1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21 22 /* 23 * This code implements the DMA subsystem. It provides a HW-neutral interface 24 * for other kernel code to use asynchronous memory copy capabilities, 25 * if present, and allows different HW DMA drivers to register as providing 26 * this capability. 27 * 28 * Due to the fact we are accelerating what is already a relatively fast 29 * operation, the code goes to great lengths to avoid additional overhead, 30 * such as locking. 31 * 32 * LOCKING: 33 * 34 * The subsystem keeps two global lists, dma_device_list and dma_client_list. 35 * Both of these are protected by a mutex, dma_list_mutex. 36 * 37 * Each device has a channels list, which runs unlocked but is never modified 38 * once the device is registered, it's just setup by the driver. 39 * 40 * Each client is responsible for keeping track of the channels it uses. See 41 * the definition of dma_event_callback in dmaengine.h. 42 * 43 * Each device has a kref, which is initialized to 1 when the device is 44 * registered. A kref_get is done for each device registered. When the 45 * device is released, the coresponding kref_put is done in the release 46 * method. Every time one of the device's channels is allocated to a client, 47 * a kref_get occurs. When the channel is freed, the coresponding kref_put 48 * happens. The device's release function does a completion, so 49 * unregister_device does a remove event, device_unregister, a kref_put 50 * for the first reference, then waits on the completion for all other 51 * references to finish. 52 * 53 * Each channel has an open-coded implementation of Rusty Russell's "bigref," 54 * with a kref and a per_cpu local_t. A dma_chan_get is called when a client 55 * signals that it wants to use a channel, and dma_chan_put is called when 56 * a channel is removed or a client using it is unregesitered. A client can 57 * take extra references per outstanding transaction, as is the case with 58 * the NET DMA client. The release function does a kref_put on the device. 59 * -ChrisL, DanW 60 */ 61 62 #include <linux/init.h> 63 #include <linux/module.h> 64 #include <linux/mm.h> 65 #include <linux/device.h> 66 #include <linux/dmaengine.h> 67 #include <linux/hardirq.h> 68 #include <linux/spinlock.h> 69 #include <linux/percpu.h> 70 #include <linux/rcupdate.h> 71 #include <linux/mutex.h> 72 #include <linux/jiffies.h> 73 74 static DEFINE_MUTEX(dma_list_mutex); 75 static LIST_HEAD(dma_device_list); 76 static LIST_HEAD(dma_client_list); 77 78 /* --- sysfs implementation --- */ 79 80 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf) 81 { 82 struct dma_chan *chan = to_dma_chan(dev); 83 unsigned long count = 0; 84 int i; 85 86 for_each_possible_cpu(i) 87 count += per_cpu_ptr(chan->local, i)->memcpy_count; 88 89 return sprintf(buf, "%lu\n", count); 90 } 91 92 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr, 93 char *buf) 94 { 95 struct dma_chan *chan = to_dma_chan(dev); 96 unsigned long count = 0; 97 int i; 98 99 for_each_possible_cpu(i) 100 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 101 102 return sprintf(buf, "%lu\n", count); 103 } 104 105 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf) 106 { 107 struct dma_chan *chan = to_dma_chan(dev); 108 int in_use = 0; 109 110 if (unlikely(chan->slow_ref) && 111 atomic_read(&chan->refcount.refcount) > 1) 112 in_use = 1; 113 else { 114 if (local_read(&(per_cpu_ptr(chan->local, 115 get_cpu())->refcount)) > 0) 116 in_use = 1; 117 put_cpu(); 118 } 119 120 return sprintf(buf, "%d\n", in_use); 121 } 122 123 static struct device_attribute dma_attrs[] = { 124 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL), 125 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL), 126 __ATTR(in_use, S_IRUGO, show_in_use, NULL), 127 __ATTR_NULL 128 }; 129 130 static void dma_async_device_cleanup(struct kref *kref); 131 132 static void dma_dev_release(struct device *dev) 133 { 134 struct dma_chan *chan = to_dma_chan(dev); 135 kref_put(&chan->device->refcount, dma_async_device_cleanup); 136 } 137 138 static struct class dma_devclass = { 139 .name = "dma", 140 .dev_attrs = dma_attrs, 141 .dev_release = dma_dev_release, 142 }; 143 144 /* --- client and device registration --- */ 145 146 #define dma_chan_satisfies_mask(chan, mask) \ 147 __dma_chan_satisfies_mask((chan), &(mask)) 148 static int 149 __dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want) 150 { 151 dma_cap_mask_t has; 152 153 bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits, 154 DMA_TX_TYPE_END); 155 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 156 } 157 158 /** 159 * dma_client_chan_alloc - try to allocate channels to a client 160 * @client: &dma_client 161 * 162 * Called with dma_list_mutex held. 163 */ 164 static void dma_client_chan_alloc(struct dma_client *client) 165 { 166 struct dma_device *device; 167 struct dma_chan *chan; 168 int desc; /* allocated descriptor count */ 169 enum dma_state_client ack; 170 171 /* Find a channel */ 172 list_for_each_entry(device, &dma_device_list, global_node) 173 list_for_each_entry(chan, &device->channels, device_node) { 174 if (!dma_chan_satisfies_mask(chan, client->cap_mask)) 175 continue; 176 177 desc = chan->device->device_alloc_chan_resources(chan); 178 if (desc >= 0) { 179 ack = client->event_callback(client, 180 chan, 181 DMA_RESOURCE_AVAILABLE); 182 183 /* we are done once this client rejects 184 * an available resource 185 */ 186 if (ack == DMA_ACK) 187 dma_chan_get(chan); 188 else if (ack == DMA_NAK) 189 return; 190 } 191 } 192 } 193 194 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 195 { 196 enum dma_status status; 197 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 198 199 dma_async_issue_pending(chan); 200 do { 201 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 202 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 203 printk(KERN_ERR "dma_sync_wait_timeout!\n"); 204 return DMA_ERROR; 205 } 206 } while (status == DMA_IN_PROGRESS); 207 208 return status; 209 } 210 EXPORT_SYMBOL(dma_sync_wait); 211 212 /** 213 * dma_chan_cleanup - release a DMA channel's resources 214 * @kref: kernel reference structure that contains the DMA channel device 215 */ 216 void dma_chan_cleanup(struct kref *kref) 217 { 218 struct dma_chan *chan = container_of(kref, struct dma_chan, refcount); 219 chan->device->device_free_chan_resources(chan); 220 kref_put(&chan->device->refcount, dma_async_device_cleanup); 221 } 222 EXPORT_SYMBOL(dma_chan_cleanup); 223 224 static void dma_chan_free_rcu(struct rcu_head *rcu) 225 { 226 struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu); 227 int bias = 0x7FFFFFFF; 228 int i; 229 for_each_possible_cpu(i) 230 bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount); 231 atomic_sub(bias, &chan->refcount.refcount); 232 kref_put(&chan->refcount, dma_chan_cleanup); 233 } 234 235 static void dma_chan_release(struct dma_chan *chan) 236 { 237 atomic_add(0x7FFFFFFF, &chan->refcount.refcount); 238 chan->slow_ref = 1; 239 call_rcu(&chan->rcu, dma_chan_free_rcu); 240 } 241 242 /** 243 * dma_chans_notify_available - broadcast available channels to the clients 244 */ 245 static void dma_clients_notify_available(void) 246 { 247 struct dma_client *client; 248 249 mutex_lock(&dma_list_mutex); 250 251 list_for_each_entry(client, &dma_client_list, global_node) 252 dma_client_chan_alloc(client); 253 254 mutex_unlock(&dma_list_mutex); 255 } 256 257 /** 258 * dma_chans_notify_available - tell the clients that a channel is going away 259 * @chan: channel on its way out 260 */ 261 static void dma_clients_notify_removed(struct dma_chan *chan) 262 { 263 struct dma_client *client; 264 enum dma_state_client ack; 265 266 mutex_lock(&dma_list_mutex); 267 268 list_for_each_entry(client, &dma_client_list, global_node) { 269 ack = client->event_callback(client, chan, 270 DMA_RESOURCE_REMOVED); 271 272 /* client was holding resources for this channel so 273 * free it 274 */ 275 if (ack == DMA_ACK) 276 dma_chan_put(chan); 277 } 278 279 mutex_unlock(&dma_list_mutex); 280 } 281 282 /** 283 * dma_async_client_register - register a &dma_client 284 * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask' 285 */ 286 void dma_async_client_register(struct dma_client *client) 287 { 288 mutex_lock(&dma_list_mutex); 289 list_add_tail(&client->global_node, &dma_client_list); 290 mutex_unlock(&dma_list_mutex); 291 } 292 EXPORT_SYMBOL(dma_async_client_register); 293 294 /** 295 * dma_async_client_unregister - unregister a client and free the &dma_client 296 * @client: &dma_client to free 297 * 298 * Force frees any allocated DMA channels, frees the &dma_client memory 299 */ 300 void dma_async_client_unregister(struct dma_client *client) 301 { 302 struct dma_device *device; 303 struct dma_chan *chan; 304 enum dma_state_client ack; 305 306 if (!client) 307 return; 308 309 mutex_lock(&dma_list_mutex); 310 /* free all channels the client is holding */ 311 list_for_each_entry(device, &dma_device_list, global_node) 312 list_for_each_entry(chan, &device->channels, device_node) { 313 ack = client->event_callback(client, chan, 314 DMA_RESOURCE_REMOVED); 315 316 if (ack == DMA_ACK) 317 dma_chan_put(chan); 318 } 319 320 list_del(&client->global_node); 321 mutex_unlock(&dma_list_mutex); 322 } 323 EXPORT_SYMBOL(dma_async_client_unregister); 324 325 /** 326 * dma_async_client_chan_request - send all available channels to the 327 * client that satisfy the capability mask 328 * @client - requester 329 */ 330 void dma_async_client_chan_request(struct dma_client *client) 331 { 332 mutex_lock(&dma_list_mutex); 333 dma_client_chan_alloc(client); 334 mutex_unlock(&dma_list_mutex); 335 } 336 EXPORT_SYMBOL(dma_async_client_chan_request); 337 338 /** 339 * dma_async_device_register - registers DMA devices found 340 * @device: &dma_device 341 */ 342 int dma_async_device_register(struct dma_device *device) 343 { 344 static int id; 345 int chancnt = 0, rc; 346 struct dma_chan* chan; 347 348 if (!device) 349 return -ENODEV; 350 351 /* validate device routines */ 352 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && 353 !device->device_prep_dma_memcpy); 354 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && 355 !device->device_prep_dma_xor); 356 BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) && 357 !device->device_prep_dma_zero_sum); 358 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) && 359 !device->device_prep_dma_memset); 360 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) && 361 !device->device_prep_dma_interrupt); 362 363 BUG_ON(!device->device_alloc_chan_resources); 364 BUG_ON(!device->device_free_chan_resources); 365 BUG_ON(!device->device_is_tx_complete); 366 BUG_ON(!device->device_issue_pending); 367 BUG_ON(!device->dev); 368 369 init_completion(&device->done); 370 kref_init(&device->refcount); 371 device->dev_id = id++; 372 373 /* represent channels in sysfs. Probably want devs too */ 374 list_for_each_entry(chan, &device->channels, device_node) { 375 chan->local = alloc_percpu(typeof(*chan->local)); 376 if (chan->local == NULL) 377 continue; 378 379 chan->chan_id = chancnt++; 380 chan->dev.class = &dma_devclass; 381 chan->dev.parent = NULL; 382 snprintf(chan->dev.bus_id, BUS_ID_SIZE, "dma%dchan%d", 383 device->dev_id, chan->chan_id); 384 385 rc = device_register(&chan->dev); 386 if (rc) { 387 chancnt--; 388 free_percpu(chan->local); 389 chan->local = NULL; 390 goto err_out; 391 } 392 393 /* One for the channel, one of the class device */ 394 kref_get(&device->refcount); 395 kref_get(&device->refcount); 396 kref_init(&chan->refcount); 397 chan->slow_ref = 0; 398 INIT_RCU_HEAD(&chan->rcu); 399 } 400 401 mutex_lock(&dma_list_mutex); 402 list_add_tail(&device->global_node, &dma_device_list); 403 mutex_unlock(&dma_list_mutex); 404 405 dma_clients_notify_available(); 406 407 return 0; 408 409 err_out: 410 list_for_each_entry(chan, &device->channels, device_node) { 411 if (chan->local == NULL) 412 continue; 413 kref_put(&device->refcount, dma_async_device_cleanup); 414 device_unregister(&chan->dev); 415 chancnt--; 416 free_percpu(chan->local); 417 } 418 return rc; 419 } 420 EXPORT_SYMBOL(dma_async_device_register); 421 422 /** 423 * dma_async_device_cleanup - function called when all references are released 424 * @kref: kernel reference object 425 */ 426 static void dma_async_device_cleanup(struct kref *kref) 427 { 428 struct dma_device *device; 429 430 device = container_of(kref, struct dma_device, refcount); 431 complete(&device->done); 432 } 433 434 /** 435 * dma_async_device_unregister - unregisters DMA devices 436 * @device: &dma_device 437 */ 438 void dma_async_device_unregister(struct dma_device *device) 439 { 440 struct dma_chan *chan; 441 442 mutex_lock(&dma_list_mutex); 443 list_del(&device->global_node); 444 mutex_unlock(&dma_list_mutex); 445 446 list_for_each_entry(chan, &device->channels, device_node) { 447 dma_clients_notify_removed(chan); 448 device_unregister(&chan->dev); 449 dma_chan_release(chan); 450 } 451 452 kref_put(&device->refcount, dma_async_device_cleanup); 453 wait_for_completion(&device->done); 454 } 455 EXPORT_SYMBOL(dma_async_device_unregister); 456 457 /** 458 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses 459 * @chan: DMA channel to offload copy to 460 * @dest: destination address (virtual) 461 * @src: source address (virtual) 462 * @len: length 463 * 464 * Both @dest and @src must be mappable to a bus address according to the 465 * DMA mapping API rules for streaming mappings. 466 * Both @dest and @src must stay memory resident (kernel memory or locked 467 * user space pages). 468 */ 469 dma_cookie_t 470 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest, 471 void *src, size_t len) 472 { 473 struct dma_device *dev = chan->device; 474 struct dma_async_tx_descriptor *tx; 475 dma_addr_t dma_dest, dma_src; 476 dma_cookie_t cookie; 477 int cpu; 478 479 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE); 480 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE); 481 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, 482 DMA_CTRL_ACK); 483 484 if (!tx) { 485 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); 486 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE); 487 return -ENOMEM; 488 } 489 490 tx->callback = NULL; 491 cookie = tx->tx_submit(tx); 492 493 cpu = get_cpu(); 494 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; 495 per_cpu_ptr(chan->local, cpu)->memcpy_count++; 496 put_cpu(); 497 498 return cookie; 499 } 500 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf); 501 502 /** 503 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page 504 * @chan: DMA channel to offload copy to 505 * @page: destination page 506 * @offset: offset in page to copy to 507 * @kdata: source address (virtual) 508 * @len: length 509 * 510 * Both @page/@offset and @kdata must be mappable to a bus address according 511 * to the DMA mapping API rules for streaming mappings. 512 * Both @page/@offset and @kdata must stay memory resident (kernel memory or 513 * locked user space pages) 514 */ 515 dma_cookie_t 516 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page, 517 unsigned int offset, void *kdata, size_t len) 518 { 519 struct dma_device *dev = chan->device; 520 struct dma_async_tx_descriptor *tx; 521 dma_addr_t dma_dest, dma_src; 522 dma_cookie_t cookie; 523 int cpu; 524 525 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE); 526 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE); 527 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, 528 DMA_CTRL_ACK); 529 530 if (!tx) { 531 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); 532 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); 533 return -ENOMEM; 534 } 535 536 tx->callback = NULL; 537 cookie = tx->tx_submit(tx); 538 539 cpu = get_cpu(); 540 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; 541 per_cpu_ptr(chan->local, cpu)->memcpy_count++; 542 put_cpu(); 543 544 return cookie; 545 } 546 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg); 547 548 /** 549 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page 550 * @chan: DMA channel to offload copy to 551 * @dest_pg: destination page 552 * @dest_off: offset in page to copy to 553 * @src_pg: source page 554 * @src_off: offset in page to copy from 555 * @len: length 556 * 557 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus 558 * address according to the DMA mapping API rules for streaming mappings. 559 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident 560 * (kernel memory or locked user space pages). 561 */ 562 dma_cookie_t 563 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg, 564 unsigned int dest_off, struct page *src_pg, unsigned int src_off, 565 size_t len) 566 { 567 struct dma_device *dev = chan->device; 568 struct dma_async_tx_descriptor *tx; 569 dma_addr_t dma_dest, dma_src; 570 dma_cookie_t cookie; 571 int cpu; 572 573 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE); 574 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len, 575 DMA_FROM_DEVICE); 576 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, 577 DMA_CTRL_ACK); 578 579 if (!tx) { 580 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE); 581 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE); 582 return -ENOMEM; 583 } 584 585 tx->callback = NULL; 586 cookie = tx->tx_submit(tx); 587 588 cpu = get_cpu(); 589 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; 590 per_cpu_ptr(chan->local, cpu)->memcpy_count++; 591 put_cpu(); 592 593 return cookie; 594 } 595 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg); 596 597 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 598 struct dma_chan *chan) 599 { 600 tx->chan = chan; 601 spin_lock_init(&tx->lock); 602 } 603 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 604 605 static int __init dma_bus_init(void) 606 { 607 mutex_init(&dma_list_mutex); 608 return class_register(&dma_devclass); 609 } 610 subsys_initcall(dma_bus_init); 611 612