xref: /openbmc/linux/drivers/dma/dmaengine.c (revision dbf4d133)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 
6 /*
7  * This code implements the DMA subsystem. It provides a HW-neutral interface
8  * for other kernel code to use asynchronous memory copy capabilities,
9  * if present, and allows different HW DMA drivers to register as providing
10  * this capability.
11  *
12  * Due to the fact we are accelerating what is already a relatively fast
13  * operation, the code goes to great lengths to avoid additional overhead,
14  * such as locking.
15  *
16  * LOCKING:
17  *
18  * The subsystem keeps a global list of dma_device structs it is protected by a
19  * mutex, dma_list_mutex.
20  *
21  * A subsystem can get access to a channel by calling dmaengine_get() followed
22  * by dma_find_channel(), or if it has need for an exclusive channel it can call
23  * dma_request_channel().  Once a channel is allocated a reference is taken
24  * against its corresponding driver to disable removal.
25  *
26  * Each device has a channels list, which runs unlocked but is never modified
27  * once the device is registered, it's just setup by the driver.
28  *
29  * See Documentation/driver-api/dmaengine for more details
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55 
56 static DEFINE_MUTEX(dma_list_mutex);
57 static DEFINE_IDA(dma_ida);
58 static LIST_HEAD(dma_device_list);
59 static long dmaengine_ref_count;
60 
61 /* --- debugfs implementation --- */
62 #ifdef CONFIG_DEBUG_FS
63 #include <linux/debugfs.h>
64 
65 static struct dentry *rootdir;
66 
67 static void dmaengine_debug_register(struct dma_device *dma_dev)
68 {
69 	dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
70 						   rootdir);
71 	if (IS_ERR(dma_dev->dbg_dev_root))
72 		dma_dev->dbg_dev_root = NULL;
73 }
74 
75 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
76 {
77 	debugfs_remove_recursive(dma_dev->dbg_dev_root);
78 	dma_dev->dbg_dev_root = NULL;
79 }
80 
81 static void dmaengine_dbg_summary_show(struct seq_file *s,
82 				       struct dma_device *dma_dev)
83 {
84 	struct dma_chan *chan;
85 
86 	list_for_each_entry(chan, &dma_dev->channels, device_node) {
87 		if (chan->client_count) {
88 			seq_printf(s, " %-13s| %s", dma_chan_name(chan),
89 				   chan->dbg_client_name ?: "in-use");
90 
91 			if (chan->router)
92 				seq_printf(s, " (via router: %s)\n",
93 					dev_name(chan->router->dev));
94 			else
95 				seq_puts(s, "\n");
96 		}
97 	}
98 }
99 
100 static int dmaengine_summary_show(struct seq_file *s, void *data)
101 {
102 	struct dma_device *dma_dev = NULL;
103 
104 	mutex_lock(&dma_list_mutex);
105 	list_for_each_entry(dma_dev, &dma_device_list, global_node) {
106 		seq_printf(s, "dma%d (%s): number of channels: %u\n",
107 			   dma_dev->dev_id, dev_name(dma_dev->dev),
108 			   dma_dev->chancnt);
109 
110 		if (dma_dev->dbg_summary_show)
111 			dma_dev->dbg_summary_show(s, dma_dev);
112 		else
113 			dmaengine_dbg_summary_show(s, dma_dev);
114 
115 		if (!list_is_last(&dma_dev->global_node, &dma_device_list))
116 			seq_puts(s, "\n");
117 	}
118 	mutex_unlock(&dma_list_mutex);
119 
120 	return 0;
121 }
122 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
123 
124 static void __init dmaengine_debugfs_init(void)
125 {
126 	rootdir = debugfs_create_dir("dmaengine", NULL);
127 
128 	/* /sys/kernel/debug/dmaengine/summary */
129 	debugfs_create_file("summary", 0444, rootdir, NULL,
130 			    &dmaengine_summary_fops);
131 }
132 #else
133 static inline void dmaengine_debugfs_init(void) { }
134 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
135 {
136 	return 0;
137 }
138 
139 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
140 #endif	/* DEBUG_FS */
141 
142 /* --- sysfs implementation --- */
143 
144 #define DMA_SLAVE_NAME	"slave"
145 
146 /**
147  * dev_to_dma_chan - convert a device pointer to its sysfs container object
148  * @dev - device node
149  *
150  * Must be called under dma_list_mutex
151  */
152 static struct dma_chan *dev_to_dma_chan(struct device *dev)
153 {
154 	struct dma_chan_dev *chan_dev;
155 
156 	chan_dev = container_of(dev, typeof(*chan_dev), device);
157 	return chan_dev->chan;
158 }
159 
160 static ssize_t memcpy_count_show(struct device *dev,
161 				 struct device_attribute *attr, char *buf)
162 {
163 	struct dma_chan *chan;
164 	unsigned long count = 0;
165 	int i;
166 	int err;
167 
168 	mutex_lock(&dma_list_mutex);
169 	chan = dev_to_dma_chan(dev);
170 	if (chan) {
171 		for_each_possible_cpu(i)
172 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
173 		err = sprintf(buf, "%lu\n", count);
174 	} else
175 		err = -ENODEV;
176 	mutex_unlock(&dma_list_mutex);
177 
178 	return err;
179 }
180 static DEVICE_ATTR_RO(memcpy_count);
181 
182 static ssize_t bytes_transferred_show(struct device *dev,
183 				      struct device_attribute *attr, char *buf)
184 {
185 	struct dma_chan *chan;
186 	unsigned long count = 0;
187 	int i;
188 	int err;
189 
190 	mutex_lock(&dma_list_mutex);
191 	chan = dev_to_dma_chan(dev);
192 	if (chan) {
193 		for_each_possible_cpu(i)
194 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
195 		err = sprintf(buf, "%lu\n", count);
196 	} else
197 		err = -ENODEV;
198 	mutex_unlock(&dma_list_mutex);
199 
200 	return err;
201 }
202 static DEVICE_ATTR_RO(bytes_transferred);
203 
204 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
205 			   char *buf)
206 {
207 	struct dma_chan *chan;
208 	int err;
209 
210 	mutex_lock(&dma_list_mutex);
211 	chan = dev_to_dma_chan(dev);
212 	if (chan)
213 		err = sprintf(buf, "%d\n", chan->client_count);
214 	else
215 		err = -ENODEV;
216 	mutex_unlock(&dma_list_mutex);
217 
218 	return err;
219 }
220 static DEVICE_ATTR_RO(in_use);
221 
222 static struct attribute *dma_dev_attrs[] = {
223 	&dev_attr_memcpy_count.attr,
224 	&dev_attr_bytes_transferred.attr,
225 	&dev_attr_in_use.attr,
226 	NULL,
227 };
228 ATTRIBUTE_GROUPS(dma_dev);
229 
230 static void chan_dev_release(struct device *dev)
231 {
232 	struct dma_chan_dev *chan_dev;
233 
234 	chan_dev = container_of(dev, typeof(*chan_dev), device);
235 	kfree(chan_dev);
236 }
237 
238 static struct class dma_devclass = {
239 	.name		= "dma",
240 	.dev_groups	= dma_dev_groups,
241 	.dev_release	= chan_dev_release,
242 };
243 
244 /* --- client and device registration --- */
245 
246 /**
247  * dma_cap_mask_all - enable iteration over all operation types
248  */
249 static dma_cap_mask_t dma_cap_mask_all;
250 
251 /**
252  * dma_chan_tbl_ent - tracks channel allocations per core/operation
253  * @chan - associated channel for this entry
254  */
255 struct dma_chan_tbl_ent {
256 	struct dma_chan *chan;
257 };
258 
259 /**
260  * channel_table - percpu lookup table for memory-to-memory offload providers
261  */
262 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
263 
264 static int __init dma_channel_table_init(void)
265 {
266 	enum dma_transaction_type cap;
267 	int err = 0;
268 
269 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
270 
271 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
272 	 * but are not associated with an operation so they do not need
273 	 * an entry in the channel_table
274 	 */
275 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
276 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
277 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
278 
279 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
280 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
281 		if (!channel_table[cap]) {
282 			err = -ENOMEM;
283 			break;
284 		}
285 	}
286 
287 	if (err) {
288 		pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
289 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
290 			free_percpu(channel_table[cap]);
291 	}
292 
293 	return err;
294 }
295 arch_initcall(dma_channel_table_init);
296 
297 /**
298  * dma_chan_is_local - returns true if the channel is in the same numa-node as
299  *	the cpu
300  */
301 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
302 {
303 	int node = dev_to_node(chan->device->dev);
304 	return node == NUMA_NO_NODE ||
305 		cpumask_test_cpu(cpu, cpumask_of_node(node));
306 }
307 
308 /**
309  * min_chan - returns the channel with min count and in the same numa-node as
310  *	the cpu
311  * @cap: capability to match
312  * @cpu: cpu index which the channel should be close to
313  *
314  * If some channels are close to the given cpu, the one with the lowest
315  * reference count is returned. Otherwise, cpu is ignored and only the
316  * reference count is taken into account.
317  * Must be called under dma_list_mutex.
318  */
319 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
320 {
321 	struct dma_device *device;
322 	struct dma_chan *chan;
323 	struct dma_chan *min = NULL;
324 	struct dma_chan *localmin = NULL;
325 
326 	list_for_each_entry(device, &dma_device_list, global_node) {
327 		if (!dma_has_cap(cap, device->cap_mask) ||
328 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
329 			continue;
330 		list_for_each_entry(chan, &device->channels, device_node) {
331 			if (!chan->client_count)
332 				continue;
333 			if (!min || chan->table_count < min->table_count)
334 				min = chan;
335 
336 			if (dma_chan_is_local(chan, cpu))
337 				if (!localmin ||
338 				    chan->table_count < localmin->table_count)
339 					localmin = chan;
340 		}
341 	}
342 
343 	chan = localmin ? localmin : min;
344 
345 	if (chan)
346 		chan->table_count++;
347 
348 	return chan;
349 }
350 
351 /**
352  * dma_channel_rebalance - redistribute the available channels
353  *
354  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
355  * operation type) in the SMP case,  and operation isolation (avoid
356  * multi-tasking channels) in the non-SMP case.  Must be called under
357  * dma_list_mutex.
358  */
359 static void dma_channel_rebalance(void)
360 {
361 	struct dma_chan *chan;
362 	struct dma_device *device;
363 	int cpu;
364 	int cap;
365 
366 	/* undo the last distribution */
367 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
368 		for_each_possible_cpu(cpu)
369 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
370 
371 	list_for_each_entry(device, &dma_device_list, global_node) {
372 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
373 			continue;
374 		list_for_each_entry(chan, &device->channels, device_node)
375 			chan->table_count = 0;
376 	}
377 
378 	/* don't populate the channel_table if no clients are available */
379 	if (!dmaengine_ref_count)
380 		return;
381 
382 	/* redistribute available channels */
383 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
384 		for_each_online_cpu(cpu) {
385 			chan = min_chan(cap, cpu);
386 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
387 		}
388 }
389 
390 static int dma_device_satisfies_mask(struct dma_device *device,
391 				     const dma_cap_mask_t *want)
392 {
393 	dma_cap_mask_t has;
394 
395 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
396 		DMA_TX_TYPE_END);
397 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
398 }
399 
400 static struct module *dma_chan_to_owner(struct dma_chan *chan)
401 {
402 	return chan->device->owner;
403 }
404 
405 /**
406  * balance_ref_count - catch up the channel reference count
407  * @chan - channel to balance ->client_count versus dmaengine_ref_count
408  *
409  * balance_ref_count must be called under dma_list_mutex
410  */
411 static void balance_ref_count(struct dma_chan *chan)
412 {
413 	struct module *owner = dma_chan_to_owner(chan);
414 
415 	while (chan->client_count < dmaengine_ref_count) {
416 		__module_get(owner);
417 		chan->client_count++;
418 	}
419 }
420 
421 static void dma_device_release(struct kref *ref)
422 {
423 	struct dma_device *device = container_of(ref, struct dma_device, ref);
424 
425 	list_del_rcu(&device->global_node);
426 	dma_channel_rebalance();
427 
428 	if (device->device_release)
429 		device->device_release(device);
430 }
431 
432 static void dma_device_put(struct dma_device *device)
433 {
434 	lockdep_assert_held(&dma_list_mutex);
435 	kref_put(&device->ref, dma_device_release);
436 }
437 
438 /**
439  * dma_chan_get - try to grab a dma channel's parent driver module
440  * @chan - channel to grab
441  *
442  * Must be called under dma_list_mutex
443  */
444 static int dma_chan_get(struct dma_chan *chan)
445 {
446 	struct module *owner = dma_chan_to_owner(chan);
447 	int ret;
448 
449 	/* The channel is already in use, update client count */
450 	if (chan->client_count) {
451 		__module_get(owner);
452 		goto out;
453 	}
454 
455 	if (!try_module_get(owner))
456 		return -ENODEV;
457 
458 	ret = kref_get_unless_zero(&chan->device->ref);
459 	if (!ret) {
460 		ret = -ENODEV;
461 		goto module_put_out;
462 	}
463 
464 	/* allocate upon first client reference */
465 	if (chan->device->device_alloc_chan_resources) {
466 		ret = chan->device->device_alloc_chan_resources(chan);
467 		if (ret < 0)
468 			goto err_out;
469 	}
470 
471 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
472 		balance_ref_count(chan);
473 
474 out:
475 	chan->client_count++;
476 	return 0;
477 
478 err_out:
479 	dma_device_put(chan->device);
480 module_put_out:
481 	module_put(owner);
482 	return ret;
483 }
484 
485 /**
486  * dma_chan_put - drop a reference to a dma channel's parent driver module
487  * @chan - channel to release
488  *
489  * Must be called under dma_list_mutex
490  */
491 static void dma_chan_put(struct dma_chan *chan)
492 {
493 	/* This channel is not in use, bail out */
494 	if (!chan->client_count)
495 		return;
496 
497 	chan->client_count--;
498 
499 	/* This channel is not in use anymore, free it */
500 	if (!chan->client_count && chan->device->device_free_chan_resources) {
501 		/* Make sure all operations have completed */
502 		dmaengine_synchronize(chan);
503 		chan->device->device_free_chan_resources(chan);
504 	}
505 
506 	/* If the channel is used via a DMA request router, free the mapping */
507 	if (chan->router && chan->router->route_free) {
508 		chan->router->route_free(chan->router->dev, chan->route_data);
509 		chan->router = NULL;
510 		chan->route_data = NULL;
511 	}
512 
513 	dma_device_put(chan->device);
514 	module_put(dma_chan_to_owner(chan));
515 }
516 
517 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
518 {
519 	enum dma_status status;
520 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
521 
522 	dma_async_issue_pending(chan);
523 	do {
524 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
525 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
526 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
527 			return DMA_ERROR;
528 		}
529 		if (status != DMA_IN_PROGRESS)
530 			break;
531 		cpu_relax();
532 	} while (1);
533 
534 	return status;
535 }
536 EXPORT_SYMBOL(dma_sync_wait);
537 
538 /**
539  * dma_find_channel - find a channel to carry out the operation
540  * @tx_type: transaction type
541  */
542 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
543 {
544 	return this_cpu_read(channel_table[tx_type]->chan);
545 }
546 EXPORT_SYMBOL(dma_find_channel);
547 
548 /**
549  * dma_issue_pending_all - flush all pending operations across all channels
550  */
551 void dma_issue_pending_all(void)
552 {
553 	struct dma_device *device;
554 	struct dma_chan *chan;
555 
556 	rcu_read_lock();
557 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
558 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
559 			continue;
560 		list_for_each_entry(chan, &device->channels, device_node)
561 			if (chan->client_count)
562 				device->device_issue_pending(chan);
563 	}
564 	rcu_read_unlock();
565 }
566 EXPORT_SYMBOL(dma_issue_pending_all);
567 
568 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
569 {
570 	struct dma_device *device;
571 
572 	if (!chan || !caps)
573 		return -EINVAL;
574 
575 	device = chan->device;
576 
577 	/* check if the channel supports slave transactions */
578 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
579 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
580 		return -ENXIO;
581 
582 	/*
583 	 * Check whether it reports it uses the generic slave
584 	 * capabilities, if not, that means it doesn't support any
585 	 * kind of slave capabilities reporting.
586 	 */
587 	if (!device->directions)
588 		return -ENXIO;
589 
590 	caps->src_addr_widths = device->src_addr_widths;
591 	caps->dst_addr_widths = device->dst_addr_widths;
592 	caps->directions = device->directions;
593 	caps->max_burst = device->max_burst;
594 	caps->residue_granularity = device->residue_granularity;
595 	caps->descriptor_reuse = device->descriptor_reuse;
596 	caps->cmd_pause = !!device->device_pause;
597 	caps->cmd_resume = !!device->device_resume;
598 	caps->cmd_terminate = !!device->device_terminate_all;
599 
600 	return 0;
601 }
602 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
603 
604 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
605 					  struct dma_device *dev,
606 					  dma_filter_fn fn, void *fn_param)
607 {
608 	struct dma_chan *chan;
609 
610 	if (mask && !dma_device_satisfies_mask(dev, mask)) {
611 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
612 		return NULL;
613 	}
614 	/* devices with multiple channels need special handling as we need to
615 	 * ensure that all channels are either private or public.
616 	 */
617 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
618 		list_for_each_entry(chan, &dev->channels, device_node) {
619 			/* some channels are already publicly allocated */
620 			if (chan->client_count)
621 				return NULL;
622 		}
623 
624 	list_for_each_entry(chan, &dev->channels, device_node) {
625 		if (chan->client_count) {
626 			dev_dbg(dev->dev, "%s: %s busy\n",
627 				 __func__, dma_chan_name(chan));
628 			continue;
629 		}
630 		if (fn && !fn(chan, fn_param)) {
631 			dev_dbg(dev->dev, "%s: %s filter said false\n",
632 				 __func__, dma_chan_name(chan));
633 			continue;
634 		}
635 		return chan;
636 	}
637 
638 	return NULL;
639 }
640 
641 static struct dma_chan *find_candidate(struct dma_device *device,
642 				       const dma_cap_mask_t *mask,
643 				       dma_filter_fn fn, void *fn_param)
644 {
645 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
646 	int err;
647 
648 	if (chan) {
649 		/* Found a suitable channel, try to grab, prep, and return it.
650 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
651 		 * channel will not be published in the general-purpose
652 		 * allocator
653 		 */
654 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
655 		device->privatecnt++;
656 		err = dma_chan_get(chan);
657 
658 		if (err) {
659 			if (err == -ENODEV) {
660 				dev_dbg(device->dev, "%s: %s module removed\n",
661 					__func__, dma_chan_name(chan));
662 				list_del_rcu(&device->global_node);
663 			} else
664 				dev_dbg(device->dev,
665 					"%s: failed to get %s: (%d)\n",
666 					 __func__, dma_chan_name(chan), err);
667 
668 			if (--device->privatecnt == 0)
669 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
670 
671 			chan = ERR_PTR(err);
672 		}
673 	}
674 
675 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
676 }
677 
678 /**
679  * dma_get_slave_channel - try to get specific channel exclusively
680  * @chan: target channel
681  */
682 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
683 {
684 	int err = -EBUSY;
685 
686 	/* lock against __dma_request_channel */
687 	mutex_lock(&dma_list_mutex);
688 
689 	if (chan->client_count == 0) {
690 		struct dma_device *device = chan->device;
691 
692 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
693 		device->privatecnt++;
694 		err = dma_chan_get(chan);
695 		if (err) {
696 			dev_dbg(chan->device->dev,
697 				"%s: failed to get %s: (%d)\n",
698 				__func__, dma_chan_name(chan), err);
699 			chan = NULL;
700 			if (--device->privatecnt == 0)
701 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
702 		}
703 	} else
704 		chan = NULL;
705 
706 	mutex_unlock(&dma_list_mutex);
707 
708 
709 	return chan;
710 }
711 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
712 
713 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
714 {
715 	dma_cap_mask_t mask;
716 	struct dma_chan *chan;
717 
718 	dma_cap_zero(mask);
719 	dma_cap_set(DMA_SLAVE, mask);
720 
721 	/* lock against __dma_request_channel */
722 	mutex_lock(&dma_list_mutex);
723 
724 	chan = find_candidate(device, &mask, NULL, NULL);
725 
726 	mutex_unlock(&dma_list_mutex);
727 
728 	return IS_ERR(chan) ? NULL : chan;
729 }
730 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
731 
732 /**
733  * __dma_request_channel - try to allocate an exclusive channel
734  * @mask: capabilities that the channel must satisfy
735  * @fn: optional callback to disposition available channels
736  * @fn_param: opaque parameter to pass to dma_filter_fn
737  * @np: device node to look for DMA channels
738  *
739  * Returns pointer to appropriate DMA channel on success or NULL.
740  */
741 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
742 				       dma_filter_fn fn, void *fn_param,
743 				       struct device_node *np)
744 {
745 	struct dma_device *device, *_d;
746 	struct dma_chan *chan = NULL;
747 
748 	/* Find a channel */
749 	mutex_lock(&dma_list_mutex);
750 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
751 		/* Finds a DMA controller with matching device node */
752 		if (np && device->dev->of_node && np != device->dev->of_node)
753 			continue;
754 
755 		chan = find_candidate(device, mask, fn, fn_param);
756 		if (!IS_ERR(chan))
757 			break;
758 
759 		chan = NULL;
760 	}
761 	mutex_unlock(&dma_list_mutex);
762 
763 	pr_debug("%s: %s (%s)\n",
764 		 __func__,
765 		 chan ? "success" : "fail",
766 		 chan ? dma_chan_name(chan) : NULL);
767 
768 	return chan;
769 }
770 EXPORT_SYMBOL_GPL(__dma_request_channel);
771 
772 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
773 						    const char *name,
774 						    struct device *dev)
775 {
776 	int i;
777 
778 	if (!device->filter.mapcnt)
779 		return NULL;
780 
781 	for (i = 0; i < device->filter.mapcnt; i++) {
782 		const struct dma_slave_map *map = &device->filter.map[i];
783 
784 		if (!strcmp(map->devname, dev_name(dev)) &&
785 		    !strcmp(map->slave, name))
786 			return map;
787 	}
788 
789 	return NULL;
790 }
791 
792 /**
793  * dma_request_chan - try to allocate an exclusive slave channel
794  * @dev:	pointer to client device structure
795  * @name:	slave channel name
796  *
797  * Returns pointer to appropriate DMA channel on success or an error pointer.
798  */
799 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
800 {
801 	struct dma_device *d, *_d;
802 	struct dma_chan *chan = NULL;
803 
804 	/* If device-tree is present get slave info from here */
805 	if (dev->of_node)
806 		chan = of_dma_request_slave_channel(dev->of_node, name);
807 
808 	/* If device was enumerated by ACPI get slave info from here */
809 	if (has_acpi_companion(dev) && !chan)
810 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
811 
812 	if (PTR_ERR(chan) == -EPROBE_DEFER)
813 		return chan;
814 
815 	if (!IS_ERR_OR_NULL(chan))
816 		goto found;
817 
818 	/* Try to find the channel via the DMA filter map(s) */
819 	mutex_lock(&dma_list_mutex);
820 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
821 		dma_cap_mask_t mask;
822 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
823 
824 		if (!map)
825 			continue;
826 
827 		dma_cap_zero(mask);
828 		dma_cap_set(DMA_SLAVE, mask);
829 
830 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
831 		if (!IS_ERR(chan))
832 			break;
833 	}
834 	mutex_unlock(&dma_list_mutex);
835 
836 	if (IS_ERR_OR_NULL(chan))
837 		return chan ? chan : ERR_PTR(-EPROBE_DEFER);
838 
839 found:
840 #ifdef CONFIG_DEBUG_FS
841 	chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
842 					  name);
843 #endif
844 
845 	chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
846 	if (!chan->name)
847 		return chan;
848 	chan->slave = dev;
849 
850 	if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
851 			      DMA_SLAVE_NAME))
852 		dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
853 	if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
854 		dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
855 
856 	return chan;
857 }
858 EXPORT_SYMBOL_GPL(dma_request_chan);
859 
860 /**
861  * dma_request_slave_channel - try to allocate an exclusive slave channel
862  * @dev:	pointer to client device structure
863  * @name:	slave channel name
864  *
865  * Returns pointer to appropriate DMA channel on success or NULL.
866  */
867 struct dma_chan *dma_request_slave_channel(struct device *dev,
868 					   const char *name)
869 {
870 	struct dma_chan *ch = dma_request_chan(dev, name);
871 	if (IS_ERR(ch))
872 		return NULL;
873 
874 	return ch;
875 }
876 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
877 
878 /**
879  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
880  * @mask: capabilities that the channel must satisfy
881  *
882  * Returns pointer to appropriate DMA channel on success or an error pointer.
883  */
884 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
885 {
886 	struct dma_chan *chan;
887 
888 	if (!mask)
889 		return ERR_PTR(-ENODEV);
890 
891 	chan = __dma_request_channel(mask, NULL, NULL, NULL);
892 	if (!chan) {
893 		mutex_lock(&dma_list_mutex);
894 		if (list_empty(&dma_device_list))
895 			chan = ERR_PTR(-EPROBE_DEFER);
896 		else
897 			chan = ERR_PTR(-ENODEV);
898 		mutex_unlock(&dma_list_mutex);
899 	}
900 
901 	return chan;
902 }
903 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
904 
905 void dma_release_channel(struct dma_chan *chan)
906 {
907 	mutex_lock(&dma_list_mutex);
908 	WARN_ONCE(chan->client_count != 1,
909 		  "chan reference count %d != 1\n", chan->client_count);
910 	dma_chan_put(chan);
911 	/* drop PRIVATE cap enabled by __dma_request_channel() */
912 	if (--chan->device->privatecnt == 0)
913 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
914 
915 	if (chan->slave) {
916 		sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
917 		sysfs_remove_link(&chan->slave->kobj, chan->name);
918 		kfree(chan->name);
919 		chan->name = NULL;
920 		chan->slave = NULL;
921 	}
922 
923 #ifdef CONFIG_DEBUG_FS
924 	kfree(chan->dbg_client_name);
925 	chan->dbg_client_name = NULL;
926 #endif
927 	mutex_unlock(&dma_list_mutex);
928 }
929 EXPORT_SYMBOL_GPL(dma_release_channel);
930 
931 /**
932  * dmaengine_get - register interest in dma_channels
933  */
934 void dmaengine_get(void)
935 {
936 	struct dma_device *device, *_d;
937 	struct dma_chan *chan;
938 	int err;
939 
940 	mutex_lock(&dma_list_mutex);
941 	dmaengine_ref_count++;
942 
943 	/* try to grab channels */
944 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
945 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
946 			continue;
947 		list_for_each_entry(chan, &device->channels, device_node) {
948 			err = dma_chan_get(chan);
949 			if (err == -ENODEV) {
950 				/* module removed before we could use it */
951 				list_del_rcu(&device->global_node);
952 				break;
953 			} else if (err)
954 				dev_dbg(chan->device->dev,
955 					"%s: failed to get %s: (%d)\n",
956 					__func__, dma_chan_name(chan), err);
957 		}
958 	}
959 
960 	/* if this is the first reference and there were channels
961 	 * waiting we need to rebalance to get those channels
962 	 * incorporated into the channel table
963 	 */
964 	if (dmaengine_ref_count == 1)
965 		dma_channel_rebalance();
966 	mutex_unlock(&dma_list_mutex);
967 }
968 EXPORT_SYMBOL(dmaengine_get);
969 
970 /**
971  * dmaengine_put - let dma drivers be removed when ref_count == 0
972  */
973 void dmaengine_put(void)
974 {
975 	struct dma_device *device, *_d;
976 	struct dma_chan *chan;
977 
978 	mutex_lock(&dma_list_mutex);
979 	dmaengine_ref_count--;
980 	BUG_ON(dmaengine_ref_count < 0);
981 	/* drop channel references */
982 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
983 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
984 			continue;
985 		list_for_each_entry(chan, &device->channels, device_node)
986 			dma_chan_put(chan);
987 	}
988 	mutex_unlock(&dma_list_mutex);
989 }
990 EXPORT_SYMBOL(dmaengine_put);
991 
992 static bool device_has_all_tx_types(struct dma_device *device)
993 {
994 	/* A device that satisfies this test has channels that will never cause
995 	 * an async_tx channel switch event as all possible operation types can
996 	 * be handled.
997 	 */
998 	#ifdef CONFIG_ASYNC_TX_DMA
999 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
1000 		return false;
1001 	#endif
1002 
1003 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1004 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1005 		return false;
1006 	#endif
1007 
1008 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
1009 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
1010 		return false;
1011 
1012 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1013 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1014 		return false;
1015 	#endif
1016 	#endif
1017 
1018 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
1019 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
1020 		return false;
1021 
1022 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1023 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1024 		return false;
1025 	#endif
1026 	#endif
1027 
1028 	return true;
1029 }
1030 
1031 static int get_dma_id(struct dma_device *device)
1032 {
1033 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1034 
1035 	if (rc < 0)
1036 		return rc;
1037 	device->dev_id = rc;
1038 	return 0;
1039 }
1040 
1041 static int __dma_async_device_channel_register(struct dma_device *device,
1042 					       struct dma_chan *chan)
1043 {
1044 	int rc = 0;
1045 
1046 	chan->local = alloc_percpu(typeof(*chan->local));
1047 	if (!chan->local)
1048 		goto err_out;
1049 	chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1050 	if (!chan->dev) {
1051 		free_percpu(chan->local);
1052 		chan->local = NULL;
1053 		goto err_out;
1054 	}
1055 
1056 	/*
1057 	 * When the chan_id is a negative value, we are dynamically adding
1058 	 * the channel. Otherwise we are static enumerating.
1059 	 */
1060 	mutex_lock(&device->chan_mutex);
1061 	chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1062 	mutex_unlock(&device->chan_mutex);
1063 	if (chan->chan_id < 0) {
1064 		pr_err("%s: unable to alloc ida for chan: %d\n",
1065 		       __func__, chan->chan_id);
1066 		goto err_out;
1067 	}
1068 
1069 	chan->dev->device.class = &dma_devclass;
1070 	chan->dev->device.parent = device->dev;
1071 	chan->dev->chan = chan;
1072 	chan->dev->dev_id = device->dev_id;
1073 	dev_set_name(&chan->dev->device, "dma%dchan%d",
1074 		     device->dev_id, chan->chan_id);
1075 	rc = device_register(&chan->dev->device);
1076 	if (rc)
1077 		goto err_out_ida;
1078 	chan->client_count = 0;
1079 	device->chancnt++;
1080 
1081 	return 0;
1082 
1083  err_out_ida:
1084 	mutex_lock(&device->chan_mutex);
1085 	ida_free(&device->chan_ida, chan->chan_id);
1086 	mutex_unlock(&device->chan_mutex);
1087  err_out:
1088 	free_percpu(chan->local);
1089 	kfree(chan->dev);
1090 	return rc;
1091 }
1092 
1093 int dma_async_device_channel_register(struct dma_device *device,
1094 				      struct dma_chan *chan)
1095 {
1096 	int rc;
1097 
1098 	rc = __dma_async_device_channel_register(device, chan);
1099 	if (rc < 0)
1100 		return rc;
1101 
1102 	dma_channel_rebalance();
1103 	return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1106 
1107 static void __dma_async_device_channel_unregister(struct dma_device *device,
1108 						  struct dma_chan *chan)
1109 {
1110 	WARN_ONCE(!device->device_release && chan->client_count,
1111 		  "%s called while %d clients hold a reference\n",
1112 		  __func__, chan->client_count);
1113 	mutex_lock(&dma_list_mutex);
1114 	list_del(&chan->device_node);
1115 	device->chancnt--;
1116 	chan->dev->chan = NULL;
1117 	mutex_unlock(&dma_list_mutex);
1118 	mutex_lock(&device->chan_mutex);
1119 	ida_free(&device->chan_ida, chan->chan_id);
1120 	mutex_unlock(&device->chan_mutex);
1121 	device_unregister(&chan->dev->device);
1122 	free_percpu(chan->local);
1123 }
1124 
1125 void dma_async_device_channel_unregister(struct dma_device *device,
1126 					 struct dma_chan *chan)
1127 {
1128 	__dma_async_device_channel_unregister(device, chan);
1129 	dma_channel_rebalance();
1130 }
1131 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1132 
1133 /**
1134  * dma_async_device_register - registers DMA devices found
1135  * @device: &dma_device
1136  *
1137  * After calling this routine the structure should not be freed except in the
1138  * device_release() callback which will be called after
1139  * dma_async_device_unregister() is called and no further references are taken.
1140  */
1141 int dma_async_device_register(struct dma_device *device)
1142 {
1143 	int rc;
1144 	struct dma_chan* chan;
1145 
1146 	if (!device)
1147 		return -ENODEV;
1148 
1149 	/* validate device routines */
1150 	if (!device->dev) {
1151 		pr_err("DMAdevice must have dev\n");
1152 		return -EIO;
1153 	}
1154 
1155 	device->owner = device->dev->driver->owner;
1156 
1157 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1158 		dev_err(device->dev,
1159 			"Device claims capability %s, but op is not defined\n",
1160 			"DMA_MEMCPY");
1161 		return -EIO;
1162 	}
1163 
1164 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1165 		dev_err(device->dev,
1166 			"Device claims capability %s, but op is not defined\n",
1167 			"DMA_XOR");
1168 		return -EIO;
1169 	}
1170 
1171 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1172 		dev_err(device->dev,
1173 			"Device claims capability %s, but op is not defined\n",
1174 			"DMA_XOR_VAL");
1175 		return -EIO;
1176 	}
1177 
1178 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1179 		dev_err(device->dev,
1180 			"Device claims capability %s, but op is not defined\n",
1181 			"DMA_PQ");
1182 		return -EIO;
1183 	}
1184 
1185 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1186 		dev_err(device->dev,
1187 			"Device claims capability %s, but op is not defined\n",
1188 			"DMA_PQ_VAL");
1189 		return -EIO;
1190 	}
1191 
1192 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1193 		dev_err(device->dev,
1194 			"Device claims capability %s, but op is not defined\n",
1195 			"DMA_MEMSET");
1196 		return -EIO;
1197 	}
1198 
1199 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1200 		dev_err(device->dev,
1201 			"Device claims capability %s, but op is not defined\n",
1202 			"DMA_INTERRUPT");
1203 		return -EIO;
1204 	}
1205 
1206 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1207 		dev_err(device->dev,
1208 			"Device claims capability %s, but op is not defined\n",
1209 			"DMA_CYCLIC");
1210 		return -EIO;
1211 	}
1212 
1213 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1214 		dev_err(device->dev,
1215 			"Device claims capability %s, but op is not defined\n",
1216 			"DMA_INTERLEAVE");
1217 		return -EIO;
1218 	}
1219 
1220 
1221 	if (!device->device_tx_status) {
1222 		dev_err(device->dev, "Device tx_status is not defined\n");
1223 		return -EIO;
1224 	}
1225 
1226 
1227 	if (!device->device_issue_pending) {
1228 		dev_err(device->dev, "Device issue_pending is not defined\n");
1229 		return -EIO;
1230 	}
1231 
1232 	if (!device->device_release)
1233 		dev_dbg(device->dev,
1234 			 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1235 
1236 	kref_init(&device->ref);
1237 
1238 	/* note: this only matters in the
1239 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1240 	 */
1241 	if (device_has_all_tx_types(device))
1242 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1243 
1244 	rc = get_dma_id(device);
1245 	if (rc != 0)
1246 		return rc;
1247 
1248 	mutex_init(&device->chan_mutex);
1249 	ida_init(&device->chan_ida);
1250 
1251 	/* represent channels in sysfs. Probably want devs too */
1252 	list_for_each_entry(chan, &device->channels, device_node) {
1253 		rc = __dma_async_device_channel_register(device, chan);
1254 		if (rc < 0)
1255 			goto err_out;
1256 	}
1257 
1258 	mutex_lock(&dma_list_mutex);
1259 	/* take references on public channels */
1260 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1261 		list_for_each_entry(chan, &device->channels, device_node) {
1262 			/* if clients are already waiting for channels we need
1263 			 * to take references on their behalf
1264 			 */
1265 			if (dma_chan_get(chan) == -ENODEV) {
1266 				/* note we can only get here for the first
1267 				 * channel as the remaining channels are
1268 				 * guaranteed to get a reference
1269 				 */
1270 				rc = -ENODEV;
1271 				mutex_unlock(&dma_list_mutex);
1272 				goto err_out;
1273 			}
1274 		}
1275 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1276 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1277 		device->privatecnt++;	/* Always private */
1278 	dma_channel_rebalance();
1279 	mutex_unlock(&dma_list_mutex);
1280 
1281 	dmaengine_debug_register(device);
1282 
1283 	return 0;
1284 
1285 err_out:
1286 	/* if we never registered a channel just release the idr */
1287 	if (!device->chancnt) {
1288 		ida_free(&dma_ida, device->dev_id);
1289 		return rc;
1290 	}
1291 
1292 	list_for_each_entry(chan, &device->channels, device_node) {
1293 		if (chan->local == NULL)
1294 			continue;
1295 		mutex_lock(&dma_list_mutex);
1296 		chan->dev->chan = NULL;
1297 		mutex_unlock(&dma_list_mutex);
1298 		device_unregister(&chan->dev->device);
1299 		free_percpu(chan->local);
1300 	}
1301 	return rc;
1302 }
1303 EXPORT_SYMBOL(dma_async_device_register);
1304 
1305 /**
1306  * dma_async_device_unregister - unregister a DMA device
1307  * @device: &dma_device
1308  *
1309  * This routine is called by dma driver exit routines, dmaengine holds module
1310  * references to prevent it being called while channels are in use.
1311  */
1312 void dma_async_device_unregister(struct dma_device *device)
1313 {
1314 	struct dma_chan *chan, *n;
1315 
1316 	dmaengine_debug_unregister(device);
1317 
1318 	list_for_each_entry_safe(chan, n, &device->channels, device_node)
1319 		__dma_async_device_channel_unregister(device, chan);
1320 
1321 	mutex_lock(&dma_list_mutex);
1322 	/*
1323 	 * setting DMA_PRIVATE ensures the device being torn down will not
1324 	 * be used in the channel_table
1325 	 */
1326 	dma_cap_set(DMA_PRIVATE, device->cap_mask);
1327 	dma_channel_rebalance();
1328 	ida_free(&dma_ida, device->dev_id);
1329 	dma_device_put(device);
1330 	mutex_unlock(&dma_list_mutex);
1331 }
1332 EXPORT_SYMBOL(dma_async_device_unregister);
1333 
1334 static void dmam_device_release(struct device *dev, void *res)
1335 {
1336 	struct dma_device *device;
1337 
1338 	device = *(struct dma_device **)res;
1339 	dma_async_device_unregister(device);
1340 }
1341 
1342 /**
1343  * dmaenginem_async_device_register - registers DMA devices found
1344  * @device: &dma_device
1345  *
1346  * The operation is managed and will be undone on driver detach.
1347  */
1348 int dmaenginem_async_device_register(struct dma_device *device)
1349 {
1350 	void *p;
1351 	int ret;
1352 
1353 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1354 	if (!p)
1355 		return -ENOMEM;
1356 
1357 	ret = dma_async_device_register(device);
1358 	if (!ret) {
1359 		*(struct dma_device **)p = device;
1360 		devres_add(device->dev, p);
1361 	} else {
1362 		devres_free(p);
1363 	}
1364 
1365 	return ret;
1366 }
1367 EXPORT_SYMBOL(dmaenginem_async_device_register);
1368 
1369 struct dmaengine_unmap_pool {
1370 	struct kmem_cache *cache;
1371 	const char *name;
1372 	mempool_t *pool;
1373 	size_t size;
1374 };
1375 
1376 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1377 static struct dmaengine_unmap_pool unmap_pool[] = {
1378 	__UNMAP_POOL(2),
1379 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1380 	__UNMAP_POOL(16),
1381 	__UNMAP_POOL(128),
1382 	__UNMAP_POOL(256),
1383 	#endif
1384 };
1385 
1386 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1387 {
1388 	int order = get_count_order(nr);
1389 
1390 	switch (order) {
1391 	case 0 ... 1:
1392 		return &unmap_pool[0];
1393 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1394 	case 2 ... 4:
1395 		return &unmap_pool[1];
1396 	case 5 ... 7:
1397 		return &unmap_pool[2];
1398 	case 8:
1399 		return &unmap_pool[3];
1400 #endif
1401 	default:
1402 		BUG();
1403 		return NULL;
1404 	}
1405 }
1406 
1407 static void dmaengine_unmap(struct kref *kref)
1408 {
1409 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1410 	struct device *dev = unmap->dev;
1411 	int cnt, i;
1412 
1413 	cnt = unmap->to_cnt;
1414 	for (i = 0; i < cnt; i++)
1415 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1416 			       DMA_TO_DEVICE);
1417 	cnt += unmap->from_cnt;
1418 	for (; i < cnt; i++)
1419 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1420 			       DMA_FROM_DEVICE);
1421 	cnt += unmap->bidi_cnt;
1422 	for (; i < cnt; i++) {
1423 		if (unmap->addr[i] == 0)
1424 			continue;
1425 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1426 			       DMA_BIDIRECTIONAL);
1427 	}
1428 	cnt = unmap->map_cnt;
1429 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1430 }
1431 
1432 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1433 {
1434 	if (unmap)
1435 		kref_put(&unmap->kref, dmaengine_unmap);
1436 }
1437 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1438 
1439 static void dmaengine_destroy_unmap_pool(void)
1440 {
1441 	int i;
1442 
1443 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1444 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1445 
1446 		mempool_destroy(p->pool);
1447 		p->pool = NULL;
1448 		kmem_cache_destroy(p->cache);
1449 		p->cache = NULL;
1450 	}
1451 }
1452 
1453 static int __init dmaengine_init_unmap_pool(void)
1454 {
1455 	int i;
1456 
1457 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1458 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1459 		size_t size;
1460 
1461 		size = sizeof(struct dmaengine_unmap_data) +
1462 		       sizeof(dma_addr_t) * p->size;
1463 
1464 		p->cache = kmem_cache_create(p->name, size, 0,
1465 					     SLAB_HWCACHE_ALIGN, NULL);
1466 		if (!p->cache)
1467 			break;
1468 		p->pool = mempool_create_slab_pool(1, p->cache);
1469 		if (!p->pool)
1470 			break;
1471 	}
1472 
1473 	if (i == ARRAY_SIZE(unmap_pool))
1474 		return 0;
1475 
1476 	dmaengine_destroy_unmap_pool();
1477 	return -ENOMEM;
1478 }
1479 
1480 struct dmaengine_unmap_data *
1481 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1482 {
1483 	struct dmaengine_unmap_data *unmap;
1484 
1485 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1486 	if (!unmap)
1487 		return NULL;
1488 
1489 	memset(unmap, 0, sizeof(*unmap));
1490 	kref_init(&unmap->kref);
1491 	unmap->dev = dev;
1492 	unmap->map_cnt = nr;
1493 
1494 	return unmap;
1495 }
1496 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1497 
1498 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1499 	struct dma_chan *chan)
1500 {
1501 	tx->chan = chan;
1502 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1503 	spin_lock_init(&tx->lock);
1504 	#endif
1505 }
1506 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1507 
1508 static inline int desc_check_and_set_metadata_mode(
1509 	struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1510 {
1511 	/* Make sure that the metadata mode is not mixed */
1512 	if (!desc->desc_metadata_mode) {
1513 		if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1514 			desc->desc_metadata_mode = mode;
1515 		else
1516 			return -ENOTSUPP;
1517 	} else if (desc->desc_metadata_mode != mode) {
1518 		return -EINVAL;
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1525 				   void *data, size_t len)
1526 {
1527 	int ret;
1528 
1529 	if (!desc)
1530 		return -EINVAL;
1531 
1532 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1533 	if (ret)
1534 		return ret;
1535 
1536 	if (!desc->metadata_ops || !desc->metadata_ops->attach)
1537 		return -ENOTSUPP;
1538 
1539 	return desc->metadata_ops->attach(desc, data, len);
1540 }
1541 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1542 
1543 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1544 				      size_t *payload_len, size_t *max_len)
1545 {
1546 	int ret;
1547 
1548 	if (!desc)
1549 		return ERR_PTR(-EINVAL);
1550 
1551 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1552 	if (ret)
1553 		return ERR_PTR(ret);
1554 
1555 	if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1556 		return ERR_PTR(-ENOTSUPP);
1557 
1558 	return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1559 }
1560 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1561 
1562 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1563 				    size_t payload_len)
1564 {
1565 	int ret;
1566 
1567 	if (!desc)
1568 		return -EINVAL;
1569 
1570 	ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1571 	if (ret)
1572 		return ret;
1573 
1574 	if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1575 		return -ENOTSUPP;
1576 
1577 	return desc->metadata_ops->set_len(desc, payload_len);
1578 }
1579 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1580 
1581 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1582  * @tx: in-flight transaction to wait on
1583  */
1584 enum dma_status
1585 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1586 {
1587 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1588 
1589 	if (!tx)
1590 		return DMA_COMPLETE;
1591 
1592 	while (tx->cookie == -EBUSY) {
1593 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1594 			dev_err(tx->chan->device->dev,
1595 				"%s timeout waiting for descriptor submission\n",
1596 				__func__);
1597 			return DMA_ERROR;
1598 		}
1599 		cpu_relax();
1600 	}
1601 	return dma_sync_wait(tx->chan, tx->cookie);
1602 }
1603 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1604 
1605 /* dma_run_dependencies - helper routine for dma drivers to process
1606  *	(start) dependent operations on their target channel
1607  * @tx: transaction with dependencies
1608  */
1609 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1610 {
1611 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1612 	struct dma_async_tx_descriptor *dep_next;
1613 	struct dma_chan *chan;
1614 
1615 	if (!dep)
1616 		return;
1617 
1618 	/* we'll submit tx->next now, so clear the link */
1619 	txd_clear_next(tx);
1620 	chan = dep->chan;
1621 
1622 	/* keep submitting up until a channel switch is detected
1623 	 * in that case we will be called again as a result of
1624 	 * processing the interrupt from async_tx_channel_switch
1625 	 */
1626 	for (; dep; dep = dep_next) {
1627 		txd_lock(dep);
1628 		txd_clear_parent(dep);
1629 		dep_next = txd_next(dep);
1630 		if (dep_next && dep_next->chan == chan)
1631 			txd_clear_next(dep); /* ->next will be submitted */
1632 		else
1633 			dep_next = NULL; /* submit current dep and terminate */
1634 		txd_unlock(dep);
1635 
1636 		dep->tx_submit(dep);
1637 	}
1638 
1639 	chan->device->device_issue_pending(chan);
1640 }
1641 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1642 
1643 static int __init dma_bus_init(void)
1644 {
1645 	int err = dmaengine_init_unmap_pool();
1646 
1647 	if (err)
1648 		return err;
1649 
1650 	err = class_register(&dma_devclass);
1651 	if (!err)
1652 		dmaengine_debugfs_init();
1653 
1654 	return err;
1655 }
1656 arch_initcall(dma_bus_init);
1657