip->dw;
1107 struct axi_dma_chan *chan;
1108
1109 u32 status, i;
1110
1111 /* Disable DMAC interrupts. We'll enable them after processing channels */
1112 axi_dma_irq_disable(chip);
1113
1114 /* Poll, clear and process every channel interrupt status */
1115 for (i = 0; i < dw->hdata->nr_channels; i++) {
1116 chan = &dw->chan[i];
1117 status = axi_chan_irq_read(chan);
1118 axi_chan_irq_clear(chan, status);
1119
1120 dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1121 axi_chan_name(chan), i, status);
1122
1123 if (status & DWAXIDMAC_IRQ_ALL_ERR)
1124 axi_chan_handle_err(chan, status);
1125 else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1126 axi_chan_block_xfer_complete(chan);
1127 }
1128
1129 /* Re-enable interrupts */
1130 axi_dma_irq_enable(chip);
1131
1132 return IRQ_HANDLED;
1133 }
1134
dma_chan_terminate_all(struct dma_chan * dchan)1135 static int dma_chan_terminate_all(struct dma_chan *dchan)
1136 {
1137 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1138 u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1139 unsigned long flags;
1140 u32 val;
1141 int ret;
1142 LIST_HEAD(head);
1143
1144 axi_chan_disable(chan);
1145
1146 ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1147 !(val & chan_active), 1000, 50000);
1148 if (ret == -ETIMEDOUT)
1149 dev_warn(dchan2dev(dchan),
1150 "%s failed to stop\n", axi_chan_name(chan));
1151
1152 if (chan->direction != DMA_MEM_TO_MEM)
1153 dw_axi_dma_set_hw_channel(chan, false);
1154 if (chan->direction == DMA_MEM_TO_DEV)
1155 dw_axi_dma_set_byte_halfword(chan, false);
1156
1157 spin_lock_irqsave(&chan->vc.lock, flags);
1158
1159 vchan_get_all_descriptors(&chan->vc, &head);
1160
1161 chan->cyclic = false;
1162 spin_unlock_irqrestore(&chan->vc.lock, flags);
1163
1164 vchan_dma_desc_free_list(&chan->vc, &head);
1165
1166 dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1167
1168 return 0;
1169 }
1170
dma_chan_pause(struct dma_chan * dchan)1171 static int dma_chan_pause(struct dma_chan *dchan)
1172 {
1173 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1174 unsigned long flags;
1175 unsigned int timeout = 20; /* timeout iterations */
1176 u32 val;
1177
1178 spin_lock_irqsave(&chan->vc.lock, flags);
1179
1180 if (chan->chip->dw->hdata->reg_map_8_channels) {
1181 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1182 val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1183 BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1184 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1185 } else {
1186 val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1187 val |= BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT |
1188 BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT;
1189 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1190 }
1191
1192 do {
1193 if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1194 break;
1195
1196 udelay(2);
1197 } while (--timeout);
1198
1199 axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1200
1201 chan->is_paused = true;
1202
1203 spin_unlock_irqrestore(&chan->vc.lock, flags);
1204
1205 return timeout ? 0 : -EAGAIN;
1206 }
1207
1208 /* Called in chan locked context */
axi_chan_resume(struct axi_dma_chan * chan)1209 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1210 {
1211 u32 val;
1212
1213 if (chan->chip->dw->hdata->reg_map_8_channels) {
1214 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1215 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1216 val |= (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1217 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1218 } else {
1219 val = axi_dma_ioread32(chan->chip, DMAC_CHSUSPREG);
1220 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT);
1221 val |= (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT);
1222 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1223 }
1224
1225 chan->is_paused = false;
1226 }
1227
dma_chan_resume(struct dma_chan * dchan)1228 static int dma_chan_resume(struct dma_chan *dchan)
1229 {
1230 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1231 unsigned long flags;
1232
1233 spin_lock_irqsave(&chan->vc.lock, flags);
1234
1235 if (chan->is_paused)
1236 axi_chan_resume(chan);
1237
1238 spin_unlock_irqrestore(&chan->vc.lock, flags);
1239
1240 return 0;
1241 }
1242
axi_dma_suspend(struct axi_dma_chip * chip)1243 static int axi_dma_suspend(struct axi_dma_chip *chip)
1244 {
1245 axi_dma_irq_disable(chip);
1246 axi_dma_disable(chip);
1247
1248 clk_disable_unprepare(chip->core_clk);
1249 clk_disable_unprepare(chip->cfgr_clk);
1250
1251 return 0;
1252 }
1253
axi_dma_resume(struct axi_dma_chip * chip)1254 static int axi_dma_resume(struct axi_dma_chip *chip)
1255 {
1256 int ret;
1257
1258 ret = clk_prepare_enable(chip->cfgr_clk);
1259 if (ret < 0)
1260 return ret;
1261
1262 ret = clk_prepare_enable(chip->core_clk);
1263 if (ret < 0)
1264 return ret;
1265
1266 axi_dma_enable(chip);
1267 axi_dma_irq_enable(chip);
1268
1269 return 0;
1270 }
1271
axi_dma_runtime_suspend(struct device * dev)1272 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1273 {
1274 struct axi_dma_chip *chip = dev_get_drvdata(dev);
1275
1276 return axi_dma_suspend(chip);
1277 }
1278
axi_dma_runtime_resume(struct device * dev)1279 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1280 {
1281 struct axi_dma_chip *chip = dev_get_drvdata(dev);
1282
1283 return axi_dma_resume(chip);
1284 }
1285
dw_axi_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1286 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1287 struct of_dma *ofdma)
1288 {
1289 struct dw_axi_dma *dw = ofdma->of_dma_data;
1290 struct axi_dma_chan *chan;
1291 struct dma_chan *dchan;
1292
1293 dchan = dma_get_any_slave_channel(&dw->dma);
1294 if (!dchan)
1295 return NULL;
1296
1297 chan = dchan_to_axi_dma_chan(dchan);
1298 chan->hw_handshake_num = dma_spec->args[0];
1299 return dchan;
1300 }
1301
parse_device_properties(struct axi_dma_chip * chip)1302 static int parse_device_properties(struct axi_dma_chip *chip)
1303 {
1304 struct device *dev = chip->dev;
1305 u32 tmp, carr[DMAC_MAX_CHANNELS];
1306 int ret;
1307
1308 ret = device_property_read_u32(dev, "dma-channels", &tmp);
1309 if (ret)
1310 return ret;
1311 if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1312 return -EINVAL;
1313
1314 chip->dw->hdata->nr_channels = tmp;
1315 if (tmp <= DMA_REG_MAP_CH_REF)
1316 chip->dw->hdata->reg_map_8_channels = true;
1317
1318 ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1319 if (ret)
1320 return ret;
1321 if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1322 return -EINVAL;
1323
1324 chip->dw->hdata->nr_masters = tmp;
1325
1326 ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1327 if (ret)
1328 return ret;
1329 if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1330 return -EINVAL;
1331
1332 chip->dw->hdata->m_data_width = tmp;
1333
1334 ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1335 chip->dw->hdata->nr_channels);
1336 if (ret)
1337 return ret;
1338 for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1339 if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1340 return -EINVAL;
1341
1342 chip->dw->hdata->block_size[tmp] = carr[tmp];
1343 }
1344
1345 ret = device_property_read_u32_array(dev, "snps,priority", carr,
1346 chip->dw->hdata->nr_channels);
1347 if (ret)
1348 return ret;
1349 /* Priority value must be programmed within [0:nr_channels-1] range */
1350 for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1351 if (carr[tmp] >= chip->dw->hdata->nr_channels)
1352 return -EINVAL;
1353
1354 chip->dw->hdata->priority[tmp] = carr[tmp];
1355 }
1356
1357 /* axi-max-burst-len is optional property */
1358 ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1359 if (!ret) {
1360 if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1361 return -EINVAL;
1362 if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1363 return -EINVAL;
1364
1365 chip->dw->hdata->restrict_axi_burst_len = true;
1366 chip->dw->hdata->axi_rw_burst_len = tmp;
1367 }
1368
1369 return 0;
1370 }
1371
dw_probe(struct platform_device * pdev)1372 static int dw_probe(struct platform_device *pdev)
1373 {
1374 struct axi_dma_chip *chip;
1375 struct dw_axi_dma *dw;
1376 struct dw_axi_dma_hcfg *hdata;
1377 struct reset_control *resets;
1378 unsigned int flags;
1379 u32 i;
1380 int ret;
1381
1382 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1383 if (!chip)
1384 return -ENOMEM;
1385
1386 dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1387 if (!dw)
1388 return -ENOMEM;
1389
1390 hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1391 if (!hdata)
1392 return -ENOMEM;
1393
1394 chip->dw = dw;
1395 chip->dev = &pdev->dev;
1396 chip->dw->hdata = hdata;
1397
1398 chip->irq = platform_get_irq(pdev, 0);
1399 if (chip->irq < 0)
1400 return chip->irq;
1401
1402 chip->regs = devm_platform_ioremap_resource(pdev, 0);
1403 if (IS_ERR(chip->regs))
1404 return PTR_ERR(chip->regs);
1405
1406 flags = (uintptr_t)of_device_get_match_data(&pdev->dev);
1407 if (flags & AXI_DMA_FLAG_HAS_APB_REGS) {
1408 chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1409 if (IS_ERR(chip->apb_regs))
1410 return PTR_ERR(chip->apb_regs);
1411 }
1412
1413 if (flags & AXI_DMA_FLAG_HAS_RESETS) {
1414 resets = devm_reset_control_array_get_exclusive(&pdev->dev);
1415 if (IS_ERR(resets))
1416 return PTR_ERR(resets);
1417
1418 ret = reset_control_deassert(resets);
1419 if (ret)
1420 return ret;
1421 }
1422
1423 chip->dw->hdata->use_cfg2 = !!(flags & AXI_DMA_FLAG_USE_CFG2);
1424
1425 chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1426 if (IS_ERR(chip->core_clk))
1427 return PTR_ERR(chip->core_clk);
1428
1429 chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1430 if (IS_ERR(chip->cfgr_clk))
1431 return PTR_ERR(chip->cfgr_clk);
1432
1433 ret = parse_device_properties(chip);
1434 if (ret)
1435 return ret;
1436
1437 dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1438 sizeof(*dw->chan), GFP_KERNEL);
1439 if (!dw->chan)
1440 return -ENOMEM;
1441
1442 ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1443 IRQF_SHARED, KBUILD_MODNAME, chip);
1444 if (ret)
1445 return ret;
1446
1447 INIT_LIST_HEAD(&dw->dma.channels);
1448 for (i = 0; i < hdata->nr_channels; i++) {
1449 struct axi_dma_chan *chan = &dw->chan[i];
1450
1451 chan->chip = chip;
1452 chan->id = i;
1453 chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1454 atomic_set(&chan->descs_allocated, 0);
1455
1456 chan->vc.desc_free = vchan_desc_put;
1457 vchan_init(&chan->vc, &dw->dma);
1458 }
1459
1460 /* Set capabilities */
1461 dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1462 dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1463 dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1464
1465 /* DMA capabilities */
1466 dw->dma.max_burst = hdata->axi_rw_burst_len;
1467 dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1468 dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1469 dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1470 dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1471 dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1472
1473 dw->dma.dev = chip->dev;
1474 dw->dma.device_tx_status = dma_chan_tx_status;
1475 dw->dma.device_issue_pending = dma_chan_issue_pending;
1476 dw->dma.device_terminate_all = dma_chan_terminate_all;
1477 dw->dma.device_pause = dma_chan_pause;
1478 dw->dma.device_resume = dma_chan_resume;
1479
1480 dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1481 dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1482
1483 dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1484 dw->dma.device_synchronize = dw_axi_dma_synchronize;
1485 dw->dma.device_config = dw_axi_dma_chan_slave_config;
1486 dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1487 dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1488
1489 /*
1490 * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1491 * supported blocks is 1024. Device register width is 4 bytes.
1492 * Therefore, set constraint to 1024 * 4.
1493 */
1494 dw->dma.dev->dma_parms = &dw->dma_parms;
1495 dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1496 platform_set_drvdata(pdev, chip);
1497
1498 pm_runtime_enable(chip->dev);
1499
1500 /*
1501 * We can't just call pm_runtime_get here instead of
1502 * pm_runtime_get_noresume + axi_dma_resume because we need
1503 * driver to work also without Runtime PM.
1504 */
1505 pm_runtime_get_noresume(chip->dev);
1506 ret = axi_dma_resume(chip);
1507 if (ret < 0)
1508 goto err_pm_disable;
1509
1510 axi_dma_hw_init(chip);
1511
1512 pm_runtime_put(chip->dev);
1513
1514 ret = dmaenginem_async_device_register(&dw->dma);
1515 if (ret)
1516 goto err_pm_disable;
1517
1518 /* Register with OF helpers for DMA lookups */
1519 ret = of_dma_controller_register(pdev->dev.of_node,
1520 dw_axi_dma_of_xlate, dw);
1521 if (ret < 0)
1522 dev_warn(&pdev->dev,
1523 "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1524
1525 dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1526 dw->hdata->nr_channels);
1527
1528 return 0;
1529
1530 err_pm_disable:
1531 pm_runtime_disable(chip->dev);
1532
1533 return ret;
1534 }
1535
dw_remove(struct platform_device * pdev)1536 static int dw_remove(struct platform_device *pdev)
1537 {
1538 struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1539 struct dw_axi_dma *dw = chip->dw;
1540 struct axi_dma_chan *chan, *_chan;
1541 u32 i;
1542
1543 /* Enable clk before accessing to registers */
1544 clk_prepare_enable(chip->cfgr_clk);
1545 clk_prepare_enable(chip->core_clk);
1546 axi_dma_irq_disable(chip);
1547 for (i = 0; i < dw->hdata->nr_channels; i++) {
1548 axi_chan_disable(&chip->dw->chan[i]);
1549 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1550 }
1551 axi_dma_disable(chip);
1552
1553 pm_runtime_disable(chip->dev);
1554 axi_dma_suspend(chip);
1555
1556 devm_free_irq(chip->dev, chip->irq, chip);
1557
1558 of_dma_controller_free(chip->dev->of_node);
1559
1560 list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1561 vc.chan.device_node) {
1562 list_del(&chan->vc.chan.device_node);
1563 tasklet_kill(&chan->vc.task);
1564 }
1565
1566 return 0;
1567 }
1568
1569 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1570 SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1571 };
1572
1573 static const struct of_device_id dw_dma_of_id_table[] = {
1574 {
1575 .compatible = "snps,axi-dma-1.01a"
1576 }, {
1577 .compatible = "intel,kmb-axi-dma",
1578 .data = (void *)AXI_DMA_FLAG_HAS_APB_REGS,
1579 }, {
1580 .compatible = "starfive,jh7110-axi-dma",
1581 .data = (void *)(AXI_DMA_FLAG_HAS_RESETS | AXI_DMA_FLAG_USE_CFG2),
1582 },
1583 {}
1584 };
1585 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1586
1587 static struct platform_driver dw_driver = {
1588 .probe = dw_probe,
1589 .remove = dw_remove,
1590 .driver = {
1591 .name = KBUILD_MODNAME,
1592 .of_match_table = dw_dma_of_id_table,
1593 .pm = &dw_axi_dma_pm_ops,
1594 },
1595 };
1596 module_platform_driver(dw_driver);
1597
1598 MODULE_LICENSE("GPL v2");
1599 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1600 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");
1601