xref: /openbmc/linux/drivers/dma/dmaengine.c (revision c819e2cf)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps a global list of dma_device structs it is protected by a
35  * mutex, dma_list_mutex.
36  *
37  * A subsystem can get access to a channel by calling dmaengine_get() followed
38  * by dma_find_channel(), or if it has need for an exclusive channel it can call
39  * dma_request_channel().  Once a channel is allocated a reference is taken
40  * against its corresponding driver to disable removal.
41  *
42  * Each device has a channels list, which runs unlocked but is never modified
43  * once the device is registered, it's just setup by the driver.
44  *
45  * See Documentation/dmaengine.txt for more details
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/dma-mapping.h>
51 #include <linux/init.h>
52 #include <linux/module.h>
53 #include <linux/mm.h>
54 #include <linux/device.h>
55 #include <linux/dmaengine.h>
56 #include <linux/hardirq.h>
57 #include <linux/spinlock.h>
58 #include <linux/percpu.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/jiffies.h>
62 #include <linux/rculist.h>
63 #include <linux/idr.h>
64 #include <linux/slab.h>
65 #include <linux/acpi.h>
66 #include <linux/acpi_dma.h>
67 #include <linux/of_dma.h>
68 #include <linux/mempool.h>
69 
70 static DEFINE_MUTEX(dma_list_mutex);
71 static DEFINE_IDR(dma_idr);
72 static LIST_HEAD(dma_device_list);
73 static long dmaengine_ref_count;
74 
75 /* --- sysfs implementation --- */
76 
77 /**
78  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
79  * @dev - device node
80  *
81  * Must be called under dma_list_mutex
82  */
83 static struct dma_chan *dev_to_dma_chan(struct device *dev)
84 {
85 	struct dma_chan_dev *chan_dev;
86 
87 	chan_dev = container_of(dev, typeof(*chan_dev), device);
88 	return chan_dev->chan;
89 }
90 
91 static ssize_t memcpy_count_show(struct device *dev,
92 				 struct device_attribute *attr, char *buf)
93 {
94 	struct dma_chan *chan;
95 	unsigned long count = 0;
96 	int i;
97 	int err;
98 
99 	mutex_lock(&dma_list_mutex);
100 	chan = dev_to_dma_chan(dev);
101 	if (chan) {
102 		for_each_possible_cpu(i)
103 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
104 		err = sprintf(buf, "%lu\n", count);
105 	} else
106 		err = -ENODEV;
107 	mutex_unlock(&dma_list_mutex);
108 
109 	return err;
110 }
111 static DEVICE_ATTR_RO(memcpy_count);
112 
113 static ssize_t bytes_transferred_show(struct device *dev,
114 				      struct device_attribute *attr, char *buf)
115 {
116 	struct dma_chan *chan;
117 	unsigned long count = 0;
118 	int i;
119 	int err;
120 
121 	mutex_lock(&dma_list_mutex);
122 	chan = dev_to_dma_chan(dev);
123 	if (chan) {
124 		for_each_possible_cpu(i)
125 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
126 		err = sprintf(buf, "%lu\n", count);
127 	} else
128 		err = -ENODEV;
129 	mutex_unlock(&dma_list_mutex);
130 
131 	return err;
132 }
133 static DEVICE_ATTR_RO(bytes_transferred);
134 
135 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
136 			   char *buf)
137 {
138 	struct dma_chan *chan;
139 	int err;
140 
141 	mutex_lock(&dma_list_mutex);
142 	chan = dev_to_dma_chan(dev);
143 	if (chan)
144 		err = sprintf(buf, "%d\n", chan->client_count);
145 	else
146 		err = -ENODEV;
147 	mutex_unlock(&dma_list_mutex);
148 
149 	return err;
150 }
151 static DEVICE_ATTR_RO(in_use);
152 
153 static struct attribute *dma_dev_attrs[] = {
154 	&dev_attr_memcpy_count.attr,
155 	&dev_attr_bytes_transferred.attr,
156 	&dev_attr_in_use.attr,
157 	NULL,
158 };
159 ATTRIBUTE_GROUPS(dma_dev);
160 
161 static void chan_dev_release(struct device *dev)
162 {
163 	struct dma_chan_dev *chan_dev;
164 
165 	chan_dev = container_of(dev, typeof(*chan_dev), device);
166 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
167 		mutex_lock(&dma_list_mutex);
168 		idr_remove(&dma_idr, chan_dev->dev_id);
169 		mutex_unlock(&dma_list_mutex);
170 		kfree(chan_dev->idr_ref);
171 	}
172 	kfree(chan_dev);
173 }
174 
175 static struct class dma_devclass = {
176 	.name		= "dma",
177 	.dev_groups	= dma_dev_groups,
178 	.dev_release	= chan_dev_release,
179 };
180 
181 /* --- client and device registration --- */
182 
183 #define dma_device_satisfies_mask(device, mask) \
184 	__dma_device_satisfies_mask((device), &(mask))
185 static int
186 __dma_device_satisfies_mask(struct dma_device *device,
187 			    const dma_cap_mask_t *want)
188 {
189 	dma_cap_mask_t has;
190 
191 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
192 		DMA_TX_TYPE_END);
193 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
194 }
195 
196 static struct module *dma_chan_to_owner(struct dma_chan *chan)
197 {
198 	return chan->device->dev->driver->owner;
199 }
200 
201 /**
202  * balance_ref_count - catch up the channel reference count
203  * @chan - channel to balance ->client_count versus dmaengine_ref_count
204  *
205  * balance_ref_count must be called under dma_list_mutex
206  */
207 static void balance_ref_count(struct dma_chan *chan)
208 {
209 	struct module *owner = dma_chan_to_owner(chan);
210 
211 	while (chan->client_count < dmaengine_ref_count) {
212 		__module_get(owner);
213 		chan->client_count++;
214 	}
215 }
216 
217 /**
218  * dma_chan_get - try to grab a dma channel's parent driver module
219  * @chan - channel to grab
220  *
221  * Must be called under dma_list_mutex
222  */
223 static int dma_chan_get(struct dma_chan *chan)
224 {
225 	int err = -ENODEV;
226 	struct module *owner = dma_chan_to_owner(chan);
227 
228 	if (chan->client_count) {
229 		__module_get(owner);
230 		err = 0;
231 	} else if (try_module_get(owner))
232 		err = 0;
233 
234 	if (err == 0)
235 		chan->client_count++;
236 
237 	/* allocate upon first client reference */
238 	if (chan->client_count == 1 && err == 0) {
239 		int desc_cnt = chan->device->device_alloc_chan_resources(chan);
240 
241 		if (desc_cnt < 0) {
242 			err = desc_cnt;
243 			chan->client_count = 0;
244 			module_put(owner);
245 		} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
246 			balance_ref_count(chan);
247 	}
248 
249 	return err;
250 }
251 
252 /**
253  * dma_chan_put - drop a reference to a dma channel's parent driver module
254  * @chan - channel to release
255  *
256  * Must be called under dma_list_mutex
257  */
258 static void dma_chan_put(struct dma_chan *chan)
259 {
260 	if (!chan->client_count)
261 		return; /* this channel failed alloc_chan_resources */
262 	chan->client_count--;
263 	module_put(dma_chan_to_owner(chan));
264 	if (chan->client_count == 0)
265 		chan->device->device_free_chan_resources(chan);
266 }
267 
268 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
269 {
270 	enum dma_status status;
271 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
272 
273 	dma_async_issue_pending(chan);
274 	do {
275 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
276 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
277 			pr_err("%s: timeout!\n", __func__);
278 			return DMA_ERROR;
279 		}
280 		if (status != DMA_IN_PROGRESS)
281 			break;
282 		cpu_relax();
283 	} while (1);
284 
285 	return status;
286 }
287 EXPORT_SYMBOL(dma_sync_wait);
288 
289 /**
290  * dma_cap_mask_all - enable iteration over all operation types
291  */
292 static dma_cap_mask_t dma_cap_mask_all;
293 
294 /**
295  * dma_chan_tbl_ent - tracks channel allocations per core/operation
296  * @chan - associated channel for this entry
297  */
298 struct dma_chan_tbl_ent {
299 	struct dma_chan *chan;
300 };
301 
302 /**
303  * channel_table - percpu lookup table for memory-to-memory offload providers
304  */
305 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
306 
307 static int __init dma_channel_table_init(void)
308 {
309 	enum dma_transaction_type cap;
310 	int err = 0;
311 
312 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
313 
314 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
315 	 * but are not associated with an operation so they do not need
316 	 * an entry in the channel_table
317 	 */
318 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
319 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
320 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
321 
322 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
323 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
324 		if (!channel_table[cap]) {
325 			err = -ENOMEM;
326 			break;
327 		}
328 	}
329 
330 	if (err) {
331 		pr_err("initialization failure\n");
332 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
333 			free_percpu(channel_table[cap]);
334 	}
335 
336 	return err;
337 }
338 arch_initcall(dma_channel_table_init);
339 
340 /**
341  * dma_find_channel - find a channel to carry out the operation
342  * @tx_type: transaction type
343  */
344 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
345 {
346 	return this_cpu_read(channel_table[tx_type]->chan);
347 }
348 EXPORT_SYMBOL(dma_find_channel);
349 
350 /*
351  * net_dma_find_channel - find a channel for net_dma
352  * net_dma has alignment requirements
353  */
354 struct dma_chan *net_dma_find_channel(void)
355 {
356 	struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
357 	if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
358 		return NULL;
359 
360 	return chan;
361 }
362 EXPORT_SYMBOL(net_dma_find_channel);
363 
364 /**
365  * dma_issue_pending_all - flush all pending operations across all channels
366  */
367 void dma_issue_pending_all(void)
368 {
369 	struct dma_device *device;
370 	struct dma_chan *chan;
371 
372 	rcu_read_lock();
373 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
374 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375 			continue;
376 		list_for_each_entry(chan, &device->channels, device_node)
377 			if (chan->client_count)
378 				device->device_issue_pending(chan);
379 	}
380 	rcu_read_unlock();
381 }
382 EXPORT_SYMBOL(dma_issue_pending_all);
383 
384 /**
385  * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
386  */
387 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
388 {
389 	int node = dev_to_node(chan->device->dev);
390 	return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
391 }
392 
393 /**
394  * min_chan - returns the channel with min count and in the same numa-node as the cpu
395  * @cap: capability to match
396  * @cpu: cpu index which the channel should be close to
397  *
398  * If some channels are close to the given cpu, the one with the lowest
399  * reference count is returned. Otherwise, cpu is ignored and only the
400  * reference count is taken into account.
401  * Must be called under dma_list_mutex.
402  */
403 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
404 {
405 	struct dma_device *device;
406 	struct dma_chan *chan;
407 	struct dma_chan *min = NULL;
408 	struct dma_chan *localmin = NULL;
409 
410 	list_for_each_entry(device, &dma_device_list, global_node) {
411 		if (!dma_has_cap(cap, device->cap_mask) ||
412 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
413 			continue;
414 		list_for_each_entry(chan, &device->channels, device_node) {
415 			if (!chan->client_count)
416 				continue;
417 			if (!min || chan->table_count < min->table_count)
418 				min = chan;
419 
420 			if (dma_chan_is_local(chan, cpu))
421 				if (!localmin ||
422 				    chan->table_count < localmin->table_count)
423 					localmin = chan;
424 		}
425 	}
426 
427 	chan = localmin ? localmin : min;
428 
429 	if (chan)
430 		chan->table_count++;
431 
432 	return chan;
433 }
434 
435 /**
436  * dma_channel_rebalance - redistribute the available channels
437  *
438  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
439  * operation type) in the SMP case,  and operation isolation (avoid
440  * multi-tasking channels) in the non-SMP case.  Must be called under
441  * dma_list_mutex.
442  */
443 static void dma_channel_rebalance(void)
444 {
445 	struct dma_chan *chan;
446 	struct dma_device *device;
447 	int cpu;
448 	int cap;
449 
450 	/* undo the last distribution */
451 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
452 		for_each_possible_cpu(cpu)
453 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
454 
455 	list_for_each_entry(device, &dma_device_list, global_node) {
456 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
457 			continue;
458 		list_for_each_entry(chan, &device->channels, device_node)
459 			chan->table_count = 0;
460 	}
461 
462 	/* don't populate the channel_table if no clients are available */
463 	if (!dmaengine_ref_count)
464 		return;
465 
466 	/* redistribute available channels */
467 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
468 		for_each_online_cpu(cpu) {
469 			chan = min_chan(cap, cpu);
470 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
471 		}
472 }
473 
474 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
475 					  struct dma_device *dev,
476 					  dma_filter_fn fn, void *fn_param)
477 {
478 	struct dma_chan *chan;
479 
480 	if (!__dma_device_satisfies_mask(dev, mask)) {
481 		pr_debug("%s: wrong capabilities\n", __func__);
482 		return NULL;
483 	}
484 	/* devices with multiple channels need special handling as we need to
485 	 * ensure that all channels are either private or public.
486 	 */
487 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
488 		list_for_each_entry(chan, &dev->channels, device_node) {
489 			/* some channels are already publicly allocated */
490 			if (chan->client_count)
491 				return NULL;
492 		}
493 
494 	list_for_each_entry(chan, &dev->channels, device_node) {
495 		if (chan->client_count) {
496 			pr_debug("%s: %s busy\n",
497 				 __func__, dma_chan_name(chan));
498 			continue;
499 		}
500 		if (fn && !fn(chan, fn_param)) {
501 			pr_debug("%s: %s filter said false\n",
502 				 __func__, dma_chan_name(chan));
503 			continue;
504 		}
505 		return chan;
506 	}
507 
508 	return NULL;
509 }
510 
511 /**
512  * dma_request_slave_channel - try to get specific channel exclusively
513  * @chan: target channel
514  */
515 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
516 {
517 	int err = -EBUSY;
518 
519 	/* lock against __dma_request_channel */
520 	mutex_lock(&dma_list_mutex);
521 
522 	if (chan->client_count == 0) {
523 		err = dma_chan_get(chan);
524 		if (err)
525 			pr_debug("%s: failed to get %s: (%d)\n",
526 				__func__, dma_chan_name(chan), err);
527 	} else
528 		chan = NULL;
529 
530 	mutex_unlock(&dma_list_mutex);
531 
532 
533 	return chan;
534 }
535 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
536 
537 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
538 {
539 	dma_cap_mask_t mask;
540 	struct dma_chan *chan;
541 	int err;
542 
543 	dma_cap_zero(mask);
544 	dma_cap_set(DMA_SLAVE, mask);
545 
546 	/* lock against __dma_request_channel */
547 	mutex_lock(&dma_list_mutex);
548 
549 	chan = private_candidate(&mask, device, NULL, NULL);
550 	if (chan) {
551 		err = dma_chan_get(chan);
552 		if (err) {
553 			pr_debug("%s: failed to get %s: (%d)\n",
554 				__func__, dma_chan_name(chan), err);
555 			chan = NULL;
556 		}
557 	}
558 
559 	mutex_unlock(&dma_list_mutex);
560 
561 	return chan;
562 }
563 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
564 
565 /**
566  * __dma_request_channel - try to allocate an exclusive channel
567  * @mask: capabilities that the channel must satisfy
568  * @fn: optional callback to disposition available channels
569  * @fn_param: opaque parameter to pass to dma_filter_fn
570  *
571  * Returns pointer to appropriate DMA channel on success or NULL.
572  */
573 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
574 				       dma_filter_fn fn, void *fn_param)
575 {
576 	struct dma_device *device, *_d;
577 	struct dma_chan *chan = NULL;
578 	int err;
579 
580 	/* Find a channel */
581 	mutex_lock(&dma_list_mutex);
582 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
583 		chan = private_candidate(mask, device, fn, fn_param);
584 		if (chan) {
585 			/* Found a suitable channel, try to grab, prep, and
586 			 * return it.  We first set DMA_PRIVATE to disable
587 			 * balance_ref_count as this channel will not be
588 			 * published in the general-purpose allocator
589 			 */
590 			dma_cap_set(DMA_PRIVATE, device->cap_mask);
591 			device->privatecnt++;
592 			err = dma_chan_get(chan);
593 
594 			if (err == -ENODEV) {
595 				pr_debug("%s: %s module removed\n",
596 					 __func__, dma_chan_name(chan));
597 				list_del_rcu(&device->global_node);
598 			} else if (err)
599 				pr_debug("%s: failed to get %s: (%d)\n",
600 					 __func__, dma_chan_name(chan), err);
601 			else
602 				break;
603 			if (--device->privatecnt == 0)
604 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
605 			chan = NULL;
606 		}
607 	}
608 	mutex_unlock(&dma_list_mutex);
609 
610 	pr_debug("%s: %s (%s)\n",
611 		 __func__,
612 		 chan ? "success" : "fail",
613 		 chan ? dma_chan_name(chan) : NULL);
614 
615 	return chan;
616 }
617 EXPORT_SYMBOL_GPL(__dma_request_channel);
618 
619 /**
620  * dma_request_slave_channel - try to allocate an exclusive slave channel
621  * @dev:	pointer to client device structure
622  * @name:	slave channel name
623  *
624  * Returns pointer to appropriate DMA channel on success or an error pointer.
625  */
626 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
627 						  const char *name)
628 {
629 	/* If device-tree is present get slave info from here */
630 	if (dev->of_node)
631 		return of_dma_request_slave_channel(dev->of_node, name);
632 
633 	/* If device was enumerated by ACPI get slave info from here */
634 	if (ACPI_HANDLE(dev))
635 		return acpi_dma_request_slave_chan_by_name(dev, name);
636 
637 	return ERR_PTR(-ENODEV);
638 }
639 EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
640 
641 /**
642  * dma_request_slave_channel - try to allocate an exclusive slave channel
643  * @dev:	pointer to client device structure
644  * @name:	slave channel name
645  *
646  * Returns pointer to appropriate DMA channel on success or NULL.
647  */
648 struct dma_chan *dma_request_slave_channel(struct device *dev,
649 					   const char *name)
650 {
651 	struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
652 	if (IS_ERR(ch))
653 		return NULL;
654 	return ch;
655 }
656 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
657 
658 void dma_release_channel(struct dma_chan *chan)
659 {
660 	mutex_lock(&dma_list_mutex);
661 	WARN_ONCE(chan->client_count != 1,
662 		  "chan reference count %d != 1\n", chan->client_count);
663 	dma_chan_put(chan);
664 	/* drop PRIVATE cap enabled by __dma_request_channel() */
665 	if (--chan->device->privatecnt == 0)
666 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
667 	mutex_unlock(&dma_list_mutex);
668 }
669 EXPORT_SYMBOL_GPL(dma_release_channel);
670 
671 /**
672  * dmaengine_get - register interest in dma_channels
673  */
674 void dmaengine_get(void)
675 {
676 	struct dma_device *device, *_d;
677 	struct dma_chan *chan;
678 	int err;
679 
680 	mutex_lock(&dma_list_mutex);
681 	dmaengine_ref_count++;
682 
683 	/* try to grab channels */
684 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
685 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
686 			continue;
687 		list_for_each_entry(chan, &device->channels, device_node) {
688 			err = dma_chan_get(chan);
689 			if (err == -ENODEV) {
690 				/* module removed before we could use it */
691 				list_del_rcu(&device->global_node);
692 				break;
693 			} else if (err)
694 				pr_debug("%s: failed to get %s: (%d)\n",
695 				       __func__, dma_chan_name(chan), err);
696 		}
697 	}
698 
699 	/* if this is the first reference and there were channels
700 	 * waiting we need to rebalance to get those channels
701 	 * incorporated into the channel table
702 	 */
703 	if (dmaengine_ref_count == 1)
704 		dma_channel_rebalance();
705 	mutex_unlock(&dma_list_mutex);
706 }
707 EXPORT_SYMBOL(dmaengine_get);
708 
709 /**
710  * dmaengine_put - let dma drivers be removed when ref_count == 0
711  */
712 void dmaengine_put(void)
713 {
714 	struct dma_device *device;
715 	struct dma_chan *chan;
716 
717 	mutex_lock(&dma_list_mutex);
718 	dmaengine_ref_count--;
719 	BUG_ON(dmaengine_ref_count < 0);
720 	/* drop channel references */
721 	list_for_each_entry(device, &dma_device_list, global_node) {
722 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
723 			continue;
724 		list_for_each_entry(chan, &device->channels, device_node)
725 			dma_chan_put(chan);
726 	}
727 	mutex_unlock(&dma_list_mutex);
728 }
729 EXPORT_SYMBOL(dmaengine_put);
730 
731 static bool device_has_all_tx_types(struct dma_device *device)
732 {
733 	/* A device that satisfies this test has channels that will never cause
734 	 * an async_tx channel switch event as all possible operation types can
735 	 * be handled.
736 	 */
737 	#ifdef CONFIG_ASYNC_TX_DMA
738 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
739 		return false;
740 	#endif
741 
742 	#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
743 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
744 		return false;
745 	#endif
746 
747 	#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
748 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
749 		return false;
750 
751 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
752 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
753 		return false;
754 	#endif
755 	#endif
756 
757 	#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
758 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
759 		return false;
760 
761 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
762 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
763 		return false;
764 	#endif
765 	#endif
766 
767 	return true;
768 }
769 
770 static int get_dma_id(struct dma_device *device)
771 {
772 	int rc;
773 
774 	mutex_lock(&dma_list_mutex);
775 
776 	rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
777 	if (rc >= 0)
778 		device->dev_id = rc;
779 
780 	mutex_unlock(&dma_list_mutex);
781 	return rc < 0 ? rc : 0;
782 }
783 
784 /**
785  * dma_async_device_register - registers DMA devices found
786  * @device: &dma_device
787  */
788 int dma_async_device_register(struct dma_device *device)
789 {
790 	int chancnt = 0, rc;
791 	struct dma_chan* chan;
792 	atomic_t *idr_ref;
793 
794 	if (!device)
795 		return -ENODEV;
796 
797 	/* validate device routines */
798 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
799 		!device->device_prep_dma_memcpy);
800 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
801 		!device->device_prep_dma_xor);
802 	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
803 		!device->device_prep_dma_xor_val);
804 	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
805 		!device->device_prep_dma_pq);
806 	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
807 		!device->device_prep_dma_pq_val);
808 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
809 		!device->device_prep_dma_interrupt);
810 	BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
811 		!device->device_prep_dma_sg);
812 	BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
813 		!device->device_prep_dma_cyclic);
814 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
815 		!device->device_control);
816 	BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
817 		!device->device_prep_interleaved_dma);
818 
819 	BUG_ON(!device->device_alloc_chan_resources);
820 	BUG_ON(!device->device_free_chan_resources);
821 	BUG_ON(!device->device_tx_status);
822 	BUG_ON(!device->device_issue_pending);
823 	BUG_ON(!device->dev);
824 
825 	/* note: this only matters in the
826 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
827 	 */
828 	if (device_has_all_tx_types(device))
829 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
830 
831 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
832 	if (!idr_ref)
833 		return -ENOMEM;
834 	rc = get_dma_id(device);
835 	if (rc != 0) {
836 		kfree(idr_ref);
837 		return rc;
838 	}
839 
840 	atomic_set(idr_ref, 0);
841 
842 	/* represent channels in sysfs. Probably want devs too */
843 	list_for_each_entry(chan, &device->channels, device_node) {
844 		rc = -ENOMEM;
845 		chan->local = alloc_percpu(typeof(*chan->local));
846 		if (chan->local == NULL)
847 			goto err_out;
848 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
849 		if (chan->dev == NULL) {
850 			free_percpu(chan->local);
851 			chan->local = NULL;
852 			goto err_out;
853 		}
854 
855 		chan->chan_id = chancnt++;
856 		chan->dev->device.class = &dma_devclass;
857 		chan->dev->device.parent = device->dev;
858 		chan->dev->chan = chan;
859 		chan->dev->idr_ref = idr_ref;
860 		chan->dev->dev_id = device->dev_id;
861 		atomic_inc(idr_ref);
862 		dev_set_name(&chan->dev->device, "dma%dchan%d",
863 			     device->dev_id, chan->chan_id);
864 
865 		rc = device_register(&chan->dev->device);
866 		if (rc) {
867 			free_percpu(chan->local);
868 			chan->local = NULL;
869 			kfree(chan->dev);
870 			atomic_dec(idr_ref);
871 			goto err_out;
872 		}
873 		chan->client_count = 0;
874 	}
875 	device->chancnt = chancnt;
876 
877 	mutex_lock(&dma_list_mutex);
878 	/* take references on public channels */
879 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
880 		list_for_each_entry(chan, &device->channels, device_node) {
881 			/* if clients are already waiting for channels we need
882 			 * to take references on their behalf
883 			 */
884 			if (dma_chan_get(chan) == -ENODEV) {
885 				/* note we can only get here for the first
886 				 * channel as the remaining channels are
887 				 * guaranteed to get a reference
888 				 */
889 				rc = -ENODEV;
890 				mutex_unlock(&dma_list_mutex);
891 				goto err_out;
892 			}
893 		}
894 	list_add_tail_rcu(&device->global_node, &dma_device_list);
895 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
896 		device->privatecnt++;	/* Always private */
897 	dma_channel_rebalance();
898 	mutex_unlock(&dma_list_mutex);
899 
900 	return 0;
901 
902 err_out:
903 	/* if we never registered a channel just release the idr */
904 	if (atomic_read(idr_ref) == 0) {
905 		mutex_lock(&dma_list_mutex);
906 		idr_remove(&dma_idr, device->dev_id);
907 		mutex_unlock(&dma_list_mutex);
908 		kfree(idr_ref);
909 		return rc;
910 	}
911 
912 	list_for_each_entry(chan, &device->channels, device_node) {
913 		if (chan->local == NULL)
914 			continue;
915 		mutex_lock(&dma_list_mutex);
916 		chan->dev->chan = NULL;
917 		mutex_unlock(&dma_list_mutex);
918 		device_unregister(&chan->dev->device);
919 		free_percpu(chan->local);
920 	}
921 	return rc;
922 }
923 EXPORT_SYMBOL(dma_async_device_register);
924 
925 /**
926  * dma_async_device_unregister - unregister a DMA device
927  * @device: &dma_device
928  *
929  * This routine is called by dma driver exit routines, dmaengine holds module
930  * references to prevent it being called while channels are in use.
931  */
932 void dma_async_device_unregister(struct dma_device *device)
933 {
934 	struct dma_chan *chan;
935 
936 	mutex_lock(&dma_list_mutex);
937 	list_del_rcu(&device->global_node);
938 	dma_channel_rebalance();
939 	mutex_unlock(&dma_list_mutex);
940 
941 	list_for_each_entry(chan, &device->channels, device_node) {
942 		WARN_ONCE(chan->client_count,
943 			  "%s called while %d clients hold a reference\n",
944 			  __func__, chan->client_count);
945 		mutex_lock(&dma_list_mutex);
946 		chan->dev->chan = NULL;
947 		mutex_unlock(&dma_list_mutex);
948 		device_unregister(&chan->dev->device);
949 		free_percpu(chan->local);
950 	}
951 }
952 EXPORT_SYMBOL(dma_async_device_unregister);
953 
954 struct dmaengine_unmap_pool {
955 	struct kmem_cache *cache;
956 	const char *name;
957 	mempool_t *pool;
958 	size_t size;
959 };
960 
961 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
962 static struct dmaengine_unmap_pool unmap_pool[] = {
963 	__UNMAP_POOL(2),
964 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
965 	__UNMAP_POOL(16),
966 	__UNMAP_POOL(128),
967 	__UNMAP_POOL(256),
968 	#endif
969 };
970 
971 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
972 {
973 	int order = get_count_order(nr);
974 
975 	switch (order) {
976 	case 0 ... 1:
977 		return &unmap_pool[0];
978 	case 2 ... 4:
979 		return &unmap_pool[1];
980 	case 5 ... 7:
981 		return &unmap_pool[2];
982 	case 8:
983 		return &unmap_pool[3];
984 	default:
985 		BUG();
986 		return NULL;
987 	}
988 }
989 
990 static void dmaengine_unmap(struct kref *kref)
991 {
992 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
993 	struct device *dev = unmap->dev;
994 	int cnt, i;
995 
996 	cnt = unmap->to_cnt;
997 	for (i = 0; i < cnt; i++)
998 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
999 			       DMA_TO_DEVICE);
1000 	cnt += unmap->from_cnt;
1001 	for (; i < cnt; i++)
1002 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1003 			       DMA_FROM_DEVICE);
1004 	cnt += unmap->bidi_cnt;
1005 	for (; i < cnt; i++) {
1006 		if (unmap->addr[i] == 0)
1007 			continue;
1008 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1009 			       DMA_BIDIRECTIONAL);
1010 	}
1011 	cnt = unmap->map_cnt;
1012 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1013 }
1014 
1015 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1016 {
1017 	if (unmap)
1018 		kref_put(&unmap->kref, dmaengine_unmap);
1019 }
1020 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1021 
1022 static void dmaengine_destroy_unmap_pool(void)
1023 {
1024 	int i;
1025 
1026 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1027 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1028 
1029 		if (p->pool)
1030 			mempool_destroy(p->pool);
1031 		p->pool = NULL;
1032 		if (p->cache)
1033 			kmem_cache_destroy(p->cache);
1034 		p->cache = NULL;
1035 	}
1036 }
1037 
1038 static int __init dmaengine_init_unmap_pool(void)
1039 {
1040 	int i;
1041 
1042 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1043 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1044 		size_t size;
1045 
1046 		size = sizeof(struct dmaengine_unmap_data) +
1047 		       sizeof(dma_addr_t) * p->size;
1048 
1049 		p->cache = kmem_cache_create(p->name, size, 0,
1050 					     SLAB_HWCACHE_ALIGN, NULL);
1051 		if (!p->cache)
1052 			break;
1053 		p->pool = mempool_create_slab_pool(1, p->cache);
1054 		if (!p->pool)
1055 			break;
1056 	}
1057 
1058 	if (i == ARRAY_SIZE(unmap_pool))
1059 		return 0;
1060 
1061 	dmaengine_destroy_unmap_pool();
1062 	return -ENOMEM;
1063 }
1064 
1065 struct dmaengine_unmap_data *
1066 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1067 {
1068 	struct dmaengine_unmap_data *unmap;
1069 
1070 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1071 	if (!unmap)
1072 		return NULL;
1073 
1074 	memset(unmap, 0, sizeof(*unmap));
1075 	kref_init(&unmap->kref);
1076 	unmap->dev = dev;
1077 	unmap->map_cnt = nr;
1078 
1079 	return unmap;
1080 }
1081 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1082 
1083 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1084 	struct dma_chan *chan)
1085 {
1086 	tx->chan = chan;
1087 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1088 	spin_lock_init(&tx->lock);
1089 	#endif
1090 }
1091 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1092 
1093 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1094  * @tx: in-flight transaction to wait on
1095  */
1096 enum dma_status
1097 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1098 {
1099 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1100 
1101 	if (!tx)
1102 		return DMA_COMPLETE;
1103 
1104 	while (tx->cookie == -EBUSY) {
1105 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1106 			pr_err("%s timeout waiting for descriptor submission\n",
1107 			       __func__);
1108 			return DMA_ERROR;
1109 		}
1110 		cpu_relax();
1111 	}
1112 	return dma_sync_wait(tx->chan, tx->cookie);
1113 }
1114 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1115 
1116 /* dma_run_dependencies - helper routine for dma drivers to process
1117  *	(start) dependent operations on their target channel
1118  * @tx: transaction with dependencies
1119  */
1120 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1121 {
1122 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1123 	struct dma_async_tx_descriptor *dep_next;
1124 	struct dma_chan *chan;
1125 
1126 	if (!dep)
1127 		return;
1128 
1129 	/* we'll submit tx->next now, so clear the link */
1130 	txd_clear_next(tx);
1131 	chan = dep->chan;
1132 
1133 	/* keep submitting up until a channel switch is detected
1134 	 * in that case we will be called again as a result of
1135 	 * processing the interrupt from async_tx_channel_switch
1136 	 */
1137 	for (; dep; dep = dep_next) {
1138 		txd_lock(dep);
1139 		txd_clear_parent(dep);
1140 		dep_next = txd_next(dep);
1141 		if (dep_next && dep_next->chan == chan)
1142 			txd_clear_next(dep); /* ->next will be submitted */
1143 		else
1144 			dep_next = NULL; /* submit current dep and terminate */
1145 		txd_unlock(dep);
1146 
1147 		dep->tx_submit(dep);
1148 	}
1149 
1150 	chan->device->device_issue_pending(chan);
1151 }
1152 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1153 
1154 static int __init dma_bus_init(void)
1155 {
1156 	int err = dmaengine_init_unmap_pool();
1157 
1158 	if (err)
1159 		return err;
1160 	return class_register(&dma_devclass);
1161 }
1162 arch_initcall(dma_bus_init);
1163 
1164 
1165