xref: /openbmc/linux/drivers/dma/dmaengine.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 
6 /*
7  * This code implements the DMA subsystem. It provides a HW-neutral interface
8  * for other kernel code to use asynchronous memory copy capabilities,
9  * if present, and allows different HW DMA drivers to register as providing
10  * this capability.
11  *
12  * Due to the fact we are accelerating what is already a relatively fast
13  * operation, the code goes to great lengths to avoid additional overhead,
14  * such as locking.
15  *
16  * LOCKING:
17  *
18  * The subsystem keeps a global list of dma_device structs it is protected by a
19  * mutex, dma_list_mutex.
20  *
21  * A subsystem can get access to a channel by calling dmaengine_get() followed
22  * by dma_find_channel(), or if it has need for an exclusive channel it can call
23  * dma_request_channel().  Once a channel is allocated a reference is taken
24  * against its corresponding driver to disable removal.
25  *
26  * Each device has a channels list, which runs unlocked but is never modified
27  * once the device is registered, it's just setup by the driver.
28  *
29  * See Documentation/driver-api/dmaengine for more details
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55 
56 static DEFINE_MUTEX(dma_list_mutex);
57 static DEFINE_IDA(dma_ida);
58 static LIST_HEAD(dma_device_list);
59 static long dmaengine_ref_count;
60 
61 /* --- debugfs implementation --- */
62 #ifdef CONFIG_DEBUG_FS
63 #include <linux/debugfs.h>
64 
65 static struct dentry *rootdir;
66 
67 static void dmaengine_debug_register(struct dma_device *dma_dev)
68 {
69 	dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
70 						   rootdir);
71 	if (IS_ERR(dma_dev->dbg_dev_root))
72 		dma_dev->dbg_dev_root = NULL;
73 }
74 
75 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
76 {
77 	debugfs_remove_recursive(dma_dev->dbg_dev_root);
78 	dma_dev->dbg_dev_root = NULL;
79 }
80 
81 static void dmaengine_dbg_summary_show(struct seq_file *s,
82 				       struct dma_device *dma_dev)
83 {
84 	struct dma_chan *chan;
85 
86 	list_for_each_entry(chan, &dma_dev->channels, device_node) {
87 		if (chan->client_count) {
88 			seq_printf(s, " %-13s| %s", dma_chan_name(chan),
89 				   chan->dbg_client_name ?: "in-use");
90 
91 			if (chan->router)
92 				seq_printf(s, " (via router: %s)\n",
93 					dev_name(chan->router->dev));
94 			else
95 				seq_puts(s, "\n");
96 		}
97 	}
98 }
99 
100 static int dmaengine_summary_show(struct seq_file *s, void *data)
101 {
102 	struct dma_device *dma_dev = NULL;
103 
104 	mutex_lock(&dma_list_mutex);
105 	list_for_each_entry(dma_dev, &dma_device_list, global_node) {
106 		seq_printf(s, "dma%d (%s): number of channels: %u\n",
107 			   dma_dev->dev_id, dev_name(dma_dev->dev),
108 			   dma_dev->chancnt);
109 
110 		if (dma_dev->dbg_summary_show)
111 			dma_dev->dbg_summary_show(s, dma_dev);
112 		else
113 			dmaengine_dbg_summary_show(s, dma_dev);
114 
115 		if (!list_is_last(&dma_dev->global_node, &dma_device_list))
116 			seq_puts(s, "\n");
117 	}
118 	mutex_unlock(&dma_list_mutex);
119 
120 	return 0;
121 }
122 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
123 
124 static void __init dmaengine_debugfs_init(void)
125 {
126 	rootdir = debugfs_create_dir("dmaengine", NULL);
127 
128 	/* /sys/kernel/debug/dmaengine/summary */
129 	debugfs_create_file("summary", 0444, rootdir, NULL,
130 			    &dmaengine_summary_fops);
131 }
132 #else
133 static inline void dmaengine_debugfs_init(void) { }
134 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
135 {
136 	return 0;
137 }
138 
139 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
140 #endif	/* DEBUG_FS */
141 
142 /* --- sysfs implementation --- */
143 
144 #define DMA_SLAVE_NAME	"slave"
145 
146 /**
147  * dev_to_dma_chan - convert a device pointer to its sysfs container object
148  * @dev - device node
149  *
150  * Must be called under dma_list_mutex
151  */
152 static struct dma_chan *dev_to_dma_chan(struct device *dev)
153 {
154 	struct dma_chan_dev *chan_dev;
155 
156 	chan_dev = container_of(dev, typeof(*chan_dev), device);
157 	return chan_dev->chan;
158 }
159 
160 static ssize_t memcpy_count_show(struct device *dev,
161 				 struct device_attribute *attr, char *buf)
162 {
163 	struct dma_chan *chan;
164 	unsigned long count = 0;
165 	int i;
166 	int err;
167 
168 	mutex_lock(&dma_list_mutex);
169 	chan = dev_to_dma_chan(dev);
170 	if (chan) {
171 		for_each_possible_cpu(i)
172 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
173 		err = sprintf(buf, "%lu\n", count);
174 	} else
175 		err = -ENODEV;
176 	mutex_unlock(&dma_list_mutex);
177 
178 	return err;
179 }
180 static DEVICE_ATTR_RO(memcpy_count);
181 
182 static ssize_t bytes_transferred_show(struct device *dev,
183 				      struct device_attribute *attr, char *buf)
184 {
185 	struct dma_chan *chan;
186 	unsigned long count = 0;
187 	int i;
188 	int err;
189 
190 	mutex_lock(&dma_list_mutex);
191 	chan = dev_to_dma_chan(dev);
192 	if (chan) {
193 		for_each_possible_cpu(i)
194 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
195 		err = sprintf(buf, "%lu\n", count);
196 	} else
197 		err = -ENODEV;
198 	mutex_unlock(&dma_list_mutex);
199 
200 	return err;
201 }
202 static DEVICE_ATTR_RO(bytes_transferred);
203 
204 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
205 			   char *buf)
206 {
207 	struct dma_chan *chan;
208 	int err;
209 
210 	mutex_lock(&dma_list_mutex);
211 	chan = dev_to_dma_chan(dev);
212 	if (chan)
213 		err = sprintf(buf, "%d\n", chan->client_count);
214 	else
215 		err = -ENODEV;
216 	mutex_unlock(&dma_list_mutex);
217 
218 	return err;
219 }
220 static DEVICE_ATTR_RO(in_use);
221 
222 static struct attribute *dma_dev_attrs[] = {
223 	&dev_attr_memcpy_count.attr,
224 	&dev_attr_bytes_transferred.attr,
225 	&dev_attr_in_use.attr,
226 	NULL,
227 };
228 ATTRIBUTE_GROUPS(dma_dev);
229 
230 static void chan_dev_release(struct device *dev)
231 {
232 	struct dma_chan_dev *chan_dev;
233 
234 	chan_dev = container_of(dev, typeof(*chan_dev), device);
235 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
236 		ida_free(&dma_ida, chan_dev->dev_id);
237 		kfree(chan_dev->idr_ref);
238 	}
239 	kfree(chan_dev);
240 }
241 
242 static struct class dma_devclass = {
243 	.name		= "dma",
244 	.dev_groups	= dma_dev_groups,
245 	.dev_release	= chan_dev_release,
246 };
247 
248 /* --- client and device registration --- */
249 
250 /**
251  * dma_cap_mask_all - enable iteration over all operation types
252  */
253 static dma_cap_mask_t dma_cap_mask_all;
254 
255 /**
256  * dma_chan_tbl_ent - tracks channel allocations per core/operation
257  * @chan - associated channel for this entry
258  */
259 struct dma_chan_tbl_ent {
260 	struct dma_chan *chan;
261 };
262 
263 /**
264  * channel_table - percpu lookup table for memory-to-memory offload providers
265  */
266 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
267 
268 static int __init dma_channel_table_init(void)
269 {
270 	enum dma_transaction_type cap;
271 	int err = 0;
272 
273 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
274 
275 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
276 	 * but are not associated with an operation so they do not need
277 	 * an entry in the channel_table
278 	 */
279 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
280 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
281 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
282 
283 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
284 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
285 		if (!channel_table[cap]) {
286 			err = -ENOMEM;
287 			break;
288 		}
289 	}
290 
291 	if (err) {
292 		pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
293 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
294 			free_percpu(channel_table[cap]);
295 	}
296 
297 	return err;
298 }
299 arch_initcall(dma_channel_table_init);
300 
301 /**
302  * dma_chan_is_local - returns true if the channel is in the same numa-node as
303  *	the cpu
304  */
305 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
306 {
307 	int node = dev_to_node(chan->device->dev);
308 	return node == NUMA_NO_NODE ||
309 		cpumask_test_cpu(cpu, cpumask_of_node(node));
310 }
311 
312 /**
313  * min_chan - returns the channel with min count and in the same numa-node as
314  *	the cpu
315  * @cap: capability to match
316  * @cpu: cpu index which the channel should be close to
317  *
318  * If some channels are close to the given cpu, the one with the lowest
319  * reference count is returned. Otherwise, cpu is ignored and only the
320  * reference count is taken into account.
321  * Must be called under dma_list_mutex.
322  */
323 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
324 {
325 	struct dma_device *device;
326 	struct dma_chan *chan;
327 	struct dma_chan *min = NULL;
328 	struct dma_chan *localmin = NULL;
329 
330 	list_for_each_entry(device, &dma_device_list, global_node) {
331 		if (!dma_has_cap(cap, device->cap_mask) ||
332 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
333 			continue;
334 		list_for_each_entry(chan, &device->channels, device_node) {
335 			if (!chan->client_count)
336 				continue;
337 			if (!min || chan->table_count < min->table_count)
338 				min = chan;
339 
340 			if (dma_chan_is_local(chan, cpu))
341 				if (!localmin ||
342 				    chan->table_count < localmin->table_count)
343 					localmin = chan;
344 		}
345 	}
346 
347 	chan = localmin ? localmin : min;
348 
349 	if (chan)
350 		chan->table_count++;
351 
352 	return chan;
353 }
354 
355 /**
356  * dma_channel_rebalance - redistribute the available channels
357  *
358  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
359  * operation type) in the SMP case,  and operation isolation (avoid
360  * multi-tasking channels) in the non-SMP case.  Must be called under
361  * dma_list_mutex.
362  */
363 static void dma_channel_rebalance(void)
364 {
365 	struct dma_chan *chan;
366 	struct dma_device *device;
367 	int cpu;
368 	int cap;
369 
370 	/* undo the last distribution */
371 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
372 		for_each_possible_cpu(cpu)
373 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
374 
375 	list_for_each_entry(device, &dma_device_list, global_node) {
376 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
377 			continue;
378 		list_for_each_entry(chan, &device->channels, device_node)
379 			chan->table_count = 0;
380 	}
381 
382 	/* don't populate the channel_table if no clients are available */
383 	if (!dmaengine_ref_count)
384 		return;
385 
386 	/* redistribute available channels */
387 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
388 		for_each_online_cpu(cpu) {
389 			chan = min_chan(cap, cpu);
390 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
391 		}
392 }
393 
394 static int dma_device_satisfies_mask(struct dma_device *device,
395 				     const dma_cap_mask_t *want)
396 {
397 	dma_cap_mask_t has;
398 
399 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
400 		DMA_TX_TYPE_END);
401 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
402 }
403 
404 static struct module *dma_chan_to_owner(struct dma_chan *chan)
405 {
406 	return chan->device->owner;
407 }
408 
409 /**
410  * balance_ref_count - catch up the channel reference count
411  * @chan - channel to balance ->client_count versus dmaengine_ref_count
412  *
413  * balance_ref_count must be called under dma_list_mutex
414  */
415 static void balance_ref_count(struct dma_chan *chan)
416 {
417 	struct module *owner = dma_chan_to_owner(chan);
418 
419 	while (chan->client_count < dmaengine_ref_count) {
420 		__module_get(owner);
421 		chan->client_count++;
422 	}
423 }
424 
425 static void dma_device_release(struct kref *ref)
426 {
427 	struct dma_device *device = container_of(ref, struct dma_device, ref);
428 
429 	list_del_rcu(&device->global_node);
430 	dma_channel_rebalance();
431 
432 	if (device->device_release)
433 		device->device_release(device);
434 }
435 
436 static void dma_device_put(struct dma_device *device)
437 {
438 	lockdep_assert_held(&dma_list_mutex);
439 	kref_put(&device->ref, dma_device_release);
440 }
441 
442 /**
443  * dma_chan_get - try to grab a dma channel's parent driver module
444  * @chan - channel to grab
445  *
446  * Must be called under dma_list_mutex
447  */
448 static int dma_chan_get(struct dma_chan *chan)
449 {
450 	struct module *owner = dma_chan_to_owner(chan);
451 	int ret;
452 
453 	/* The channel is already in use, update client count */
454 	if (chan->client_count) {
455 		__module_get(owner);
456 		goto out;
457 	}
458 
459 	if (!try_module_get(owner))
460 		return -ENODEV;
461 
462 	ret = kref_get_unless_zero(&chan->device->ref);
463 	if (!ret) {
464 		ret = -ENODEV;
465 		goto module_put_out;
466 	}
467 
468 	/* allocate upon first client reference */
469 	if (chan->device->device_alloc_chan_resources) {
470 		ret = chan->device->device_alloc_chan_resources(chan);
471 		if (ret < 0)
472 			goto err_out;
473 	}
474 
475 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
476 		balance_ref_count(chan);
477 
478 out:
479 	chan->client_count++;
480 	return 0;
481 
482 err_out:
483 	dma_device_put(chan->device);
484 module_put_out:
485 	module_put(owner);
486 	return ret;
487 }
488 
489 /**
490  * dma_chan_put - drop a reference to a dma channel's parent driver module
491  * @chan - channel to release
492  *
493  * Must be called under dma_list_mutex
494  */
495 static void dma_chan_put(struct dma_chan *chan)
496 {
497 	/* This channel is not in use, bail out */
498 	if (!chan->client_count)
499 		return;
500 
501 	chan->client_count--;
502 
503 	/* This channel is not in use anymore, free it */
504 	if (!chan->client_count && chan->device->device_free_chan_resources) {
505 		/* Make sure all operations have completed */
506 		dmaengine_synchronize(chan);
507 		chan->device->device_free_chan_resources(chan);
508 	}
509 
510 	/* If the channel is used via a DMA request router, free the mapping */
511 	if (chan->router && chan->router->route_free) {
512 		chan->router->route_free(chan->router->dev, chan->route_data);
513 		chan->router = NULL;
514 		chan->route_data = NULL;
515 	}
516 
517 	dma_device_put(chan->device);
518 	module_put(dma_chan_to_owner(chan));
519 }
520 
521 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
522 {
523 	enum dma_status status;
524 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
525 
526 	dma_async_issue_pending(chan);
527 	do {
528 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
529 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
530 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
531 			return DMA_ERROR;
532 		}
533 		if (status != DMA_IN_PROGRESS)
534 			break;
535 		cpu_relax();
536 	} while (1);
537 
538 	return status;
539 }
540 EXPORT_SYMBOL(dma_sync_wait);
541 
542 /**
543  * dma_find_channel - find a channel to carry out the operation
544  * @tx_type: transaction type
545  */
546 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
547 {
548 	return this_cpu_read(channel_table[tx_type]->chan);
549 }
550 EXPORT_SYMBOL(dma_find_channel);
551 
552 /**
553  * dma_issue_pending_all - flush all pending operations across all channels
554  */
555 void dma_issue_pending_all(void)
556 {
557 	struct dma_device *device;
558 	struct dma_chan *chan;
559 
560 	rcu_read_lock();
561 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
562 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
563 			continue;
564 		list_for_each_entry(chan, &device->channels, device_node)
565 			if (chan->client_count)
566 				device->device_issue_pending(chan);
567 	}
568 	rcu_read_unlock();
569 }
570 EXPORT_SYMBOL(dma_issue_pending_all);
571 
572 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
573 {
574 	struct dma_device *device;
575 
576 	if (!chan || !caps)
577 		return -EINVAL;
578 
579 	device = chan->device;
580 
581 	/* check if the channel supports slave transactions */
582 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
583 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
584 		return -ENXIO;
585 
586 	/*
587 	 * Check whether it reports it uses the generic slave
588 	 * capabilities, if not, that means it doesn't support any
589 	 * kind of slave capabilities reporting.
590 	 */
591 	if (!device->directions)
592 		return -ENXIO;
593 
594 	caps->src_addr_widths = device->src_addr_widths;
595 	caps->dst_addr_widths = device->dst_addr_widths;
596 	caps->directions = device->directions;
597 	caps->max_burst = device->max_burst;
598 	caps->residue_granularity = device->residue_granularity;
599 	caps->descriptor_reuse = device->descriptor_reuse;
600 	caps->cmd_pause = !!device->device_pause;
601 	caps->cmd_resume = !!device->device_resume;
602 	caps->cmd_terminate = !!device->device_terminate_all;
603 
604 	return 0;
605 }
606 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
607 
608 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
609 					  struct dma_device *dev,
610 					  dma_filter_fn fn, void *fn_param)
611 {
612 	struct dma_chan *chan;
613 
614 	if (mask && !dma_device_satisfies_mask(dev, mask)) {
615 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
616 		return NULL;
617 	}
618 	/* devices with multiple channels need special handling as we need to
619 	 * ensure that all channels are either private or public.
620 	 */
621 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
622 		list_for_each_entry(chan, &dev->channels, device_node) {
623 			/* some channels are already publicly allocated */
624 			if (chan->client_count)
625 				return NULL;
626 		}
627 
628 	list_for_each_entry(chan, &dev->channels, device_node) {
629 		if (chan->client_count) {
630 			dev_dbg(dev->dev, "%s: %s busy\n",
631 				 __func__, dma_chan_name(chan));
632 			continue;
633 		}
634 		if (fn && !fn(chan, fn_param)) {
635 			dev_dbg(dev->dev, "%s: %s filter said false\n",
636 				 __func__, dma_chan_name(chan));
637 			continue;
638 		}
639 		return chan;
640 	}
641 
642 	return NULL;
643 }
644 
645 static struct dma_chan *find_candidate(struct dma_device *device,
646 				       const dma_cap_mask_t *mask,
647 				       dma_filter_fn fn, void *fn_param)
648 {
649 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
650 	int err;
651 
652 	if (chan) {
653 		/* Found a suitable channel, try to grab, prep, and return it.
654 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
655 		 * channel will not be published in the general-purpose
656 		 * allocator
657 		 */
658 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
659 		device->privatecnt++;
660 		err = dma_chan_get(chan);
661 
662 		if (err) {
663 			if (err == -ENODEV) {
664 				dev_dbg(device->dev, "%s: %s module removed\n",
665 					__func__, dma_chan_name(chan));
666 				list_del_rcu(&device->global_node);
667 			} else
668 				dev_dbg(device->dev,
669 					"%s: failed to get %s: (%d)\n",
670 					 __func__, dma_chan_name(chan), err);
671 
672 			if (--device->privatecnt == 0)
673 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
674 
675 			chan = ERR_PTR(err);
676 		}
677 	}
678 
679 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
680 }
681 
682 /**
683  * dma_get_slave_channel - try to get specific channel exclusively
684  * @chan: target channel
685  */
686 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
687 {
688 	int err = -EBUSY;
689 
690 	/* lock against __dma_request_channel */
691 	mutex_lock(&dma_list_mutex);
692 
693 	if (chan->client_count == 0) {
694 		struct dma_device *device = chan->device;
695 
696 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
697 		device->privatecnt++;
698 		err = dma_chan_get(chan);
699 		if (err) {
700 			dev_dbg(chan->device->dev,
701 				"%s: failed to get %s: (%d)\n",
702 				__func__, dma_chan_name(chan), err);
703 			chan = NULL;
704 			if (--device->privatecnt == 0)
705 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
706 		}
707 	} else
708 		chan = NULL;
709 
710 	mutex_unlock(&dma_list_mutex);
711 
712 
713 	return chan;
714 }
715 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
716 
717 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
718 {
719 	dma_cap_mask_t mask;
720 	struct dma_chan *chan;
721 
722 	dma_cap_zero(mask);
723 	dma_cap_set(DMA_SLAVE, mask);
724 
725 	/* lock against __dma_request_channel */
726 	mutex_lock(&dma_list_mutex);
727 
728 	chan = find_candidate(device, &mask, NULL, NULL);
729 
730 	mutex_unlock(&dma_list_mutex);
731 
732 	return IS_ERR(chan) ? NULL : chan;
733 }
734 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
735 
736 /**
737  * __dma_request_channel - try to allocate an exclusive channel
738  * @mask: capabilities that the channel must satisfy
739  * @fn: optional callback to disposition available channels
740  * @fn_param: opaque parameter to pass to dma_filter_fn
741  * @np: device node to look for DMA channels
742  *
743  * Returns pointer to appropriate DMA channel on success or NULL.
744  */
745 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
746 				       dma_filter_fn fn, void *fn_param,
747 				       struct device_node *np)
748 {
749 	struct dma_device *device, *_d;
750 	struct dma_chan *chan = NULL;
751 
752 	/* Find a channel */
753 	mutex_lock(&dma_list_mutex);
754 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
755 		/* Finds a DMA controller with matching device node */
756 		if (np && device->dev->of_node && np != device->dev->of_node)
757 			continue;
758 
759 		chan = find_candidate(device, mask, fn, fn_param);
760 		if (!IS_ERR(chan))
761 			break;
762 
763 		chan = NULL;
764 	}
765 	mutex_unlock(&dma_list_mutex);
766 
767 	pr_debug("%s: %s (%s)\n",
768 		 __func__,
769 		 chan ? "success" : "fail",
770 		 chan ? dma_chan_name(chan) : NULL);
771 
772 	return chan;
773 }
774 EXPORT_SYMBOL_GPL(__dma_request_channel);
775 
776 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
777 						    const char *name,
778 						    struct device *dev)
779 {
780 	int i;
781 
782 	if (!device->filter.mapcnt)
783 		return NULL;
784 
785 	for (i = 0; i < device->filter.mapcnt; i++) {
786 		const struct dma_slave_map *map = &device->filter.map[i];
787 
788 		if (!strcmp(map->devname, dev_name(dev)) &&
789 		    !strcmp(map->slave, name))
790 			return map;
791 	}
792 
793 	return NULL;
794 }
795 
796 /**
797  * dma_request_chan - try to allocate an exclusive slave channel
798  * @dev:	pointer to client device structure
799  * @name:	slave channel name
800  *
801  * Returns pointer to appropriate DMA channel on success or an error pointer.
802  */
803 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
804 {
805 	struct dma_device *d, *_d;
806 	struct dma_chan *chan = NULL;
807 
808 	/* If device-tree is present get slave info from here */
809 	if (dev->of_node)
810 		chan = of_dma_request_slave_channel(dev->of_node, name);
811 
812 	/* If device was enumerated by ACPI get slave info from here */
813 	if (has_acpi_companion(dev) && !chan)
814 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
815 
816 	if (PTR_ERR(chan) == -EPROBE_DEFER)
817 		return chan;
818 
819 	if (!IS_ERR_OR_NULL(chan))
820 		goto found;
821 
822 	/* Try to find the channel via the DMA filter map(s) */
823 	mutex_lock(&dma_list_mutex);
824 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
825 		dma_cap_mask_t mask;
826 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
827 
828 		if (!map)
829 			continue;
830 
831 		dma_cap_zero(mask);
832 		dma_cap_set(DMA_SLAVE, mask);
833 
834 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
835 		if (!IS_ERR(chan))
836 			break;
837 	}
838 	mutex_unlock(&dma_list_mutex);
839 
840 	if (IS_ERR_OR_NULL(chan))
841 		return chan ? chan : ERR_PTR(-EPROBE_DEFER);
842 
843 found:
844 #ifdef CONFIG_DEBUG_FS
845 	chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
846 					  name);
847 #endif
848 
849 	chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
850 	if (!chan->name)
851 		return chan;
852 	chan->slave = dev;
853 
854 	if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
855 			      DMA_SLAVE_NAME))
856 		dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
857 	if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
858 		dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
859 
860 	return chan;
861 }
862 EXPORT_SYMBOL_GPL(dma_request_chan);
863 
864 /**
865  * dma_request_slave_channel - try to allocate an exclusive slave channel
866  * @dev:	pointer to client device structure
867  * @name:	slave channel name
868  *
869  * Returns pointer to appropriate DMA channel on success or NULL.
870  */
871 struct dma_chan *dma_request_slave_channel(struct device *dev,
872 					   const char *name)
873 {
874 	struct dma_chan *ch = dma_request_chan(dev, name);
875 	if (IS_ERR(ch))
876 		return NULL;
877 
878 	return ch;
879 }
880 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
881 
882 /**
883  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
884  * @mask: capabilities that the channel must satisfy
885  *
886  * Returns pointer to appropriate DMA channel on success or an error pointer.
887  */
888 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
889 {
890 	struct dma_chan *chan;
891 
892 	if (!mask)
893 		return ERR_PTR(-ENODEV);
894 
895 	chan = __dma_request_channel(mask, NULL, NULL, NULL);
896 	if (!chan) {
897 		mutex_lock(&dma_list_mutex);
898 		if (list_empty(&dma_device_list))
899 			chan = ERR_PTR(-EPROBE_DEFER);
900 		else
901 			chan = ERR_PTR(-ENODEV);
902 		mutex_unlock(&dma_list_mutex);
903 	}
904 
905 	return chan;
906 }
907 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
908 
909 void dma_release_channel(struct dma_chan *chan)
910 {
911 	mutex_lock(&dma_list_mutex);
912 	WARN_ONCE(chan->client_count != 1,
913 		  "chan reference count %d != 1\n", chan->client_count);
914 	dma_chan_put(chan);
915 	/* drop PRIVATE cap enabled by __dma_request_channel() */
916 	if (--chan->device->privatecnt == 0)
917 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
918 
919 	if (chan->slave) {
920 		sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
921 		sysfs_remove_link(&chan->slave->kobj, chan->name);
922 		kfree(chan->name);
923 		chan->name = NULL;
924 		chan->slave = NULL;
925 	}
926 
927 #ifdef CONFIG_DEBUG_FS
928 	kfree(chan->dbg_client_name);
929 	chan->dbg_client_name = NULL;
930 #endif
931 	mutex_unlock(&dma_list_mutex);
932 }
933 EXPORT_SYMBOL_GPL(dma_release_channel);
934 
935 /**
936  * dmaengine_get - register interest in dma_channels
937  */
938 void dmaengine_get(void)
939 {
940 	struct dma_device *device, *_d;
941 	struct dma_chan *chan;
942 	int err;
943 
944 	mutex_lock(&dma_list_mutex);
945 	dmaengine_ref_count++;
946 
947 	/* try to grab channels */
948 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
949 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
950 			continue;
951 		list_for_each_entry(chan, &device->channels, device_node) {
952 			err = dma_chan_get(chan);
953 			if (err == -ENODEV) {
954 				/* module removed before we could use it */
955 				list_del_rcu(&device->global_node);
956 				break;
957 			} else if (err)
958 				dev_dbg(chan->device->dev,
959 					"%s: failed to get %s: (%d)\n",
960 					__func__, dma_chan_name(chan), err);
961 		}
962 	}
963 
964 	/* if this is the first reference and there were channels
965 	 * waiting we need to rebalance to get those channels
966 	 * incorporated into the channel table
967 	 */
968 	if (dmaengine_ref_count == 1)
969 		dma_channel_rebalance();
970 	mutex_unlock(&dma_list_mutex);
971 }
972 EXPORT_SYMBOL(dmaengine_get);
973 
974 /**
975  * dmaengine_put - let dma drivers be removed when ref_count == 0
976  */
977 void dmaengine_put(void)
978 {
979 	struct dma_device *device, *_d;
980 	struct dma_chan *chan;
981 
982 	mutex_lock(&dma_list_mutex);
983 	dmaengine_ref_count--;
984 	BUG_ON(dmaengine_ref_count < 0);
985 	/* drop channel references */
986 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
987 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
988 			continue;
989 		list_for_each_entry(chan, &device->channels, device_node)
990 			dma_chan_put(chan);
991 	}
992 	mutex_unlock(&dma_list_mutex);
993 }
994 EXPORT_SYMBOL(dmaengine_put);
995 
996 static bool device_has_all_tx_types(struct dma_device *device)
997 {
998 	/* A device that satisfies this test has channels that will never cause
999 	 * an async_tx channel switch event as all possible operation types can
1000 	 * be handled.
1001 	 */
1002 	#ifdef CONFIG_ASYNC_TX_DMA
1003 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
1004 		return false;
1005 	#endif
1006 
1007 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1008 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1009 		return false;
1010 	#endif
1011 
1012 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
1013 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
1014 		return false;
1015 
1016 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1017 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1018 		return false;
1019 	#endif
1020 	#endif
1021 
1022 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
1023 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
1024 		return false;
1025 
1026 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1027 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1028 		return false;
1029 	#endif
1030 	#endif
1031 
1032 	return true;
1033 }
1034 
1035 static int get_dma_id(struct dma_device *device)
1036 {
1037 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1038 
1039 	if (rc < 0)
1040 		return rc;
1041 	device->dev_id = rc;
1042 	return 0;
1043 }
1044 
1045 static int __dma_async_device_channel_register(struct dma_device *device,
1046 					       struct dma_chan *chan,
1047 					       int chan_id)
1048 {
1049 	int rc = 0;
1050 	int chancnt = device->chancnt;
1051 	atomic_t *idr_ref;
1052 	struct dma_chan *tchan;
1053 
1054 	tchan = list_first_entry_or_null(&device->channels,
1055 					 struct dma_chan, device_node);
1056 	if (!tchan)
1057 		return -ENODEV;
1058 
1059 	if (tchan->dev) {
1060 		idr_ref = tchan->dev->idr_ref;
1061 	} else {
1062 		idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1063 		if (!idr_ref)
1064 			return -ENOMEM;
1065 		atomic_set(idr_ref, 0);
1066 	}
1067 
1068 	chan->local = alloc_percpu(typeof(*chan->local));
1069 	if (!chan->local)
1070 		goto err_out;
1071 	chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1072 	if (!chan->dev) {
1073 		free_percpu(chan->local);
1074 		chan->local = NULL;
1075 		goto err_out;
1076 	}
1077 
1078 	/*
1079 	 * When the chan_id is a negative value, we are dynamically adding
1080 	 * the channel. Otherwise we are static enumerating.
1081 	 */
1082 	chan->chan_id = chan_id < 0 ? chancnt : chan_id;
1083 	chan->dev->device.class = &dma_devclass;
1084 	chan->dev->device.parent = device->dev;
1085 	chan->dev->chan = chan;
1086 	chan->dev->idr_ref = idr_ref;
1087 	chan->dev->dev_id = device->dev_id;
1088 	atomic_inc(idr_ref);
1089 	dev_set_name(&chan->dev->device, "dma%dchan%d",
1090 		     device->dev_id, chan->chan_id);
1091 
1092 	rc = device_register(&chan->dev->device);
1093 	if (rc)
1094 		goto err_out;
1095 	chan->client_count = 0;
1096 	device->chancnt = chan->chan_id + 1;
1097 
1098 	return 0;
1099 
1100  err_out:
1101 	free_percpu(chan->local);
1102 	kfree(chan->dev);
1103 	if (atomic_dec_return(idr_ref) == 0)
1104 		kfree(idr_ref);
1105 	return rc;
1106 }
1107 
1108 int dma_async_device_channel_register(struct dma_device *device,
1109 				      struct dma_chan *chan)
1110 {
1111 	int rc;
1112 
1113 	rc = __dma_async_device_channel_register(device, chan, -1);
1114 	if (rc < 0)
1115 		return rc;
1116 
1117 	dma_channel_rebalance();
1118 	return 0;
1119 }
1120 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1121 
1122 static void __dma_async_device_channel_unregister(struct dma_device *device,
1123 						  struct dma_chan *chan)
1124 {
1125 	WARN_ONCE(!device->device_release && chan->client_count,
1126 		  "%s called while %d clients hold a reference\n",
1127 		  __func__, chan->client_count);
1128 	mutex_lock(&dma_list_mutex);
1129 	list_del(&chan->device_node);
1130 	device->chancnt--;
1131 	chan->dev->chan = NULL;
1132 	mutex_unlock(&dma_list_mutex);
1133 	device_unregister(&chan->dev->device);
1134 	free_percpu(chan->local);
1135 }
1136 
1137 void dma_async_device_channel_unregister(struct dma_device *device,
1138 					 struct dma_chan *chan)
1139 {
1140 	__dma_async_device_channel_unregister(device, chan);
1141 	dma_channel_rebalance();
1142 }
1143 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1144 
1145 /**
1146  * dma_async_device_register - registers DMA devices found
1147  * @device: &dma_device
1148  *
1149  * After calling this routine the structure should not be freed except in the
1150  * device_release() callback which will be called after
1151  * dma_async_device_unregister() is called and no further references are taken.
1152  */
1153 int dma_async_device_register(struct dma_device *device)
1154 {
1155 	int rc, i = 0;
1156 	struct dma_chan* chan;
1157 
1158 	if (!device)
1159 		return -ENODEV;
1160 
1161 	/* validate device routines */
1162 	if (!device->dev) {
1163 		pr_err("DMAdevice must have dev\n");
1164 		return -EIO;
1165 	}
1166 
1167 	device->owner = device->dev->driver->owner;
1168 
1169 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1170 		dev_err(device->dev,
1171 			"Device claims capability %s, but op is not defined\n",
1172 			"DMA_MEMCPY");
1173 		return -EIO;
1174 	}
1175 
1176 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1177 		dev_err(device->dev,
1178 			"Device claims capability %s, but op is not defined\n",
1179 			"DMA_XOR");
1180 		return -EIO;
1181 	}
1182 
1183 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1184 		dev_err(device->dev,
1185 			"Device claims capability %s, but op is not defined\n",
1186 			"DMA_XOR_VAL");
1187 		return -EIO;
1188 	}
1189 
1190 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1191 		dev_err(device->dev,
1192 			"Device claims capability %s, but op is not defined\n",
1193 			"DMA_PQ");
1194 		return -EIO;
1195 	}
1196 
1197 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1198 		dev_err(device->dev,
1199 			"Device claims capability %s, but op is not defined\n",
1200 			"DMA_PQ_VAL");
1201 		return -EIO;
1202 	}
1203 
1204 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1205 		dev_err(device->dev,
1206 			"Device claims capability %s, but op is not defined\n",
1207 			"DMA_MEMSET");
1208 		return -EIO;
1209 	}
1210 
1211 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1212 		dev_err(device->dev,
1213 			"Device claims capability %s, but op is not defined\n",
1214 			"DMA_INTERRUPT");
1215 		return -EIO;
1216 	}
1217 
1218 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1219 		dev_err(device->dev,
1220 			"Device claims capability %s, but op is not defined\n",
1221 			"DMA_CYCLIC");
1222 		return -EIO;
1223 	}
1224 
1225 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1226 		dev_err(device->dev,
1227 			"Device claims capability %s, but op is not defined\n",
1228 			"DMA_INTERLEAVE");
1229 		return -EIO;
1230 	}
1231 
1232 
1233 	if (!device->device_tx_status) {
1234 		dev_err(device->dev, "Device tx_status is not defined\n");
1235 		return -EIO;
1236 	}
1237 
1238 
1239 	if (!device->device_issue_pending) {
1240 		dev_err(device->dev, "Device issue_pending is not defined\n");
1241 		return -EIO;
1242 	}
1243 
1244 	if (!device->device_release)
1245 		dev_dbg(device->dev,
1246 			 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1247 
1248 	kref_init(&device->ref);
1249 
1250 	/* note: this only matters in the
1251 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1252 	 */
1253 	if (device_has_all_tx_types(device))
1254 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1255 
1256 	rc = get_dma_id(device);
1257 	if (rc != 0)
1258 		return rc;
1259 
1260 	/* represent channels in sysfs. Probably want devs too */
1261 	list_for_each_entry(chan, &device->channels, device_node) {
1262 		rc = __dma_async_device_channel_register(device, chan, i++);
1263 		if (rc < 0)
1264 			goto err_out;
1265 	}
1266 
1267 	mutex_lock(&dma_list_mutex);
1268 	/* take references on public channels */
1269 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1270 		list_for_each_entry(chan, &device->channels, device_node) {
1271 			/* if clients are already waiting for channels we need
1272 			 * to take references on their behalf
1273 			 */
1274 			if (dma_chan_get(chan) == -ENODEV) {
1275 				/* note we can only get here for the first
1276 				 * channel as the remaining channels are
1277 				 * guaranteed to get a reference
1278 				 */
1279 				rc = -ENODEV;
1280 				mutex_unlock(&dma_list_mutex);
1281 				goto err_out;
1282 			}
1283 		}
1284 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1285 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1286 		device->privatecnt++;	/* Always private */
1287 	dma_channel_rebalance();
1288 	mutex_unlock(&dma_list_mutex);
1289 
1290 	dmaengine_debug_register(device);
1291 
1292 	return 0;
1293 
1294 err_out:
1295 	/* if we never registered a channel just release the idr */
1296 	if (!device->chancnt) {
1297 		ida_free(&dma_ida, device->dev_id);
1298 		return rc;
1299 	}
1300 
1301 	list_for_each_entry(chan, &device->channels, device_node) {
1302 		if (chan->local == NULL)
1303 			continue;
1304 		mutex_lock(&dma_list_mutex);
1305 		chan->dev->chan = NULL;
1306 		mutex_unlock(&dma_list_mutex);
1307 		device_unregister(&chan->dev->device);
1308 		free_percpu(chan->local);
1309 	}
1310 	return rc;
1311 }
1312 EXPORT_SYMBOL(dma_async_device_register);
1313 
1314 /**
1315  * dma_async_device_unregister - unregister a DMA device
1316  * @device: &dma_device
1317  *
1318  * This routine is called by dma driver exit routines, dmaengine holds module
1319  * references to prevent it being called while channels are in use.
1320  */
1321 void dma_async_device_unregister(struct dma_device *device)
1322 {
1323 	struct dma_chan *chan, *n;
1324 
1325 	dmaengine_debug_unregister(device);
1326 
1327 	list_for_each_entry_safe(chan, n, &device->channels, device_node)
1328 		__dma_async_device_channel_unregister(device, chan);
1329 
1330 	mutex_lock(&dma_list_mutex);
1331 	/*
1332 	 * setting DMA_PRIVATE ensures the device being torn down will not
1333 	 * be used in the channel_table
1334 	 */
1335 	dma_cap_set(DMA_PRIVATE, device->cap_mask);
1336 	dma_channel_rebalance();
1337 	dma_device_put(device);
1338 	mutex_unlock(&dma_list_mutex);
1339 }
1340 EXPORT_SYMBOL(dma_async_device_unregister);
1341 
1342 static void dmam_device_release(struct device *dev, void *res)
1343 {
1344 	struct dma_device *device;
1345 
1346 	device = *(struct dma_device **)res;
1347 	dma_async_device_unregister(device);
1348 }
1349 
1350 /**
1351  * dmaenginem_async_device_register - registers DMA devices found
1352  * @device: &dma_device
1353  *
1354  * The operation is managed and will be undone on driver detach.
1355  */
1356 int dmaenginem_async_device_register(struct dma_device *device)
1357 {
1358 	void *p;
1359 	int ret;
1360 
1361 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1362 	if (!p)
1363 		return -ENOMEM;
1364 
1365 	ret = dma_async_device_register(device);
1366 	if (!ret) {
1367 		*(struct dma_device **)p = device;
1368 		devres_add(device->dev, p);
1369 	} else {
1370 		devres_free(p);
1371 	}
1372 
1373 	return ret;
1374 }
1375 EXPORT_SYMBOL(dmaenginem_async_device_register);
1376 
1377 struct dmaengine_unmap_pool {
1378 	struct kmem_cache *cache;
1379 	const char *name;
1380 	mempool_t *pool;
1381 	size_t size;
1382 };
1383 
1384 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1385 static struct dmaengine_unmap_pool unmap_pool[] = {
1386 	__UNMAP_POOL(2),
1387 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1388 	__UNMAP_POOL(16),
1389 	__UNMAP_POOL(128),
1390 	__UNMAP_POOL(256),
1391 	#endif
1392 };
1393 
1394 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1395 {
1396 	int order = get_count_order(nr);
1397 
1398 	switch (order) {
1399 	case 0 ... 1:
1400 		return &unmap_pool[0];
1401 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1402 	case 2 ... 4:
1403 		return &unmap_pool[1];
1404 	case 5 ... 7:
1405 		return &unmap_pool[2];
1406 	case 8:
1407 		return &unmap_pool[3];
1408 #endif
1409 	default:
1410 		BUG();
1411 		return NULL;
1412 	}
1413 }
1414 
1415 static void dmaengine_unmap(struct kref *kref)
1416 {
1417 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1418 	struct device *dev = unmap->dev;
1419 	int cnt, i;
1420 
1421 	cnt = unmap->to_cnt;
1422 	for (i = 0; i < cnt; i++)
1423 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1424 			       DMA_TO_DEVICE);
1425 	cnt += unmap->from_cnt;
1426 	for (; i < cnt; i++)
1427 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1428 			       DMA_FROM_DEVICE);
1429 	cnt += unmap->bidi_cnt;
1430 	for (; i < cnt; i++) {
1431 		if (unmap->addr[i] == 0)
1432 			continue;
1433 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1434 			       DMA_BIDIRECTIONAL);
1435 	}
1436 	cnt = unmap->map_cnt;
1437 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1438 }
1439 
1440 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1441 {
1442 	if (unmap)
1443 		kref_put(&unmap->kref, dmaengine_unmap);
1444 }
1445 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1446 
1447 static void dmaengine_destroy_unmap_pool(void)
1448 {
1449 	int i;
1450 
1451 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1452 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1453 
1454 		mempool_destroy(p->pool);
1455 		p->pool = NULL;
1456 		kmem_cache_destroy(p->cache);
1457 		p->cache = NULL;
1458 	}
1459 }
1460 
1461 static int __init dmaengine_init_unmap_pool(void)
1462 {
1463 	int i;
1464 
1465 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1466 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1467 		size_t size;
1468 
1469 		size = sizeof(struct dmaengine_unmap_data) +
1470 		       sizeof(dma_addr_t) * p->size;
1471 
1472 		p->cache = kmem_cache_create(p->name, size, 0,
1473 					     SLAB_HWCACHE_ALIGN, NULL);
1474 		if (!p->cache)
1475 			break;
1476 		p->pool = mempool_create_slab_pool(1, p->cache);
1477 		if (!p->pool)
1478 			break;
1479 	}
1480 
1481 	if (i == ARRAY_SIZE(unmap_pool))
1482 		return 0;
1483 
1484 	dmaengine_destroy_unmap_pool();
1485 	return -ENOMEM;
1486 }
1487 
1488 struct dmaengine_unmap_data *
1489 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1490 {
1491 	struct dmaengine_unmap_data *unmap;
1492 
1493 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1494 	if (!unmap)
1495 		return NULL;
1496 
1497 	memset(unmap, 0, sizeof(*unmap));
1498 	kref_init(&unmap->kref);
1499 	unmap->dev = dev;
1500 	unmap->map_cnt = nr;
1501 
1502 	return unmap;
1503 }
1504 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1505 
1506 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1507 	struct dma_chan *chan)
1508 {
1509 	tx->chan = chan;
1510 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1511 	spin_lock_init(&tx->lock);
1512 	#endif
1513 }
1514 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1515 
1516 static inline int desc_check_and_set_metadata_mode(
1517 	struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1518 {
1519 	/* Make sure that the metadata mode is not mixed */
1520 	if (!desc->desc_metadata_mode) {
1521 		if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1522 			desc->desc_metadata_mode = mode;
1523 		else
1524 			return -ENOTSUPP;
1525 	} else if (desc->desc_metadata_mode != mode) {
1526 		return -EINVAL;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1533 				   void *data, size_t len)
1534 {
1535 	int ret;
1536 
1537 	if (!desc)
1538 		return -EINVAL;
1539 
1540 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1541 	if (ret)
1542 		return ret;
1543 
1544 	if (!desc->metadata_ops || !desc->metadata_ops->attach)
1545 		return -ENOTSUPP;
1546 
1547 	return desc->metadata_ops->attach(desc, data, len);
1548 }
1549 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1550 
1551 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1552 				      size_t *payload_len, size_t *max_len)
1553 {
1554 	int ret;
1555 
1556 	if (!desc)
1557 		return ERR_PTR(-EINVAL);
1558 
1559 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1560 	if (ret)
1561 		return ERR_PTR(ret);
1562 
1563 	if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1564 		return ERR_PTR(-ENOTSUPP);
1565 
1566 	return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1567 }
1568 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1569 
1570 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1571 				    size_t payload_len)
1572 {
1573 	int ret;
1574 
1575 	if (!desc)
1576 		return -EINVAL;
1577 
1578 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1579 	if (ret)
1580 		return ret;
1581 
1582 	if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1583 		return -ENOTSUPP;
1584 
1585 	return desc->metadata_ops->set_len(desc, payload_len);
1586 }
1587 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1588 
1589 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1590  * @tx: in-flight transaction to wait on
1591  */
1592 enum dma_status
1593 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1594 {
1595 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1596 
1597 	if (!tx)
1598 		return DMA_COMPLETE;
1599 
1600 	while (tx->cookie == -EBUSY) {
1601 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1602 			dev_err(tx->chan->device->dev,
1603 				"%s timeout waiting for descriptor submission\n",
1604 				__func__);
1605 			return DMA_ERROR;
1606 		}
1607 		cpu_relax();
1608 	}
1609 	return dma_sync_wait(tx->chan, tx->cookie);
1610 }
1611 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1612 
1613 /* dma_run_dependencies - helper routine for dma drivers to process
1614  *	(start) dependent operations on their target channel
1615  * @tx: transaction with dependencies
1616  */
1617 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1618 {
1619 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1620 	struct dma_async_tx_descriptor *dep_next;
1621 	struct dma_chan *chan;
1622 
1623 	if (!dep)
1624 		return;
1625 
1626 	/* we'll submit tx->next now, so clear the link */
1627 	txd_clear_next(tx);
1628 	chan = dep->chan;
1629 
1630 	/* keep submitting up until a channel switch is detected
1631 	 * in that case we will be called again as a result of
1632 	 * processing the interrupt from async_tx_channel_switch
1633 	 */
1634 	for (; dep; dep = dep_next) {
1635 		txd_lock(dep);
1636 		txd_clear_parent(dep);
1637 		dep_next = txd_next(dep);
1638 		if (dep_next && dep_next->chan == chan)
1639 			txd_clear_next(dep); /* ->next will be submitted */
1640 		else
1641 			dep_next = NULL; /* submit current dep and terminate */
1642 		txd_unlock(dep);
1643 
1644 		dep->tx_submit(dep);
1645 	}
1646 
1647 	chan->device->device_issue_pending(chan);
1648 }
1649 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1650 
1651 static int __init dma_bus_init(void)
1652 {
1653 	int err = dmaengine_init_unmap_pool();
1654 
1655 	if (err)
1656 		return err;
1657 
1658 	err = class_register(&dma_devclass);
1659 	if (!err)
1660 		dmaengine_debugfs_init();
1661 
1662 	return err;
1663 }
1664 arch_initcall(dma_bus_init);
1665