xref: /openbmc/linux/drivers/dma/dmaengine.c (revision e105007c)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps a global list of dma_device structs it is protected by a
35  * mutex, dma_list_mutex.
36  *
37  * A subsystem can get access to a channel by calling dmaengine_get() followed
38  * by dma_find_channel(), or if it has need for an exclusive channel it can call
39  * dma_request_channel().  Once a channel is allocated a reference is taken
40  * against its corresponding driver to disable removal.
41  *
42  * Each device has a channels list, which runs unlocked but is never modified
43  * once the device is registered, it's just setup by the driver.
44  *
45  * See Documentation/dmaengine.txt for more details
46  */
47 
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 
62 static DEFINE_MUTEX(dma_list_mutex);
63 static LIST_HEAD(dma_device_list);
64 static long dmaengine_ref_count;
65 static struct idr dma_idr;
66 
67 /* --- sysfs implementation --- */
68 
69 /**
70  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
71  * @dev - device node
72  *
73  * Must be called under dma_list_mutex
74  */
75 static struct dma_chan *dev_to_dma_chan(struct device *dev)
76 {
77 	struct dma_chan_dev *chan_dev;
78 
79 	chan_dev = container_of(dev, typeof(*chan_dev), device);
80 	return chan_dev->chan;
81 }
82 
83 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
84 {
85 	struct dma_chan *chan;
86 	unsigned long count = 0;
87 	int i;
88 	int err;
89 
90 	mutex_lock(&dma_list_mutex);
91 	chan = dev_to_dma_chan(dev);
92 	if (chan) {
93 		for_each_possible_cpu(i)
94 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
95 		err = sprintf(buf, "%lu\n", count);
96 	} else
97 		err = -ENODEV;
98 	mutex_unlock(&dma_list_mutex);
99 
100 	return err;
101 }
102 
103 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
104 				      char *buf)
105 {
106 	struct dma_chan *chan;
107 	unsigned long count = 0;
108 	int i;
109 	int err;
110 
111 	mutex_lock(&dma_list_mutex);
112 	chan = dev_to_dma_chan(dev);
113 	if (chan) {
114 		for_each_possible_cpu(i)
115 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
116 		err = sprintf(buf, "%lu\n", count);
117 	} else
118 		err = -ENODEV;
119 	mutex_unlock(&dma_list_mutex);
120 
121 	return err;
122 }
123 
124 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
125 {
126 	struct dma_chan *chan;
127 	int err;
128 
129 	mutex_lock(&dma_list_mutex);
130 	chan = dev_to_dma_chan(dev);
131 	if (chan)
132 		err = sprintf(buf, "%d\n", chan->client_count);
133 	else
134 		err = -ENODEV;
135 	mutex_unlock(&dma_list_mutex);
136 
137 	return err;
138 }
139 
140 static struct device_attribute dma_attrs[] = {
141 	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
142 	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
143 	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
144 	__ATTR_NULL
145 };
146 
147 static void chan_dev_release(struct device *dev)
148 {
149 	struct dma_chan_dev *chan_dev;
150 
151 	chan_dev = container_of(dev, typeof(*chan_dev), device);
152 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
153 		mutex_lock(&dma_list_mutex);
154 		idr_remove(&dma_idr, chan_dev->dev_id);
155 		mutex_unlock(&dma_list_mutex);
156 		kfree(chan_dev->idr_ref);
157 	}
158 	kfree(chan_dev);
159 }
160 
161 static struct class dma_devclass = {
162 	.name		= "dma",
163 	.dev_attrs	= dma_attrs,
164 	.dev_release	= chan_dev_release,
165 };
166 
167 /* --- client and device registration --- */
168 
169 #define dma_device_satisfies_mask(device, mask) \
170 	__dma_device_satisfies_mask((device), &(mask))
171 static int
172 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
173 {
174 	dma_cap_mask_t has;
175 
176 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
177 		DMA_TX_TYPE_END);
178 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
179 }
180 
181 static struct module *dma_chan_to_owner(struct dma_chan *chan)
182 {
183 	return chan->device->dev->driver->owner;
184 }
185 
186 /**
187  * balance_ref_count - catch up the channel reference count
188  * @chan - channel to balance ->client_count versus dmaengine_ref_count
189  *
190  * balance_ref_count must be called under dma_list_mutex
191  */
192 static void balance_ref_count(struct dma_chan *chan)
193 {
194 	struct module *owner = dma_chan_to_owner(chan);
195 
196 	while (chan->client_count < dmaengine_ref_count) {
197 		__module_get(owner);
198 		chan->client_count++;
199 	}
200 }
201 
202 /**
203  * dma_chan_get - try to grab a dma channel's parent driver module
204  * @chan - channel to grab
205  *
206  * Must be called under dma_list_mutex
207  */
208 static int dma_chan_get(struct dma_chan *chan)
209 {
210 	int err = -ENODEV;
211 	struct module *owner = dma_chan_to_owner(chan);
212 
213 	if (chan->client_count) {
214 		__module_get(owner);
215 		err = 0;
216 	} else if (try_module_get(owner))
217 		err = 0;
218 
219 	if (err == 0)
220 		chan->client_count++;
221 
222 	/* allocate upon first client reference */
223 	if (chan->client_count == 1 && err == 0) {
224 		int desc_cnt = chan->device->device_alloc_chan_resources(chan);
225 
226 		if (desc_cnt < 0) {
227 			err = desc_cnt;
228 			chan->client_count = 0;
229 			module_put(owner);
230 		} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
231 			balance_ref_count(chan);
232 	}
233 
234 	return err;
235 }
236 
237 /**
238  * dma_chan_put - drop a reference to a dma channel's parent driver module
239  * @chan - channel to release
240  *
241  * Must be called under dma_list_mutex
242  */
243 static void dma_chan_put(struct dma_chan *chan)
244 {
245 	if (!chan->client_count)
246 		return; /* this channel failed alloc_chan_resources */
247 	chan->client_count--;
248 	module_put(dma_chan_to_owner(chan));
249 	if (chan->client_count == 0)
250 		chan->device->device_free_chan_resources(chan);
251 }
252 
253 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
254 {
255 	enum dma_status status;
256 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
257 
258 	dma_async_issue_pending(chan);
259 	do {
260 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
261 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
262 			printk(KERN_ERR "dma_sync_wait_timeout!\n");
263 			return DMA_ERROR;
264 		}
265 	} while (status == DMA_IN_PROGRESS);
266 
267 	return status;
268 }
269 EXPORT_SYMBOL(dma_sync_wait);
270 
271 /**
272  * dma_cap_mask_all - enable iteration over all operation types
273  */
274 static dma_cap_mask_t dma_cap_mask_all;
275 
276 /**
277  * dma_chan_tbl_ent - tracks channel allocations per core/operation
278  * @chan - associated channel for this entry
279  */
280 struct dma_chan_tbl_ent {
281 	struct dma_chan *chan;
282 };
283 
284 /**
285  * channel_table - percpu lookup table for memory-to-memory offload providers
286  */
287 static struct dma_chan_tbl_ent *channel_table[DMA_TX_TYPE_END];
288 
289 static int __init dma_channel_table_init(void)
290 {
291 	enum dma_transaction_type cap;
292 	int err = 0;
293 
294 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
295 
296 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
297 	 * but are not associated with an operation so they do not need
298 	 * an entry in the channel_table
299 	 */
300 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
301 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
302 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
303 
304 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
305 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
306 		if (!channel_table[cap]) {
307 			err = -ENOMEM;
308 			break;
309 		}
310 	}
311 
312 	if (err) {
313 		pr_err("dmaengine: initialization failure\n");
314 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
315 			if (channel_table[cap])
316 				free_percpu(channel_table[cap]);
317 	}
318 
319 	return err;
320 }
321 arch_initcall(dma_channel_table_init);
322 
323 /**
324  * dma_find_channel - find a channel to carry out the operation
325  * @tx_type: transaction type
326  */
327 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
328 {
329 	return this_cpu_read(channel_table[tx_type]->chan);
330 }
331 EXPORT_SYMBOL(dma_find_channel);
332 
333 /**
334  * dma_issue_pending_all - flush all pending operations across all channels
335  */
336 void dma_issue_pending_all(void)
337 {
338 	struct dma_device *device;
339 	struct dma_chan *chan;
340 
341 	rcu_read_lock();
342 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
343 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
344 			continue;
345 		list_for_each_entry(chan, &device->channels, device_node)
346 			if (chan->client_count)
347 				device->device_issue_pending(chan);
348 	}
349 	rcu_read_unlock();
350 }
351 EXPORT_SYMBOL(dma_issue_pending_all);
352 
353 /**
354  * nth_chan - returns the nth channel of the given capability
355  * @cap: capability to match
356  * @n: nth channel desired
357  *
358  * Defaults to returning the channel with the desired capability and the
359  * lowest reference count when 'n' cannot be satisfied.  Must be called
360  * under dma_list_mutex.
361  */
362 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
363 {
364 	struct dma_device *device;
365 	struct dma_chan *chan;
366 	struct dma_chan *ret = NULL;
367 	struct dma_chan *min = NULL;
368 
369 	list_for_each_entry(device, &dma_device_list, global_node) {
370 		if (!dma_has_cap(cap, device->cap_mask) ||
371 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
372 			continue;
373 		list_for_each_entry(chan, &device->channels, device_node) {
374 			if (!chan->client_count)
375 				continue;
376 			if (!min)
377 				min = chan;
378 			else if (chan->table_count < min->table_count)
379 				min = chan;
380 
381 			if (n-- == 0) {
382 				ret = chan;
383 				break; /* done */
384 			}
385 		}
386 		if (ret)
387 			break; /* done */
388 	}
389 
390 	if (!ret)
391 		ret = min;
392 
393 	if (ret)
394 		ret->table_count++;
395 
396 	return ret;
397 }
398 
399 /**
400  * dma_channel_rebalance - redistribute the available channels
401  *
402  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
403  * operation type) in the SMP case,  and operation isolation (avoid
404  * multi-tasking channels) in the non-SMP case.  Must be called under
405  * dma_list_mutex.
406  */
407 static void dma_channel_rebalance(void)
408 {
409 	struct dma_chan *chan;
410 	struct dma_device *device;
411 	int cpu;
412 	int cap;
413 	int n;
414 
415 	/* undo the last distribution */
416 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
417 		for_each_possible_cpu(cpu)
418 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
419 
420 	list_for_each_entry(device, &dma_device_list, global_node) {
421 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
422 			continue;
423 		list_for_each_entry(chan, &device->channels, device_node)
424 			chan->table_count = 0;
425 	}
426 
427 	/* don't populate the channel_table if no clients are available */
428 	if (!dmaengine_ref_count)
429 		return;
430 
431 	/* redistribute available channels */
432 	n = 0;
433 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
434 		for_each_online_cpu(cpu) {
435 			if (num_possible_cpus() > 1)
436 				chan = nth_chan(cap, n++);
437 			else
438 				chan = nth_chan(cap, -1);
439 
440 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
441 		}
442 }
443 
444 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
445 					  dma_filter_fn fn, void *fn_param)
446 {
447 	struct dma_chan *chan;
448 
449 	if (!__dma_device_satisfies_mask(dev, mask)) {
450 		pr_debug("%s: wrong capabilities\n", __func__);
451 		return NULL;
452 	}
453 	/* devices with multiple channels need special handling as we need to
454 	 * ensure that all channels are either private or public.
455 	 */
456 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
457 		list_for_each_entry(chan, &dev->channels, device_node) {
458 			/* some channels are already publicly allocated */
459 			if (chan->client_count)
460 				return NULL;
461 		}
462 
463 	list_for_each_entry(chan, &dev->channels, device_node) {
464 		if (chan->client_count) {
465 			pr_debug("%s: %s busy\n",
466 				 __func__, dma_chan_name(chan));
467 			continue;
468 		}
469 		if (fn && !fn(chan, fn_param)) {
470 			pr_debug("%s: %s filter said false\n",
471 				 __func__, dma_chan_name(chan));
472 			continue;
473 		}
474 		return chan;
475 	}
476 
477 	return NULL;
478 }
479 
480 /**
481  * dma_request_channel - try to allocate an exclusive channel
482  * @mask: capabilities that the channel must satisfy
483  * @fn: optional callback to disposition available channels
484  * @fn_param: opaque parameter to pass to dma_filter_fn
485  */
486 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
487 {
488 	struct dma_device *device, *_d;
489 	struct dma_chan *chan = NULL;
490 	int err;
491 
492 	/* Find a channel */
493 	mutex_lock(&dma_list_mutex);
494 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
495 		chan = private_candidate(mask, device, fn, fn_param);
496 		if (chan) {
497 			/* Found a suitable channel, try to grab, prep, and
498 			 * return it.  We first set DMA_PRIVATE to disable
499 			 * balance_ref_count as this channel will not be
500 			 * published in the general-purpose allocator
501 			 */
502 			dma_cap_set(DMA_PRIVATE, device->cap_mask);
503 			device->privatecnt++;
504 			err = dma_chan_get(chan);
505 
506 			if (err == -ENODEV) {
507 				pr_debug("%s: %s module removed\n", __func__,
508 					 dma_chan_name(chan));
509 				list_del_rcu(&device->global_node);
510 			} else if (err)
511 				pr_err("dmaengine: failed to get %s: (%d)\n",
512 				       dma_chan_name(chan), err);
513 			else
514 				break;
515 			if (--device->privatecnt == 0)
516 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
517 			chan->private = NULL;
518 			chan = NULL;
519 		}
520 	}
521 	mutex_unlock(&dma_list_mutex);
522 
523 	pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
524 		 chan ? dma_chan_name(chan) : NULL);
525 
526 	return chan;
527 }
528 EXPORT_SYMBOL_GPL(__dma_request_channel);
529 
530 void dma_release_channel(struct dma_chan *chan)
531 {
532 	mutex_lock(&dma_list_mutex);
533 	WARN_ONCE(chan->client_count != 1,
534 		  "chan reference count %d != 1\n", chan->client_count);
535 	dma_chan_put(chan);
536 	/* drop PRIVATE cap enabled by __dma_request_channel() */
537 	if (--chan->device->privatecnt == 0)
538 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
539 	chan->private = NULL;
540 	mutex_unlock(&dma_list_mutex);
541 }
542 EXPORT_SYMBOL_GPL(dma_release_channel);
543 
544 /**
545  * dmaengine_get - register interest in dma_channels
546  */
547 void dmaengine_get(void)
548 {
549 	struct dma_device *device, *_d;
550 	struct dma_chan *chan;
551 	int err;
552 
553 	mutex_lock(&dma_list_mutex);
554 	dmaengine_ref_count++;
555 
556 	/* try to grab channels */
557 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
558 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
559 			continue;
560 		list_for_each_entry(chan, &device->channels, device_node) {
561 			err = dma_chan_get(chan);
562 			if (err == -ENODEV) {
563 				/* module removed before we could use it */
564 				list_del_rcu(&device->global_node);
565 				break;
566 			} else if (err)
567 				pr_err("dmaengine: failed to get %s: (%d)\n",
568 				       dma_chan_name(chan), err);
569 		}
570 	}
571 
572 	/* if this is the first reference and there were channels
573 	 * waiting we need to rebalance to get those channels
574 	 * incorporated into the channel table
575 	 */
576 	if (dmaengine_ref_count == 1)
577 		dma_channel_rebalance();
578 	mutex_unlock(&dma_list_mutex);
579 }
580 EXPORT_SYMBOL(dmaengine_get);
581 
582 /**
583  * dmaengine_put - let dma drivers be removed when ref_count == 0
584  */
585 void dmaengine_put(void)
586 {
587 	struct dma_device *device;
588 	struct dma_chan *chan;
589 
590 	mutex_lock(&dma_list_mutex);
591 	dmaengine_ref_count--;
592 	BUG_ON(dmaengine_ref_count < 0);
593 	/* drop channel references */
594 	list_for_each_entry(device, &dma_device_list, global_node) {
595 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
596 			continue;
597 		list_for_each_entry(chan, &device->channels, device_node)
598 			dma_chan_put(chan);
599 	}
600 	mutex_unlock(&dma_list_mutex);
601 }
602 EXPORT_SYMBOL(dmaengine_put);
603 
604 static bool device_has_all_tx_types(struct dma_device *device)
605 {
606 	/* A device that satisfies this test has channels that will never cause
607 	 * an async_tx channel switch event as all possible operation types can
608 	 * be handled.
609 	 */
610 	#ifdef CONFIG_ASYNC_TX_DMA
611 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
612 		return false;
613 	#endif
614 
615 	#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
616 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
617 		return false;
618 	#endif
619 
620 	#if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
621 	if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
622 		return false;
623 	#endif
624 
625 	#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
626 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
627 		return false;
628 
629 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
630 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
631 		return false;
632 	#endif
633 	#endif
634 
635 	#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
636 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
637 		return false;
638 
639 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
640 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
641 		return false;
642 	#endif
643 	#endif
644 
645 	return true;
646 }
647 
648 static int get_dma_id(struct dma_device *device)
649 {
650 	int rc;
651 
652  idr_retry:
653 	if (!idr_pre_get(&dma_idr, GFP_KERNEL))
654 		return -ENOMEM;
655 	mutex_lock(&dma_list_mutex);
656 	rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
657 	mutex_unlock(&dma_list_mutex);
658 	if (rc == -EAGAIN)
659 		goto idr_retry;
660 	else if (rc != 0)
661 		return rc;
662 
663 	return 0;
664 }
665 
666 /**
667  * dma_async_device_register - registers DMA devices found
668  * @device: &dma_device
669  */
670 int dma_async_device_register(struct dma_device *device)
671 {
672 	int chancnt = 0, rc;
673 	struct dma_chan* chan;
674 	atomic_t *idr_ref;
675 
676 	if (!device)
677 		return -ENODEV;
678 
679 	/* validate device routines */
680 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
681 		!device->device_prep_dma_memcpy);
682 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
683 		!device->device_prep_dma_xor);
684 	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
685 		!device->device_prep_dma_xor_val);
686 	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
687 		!device->device_prep_dma_pq);
688 	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
689 		!device->device_prep_dma_pq_val);
690 	BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
691 		!device->device_prep_dma_memset);
692 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
693 		!device->device_prep_dma_interrupt);
694 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
695 		!device->device_prep_slave_sg);
696 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
697 		!device->device_terminate_all);
698 
699 	BUG_ON(!device->device_alloc_chan_resources);
700 	BUG_ON(!device->device_free_chan_resources);
701 	BUG_ON(!device->device_is_tx_complete);
702 	BUG_ON(!device->device_issue_pending);
703 	BUG_ON(!device->dev);
704 
705 	/* note: this only matters in the
706 	 * CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH=y case
707 	 */
708 	if (device_has_all_tx_types(device))
709 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
710 
711 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
712 	if (!idr_ref)
713 		return -ENOMEM;
714 	rc = get_dma_id(device);
715 	if (rc != 0) {
716 		kfree(idr_ref);
717 		return rc;
718 	}
719 
720 	atomic_set(idr_ref, 0);
721 
722 	/* represent channels in sysfs. Probably want devs too */
723 	list_for_each_entry(chan, &device->channels, device_node) {
724 		rc = -ENOMEM;
725 		chan->local = alloc_percpu(typeof(*chan->local));
726 		if (chan->local == NULL)
727 			goto err_out;
728 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
729 		if (chan->dev == NULL) {
730 			free_percpu(chan->local);
731 			chan->local = NULL;
732 			goto err_out;
733 		}
734 
735 		chan->chan_id = chancnt++;
736 		chan->dev->device.class = &dma_devclass;
737 		chan->dev->device.parent = device->dev;
738 		chan->dev->chan = chan;
739 		chan->dev->idr_ref = idr_ref;
740 		chan->dev->dev_id = device->dev_id;
741 		atomic_inc(idr_ref);
742 		dev_set_name(&chan->dev->device, "dma%dchan%d",
743 			     device->dev_id, chan->chan_id);
744 
745 		rc = device_register(&chan->dev->device);
746 		if (rc) {
747 			free_percpu(chan->local);
748 			chan->local = NULL;
749 			kfree(chan->dev);
750 			atomic_dec(idr_ref);
751 			goto err_out;
752 		}
753 		chan->client_count = 0;
754 	}
755 	device->chancnt = chancnt;
756 
757 	mutex_lock(&dma_list_mutex);
758 	/* take references on public channels */
759 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
760 		list_for_each_entry(chan, &device->channels, device_node) {
761 			/* if clients are already waiting for channels we need
762 			 * to take references on their behalf
763 			 */
764 			if (dma_chan_get(chan) == -ENODEV) {
765 				/* note we can only get here for the first
766 				 * channel as the remaining channels are
767 				 * guaranteed to get a reference
768 				 */
769 				rc = -ENODEV;
770 				mutex_unlock(&dma_list_mutex);
771 				goto err_out;
772 			}
773 		}
774 	list_add_tail_rcu(&device->global_node, &dma_device_list);
775 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
776 		device->privatecnt++;	/* Always private */
777 	dma_channel_rebalance();
778 	mutex_unlock(&dma_list_mutex);
779 
780 	return 0;
781 
782 err_out:
783 	/* if we never registered a channel just release the idr */
784 	if (atomic_read(idr_ref) == 0) {
785 		mutex_lock(&dma_list_mutex);
786 		idr_remove(&dma_idr, device->dev_id);
787 		mutex_unlock(&dma_list_mutex);
788 		kfree(idr_ref);
789 		return rc;
790 	}
791 
792 	list_for_each_entry(chan, &device->channels, device_node) {
793 		if (chan->local == NULL)
794 			continue;
795 		mutex_lock(&dma_list_mutex);
796 		chan->dev->chan = NULL;
797 		mutex_unlock(&dma_list_mutex);
798 		device_unregister(&chan->dev->device);
799 		free_percpu(chan->local);
800 	}
801 	return rc;
802 }
803 EXPORT_SYMBOL(dma_async_device_register);
804 
805 /**
806  * dma_async_device_unregister - unregister a DMA device
807  * @device: &dma_device
808  *
809  * This routine is called by dma driver exit routines, dmaengine holds module
810  * references to prevent it being called while channels are in use.
811  */
812 void dma_async_device_unregister(struct dma_device *device)
813 {
814 	struct dma_chan *chan;
815 
816 	mutex_lock(&dma_list_mutex);
817 	list_del_rcu(&device->global_node);
818 	dma_channel_rebalance();
819 	mutex_unlock(&dma_list_mutex);
820 
821 	list_for_each_entry(chan, &device->channels, device_node) {
822 		WARN_ONCE(chan->client_count,
823 			  "%s called while %d clients hold a reference\n",
824 			  __func__, chan->client_count);
825 		mutex_lock(&dma_list_mutex);
826 		chan->dev->chan = NULL;
827 		mutex_unlock(&dma_list_mutex);
828 		device_unregister(&chan->dev->device);
829 	}
830 }
831 EXPORT_SYMBOL(dma_async_device_unregister);
832 
833 /**
834  * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
835  * @chan: DMA channel to offload copy to
836  * @dest: destination address (virtual)
837  * @src: source address (virtual)
838  * @len: length
839  *
840  * Both @dest and @src must be mappable to a bus address according to the
841  * DMA mapping API rules for streaming mappings.
842  * Both @dest and @src must stay memory resident (kernel memory or locked
843  * user space pages).
844  */
845 dma_cookie_t
846 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
847 			void *src, size_t len)
848 {
849 	struct dma_device *dev = chan->device;
850 	struct dma_async_tx_descriptor *tx;
851 	dma_addr_t dma_dest, dma_src;
852 	dma_cookie_t cookie;
853 	unsigned long flags;
854 
855 	dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
856 	dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
857 	flags = DMA_CTRL_ACK |
858 		DMA_COMPL_SRC_UNMAP_SINGLE |
859 		DMA_COMPL_DEST_UNMAP_SINGLE;
860 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
861 
862 	if (!tx) {
863 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
864 		dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
865 		return -ENOMEM;
866 	}
867 
868 	tx->callback = NULL;
869 	cookie = tx->tx_submit(tx);
870 
871 	preempt_disable();
872 	__this_cpu_add(chan->local->bytes_transferred, len);
873 	__this_cpu_inc(chan->local->memcpy_count);
874 	preempt_enable();
875 
876 	return cookie;
877 }
878 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
879 
880 /**
881  * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
882  * @chan: DMA channel to offload copy to
883  * @page: destination page
884  * @offset: offset in page to copy to
885  * @kdata: source address (virtual)
886  * @len: length
887  *
888  * Both @page/@offset and @kdata must be mappable to a bus address according
889  * to the DMA mapping API rules for streaming mappings.
890  * Both @page/@offset and @kdata must stay memory resident (kernel memory or
891  * locked user space pages)
892  */
893 dma_cookie_t
894 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
895 			unsigned int offset, void *kdata, size_t len)
896 {
897 	struct dma_device *dev = chan->device;
898 	struct dma_async_tx_descriptor *tx;
899 	dma_addr_t dma_dest, dma_src;
900 	dma_cookie_t cookie;
901 	unsigned long flags;
902 
903 	dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
904 	dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
905 	flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
906 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
907 
908 	if (!tx) {
909 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
910 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
911 		return -ENOMEM;
912 	}
913 
914 	tx->callback = NULL;
915 	cookie = tx->tx_submit(tx);
916 
917 	preempt_disable();
918 	__this_cpu_add(chan->local->bytes_transferred, len);
919 	__this_cpu_inc(chan->local->memcpy_count);
920 	preempt_enable();
921 
922 	return cookie;
923 }
924 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
925 
926 /**
927  * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
928  * @chan: DMA channel to offload copy to
929  * @dest_pg: destination page
930  * @dest_off: offset in page to copy to
931  * @src_pg: source page
932  * @src_off: offset in page to copy from
933  * @len: length
934  *
935  * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
936  * address according to the DMA mapping API rules for streaming mappings.
937  * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
938  * (kernel memory or locked user space pages).
939  */
940 dma_cookie_t
941 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
942 	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
943 	size_t len)
944 {
945 	struct dma_device *dev = chan->device;
946 	struct dma_async_tx_descriptor *tx;
947 	dma_addr_t dma_dest, dma_src;
948 	dma_cookie_t cookie;
949 	unsigned long flags;
950 
951 	dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
952 	dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
953 				DMA_FROM_DEVICE);
954 	flags = DMA_CTRL_ACK;
955 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
956 
957 	if (!tx) {
958 		dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
959 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
960 		return -ENOMEM;
961 	}
962 
963 	tx->callback = NULL;
964 	cookie = tx->tx_submit(tx);
965 
966 	preempt_disable();
967 	__this_cpu_add(chan->local->bytes_transferred, len);
968 	__this_cpu_inc(chan->local->memcpy_count);
969 	preempt_enable();
970 
971 	return cookie;
972 }
973 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
974 
975 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
976 	struct dma_chan *chan)
977 {
978 	tx->chan = chan;
979 	spin_lock_init(&tx->lock);
980 }
981 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
982 
983 /* dma_wait_for_async_tx - spin wait for a transaction to complete
984  * @tx: in-flight transaction to wait on
985  */
986 enum dma_status
987 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
988 {
989 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
990 
991 	if (!tx)
992 		return DMA_SUCCESS;
993 
994 	while (tx->cookie == -EBUSY) {
995 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
996 			pr_err("%s timeout waiting for descriptor submission\n",
997 				__func__);
998 			return DMA_ERROR;
999 		}
1000 		cpu_relax();
1001 	}
1002 	return dma_sync_wait(tx->chan, tx->cookie);
1003 }
1004 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1005 
1006 /* dma_run_dependencies - helper routine for dma drivers to process
1007  *	(start) dependent operations on their target channel
1008  * @tx: transaction with dependencies
1009  */
1010 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1011 {
1012 	struct dma_async_tx_descriptor *dep = tx->next;
1013 	struct dma_async_tx_descriptor *dep_next;
1014 	struct dma_chan *chan;
1015 
1016 	if (!dep)
1017 		return;
1018 
1019 	/* we'll submit tx->next now, so clear the link */
1020 	tx->next = NULL;
1021 	chan = dep->chan;
1022 
1023 	/* keep submitting up until a channel switch is detected
1024 	 * in that case we will be called again as a result of
1025 	 * processing the interrupt from async_tx_channel_switch
1026 	 */
1027 	for (; dep; dep = dep_next) {
1028 		spin_lock_bh(&dep->lock);
1029 		dep->parent = NULL;
1030 		dep_next = dep->next;
1031 		if (dep_next && dep_next->chan == chan)
1032 			dep->next = NULL; /* ->next will be submitted */
1033 		else
1034 			dep_next = NULL; /* submit current dep and terminate */
1035 		spin_unlock_bh(&dep->lock);
1036 
1037 		dep->tx_submit(dep);
1038 	}
1039 
1040 	chan->device->device_issue_pending(chan);
1041 }
1042 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1043 
1044 static int __init dma_bus_init(void)
1045 {
1046 	idr_init(&dma_idr);
1047 	mutex_init(&dma_list_mutex);
1048 	return class_register(&dma_devclass);
1049 }
1050 arch_initcall(dma_bus_init);
1051 
1052 
1053