1 /* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21 22 /* 23 * This code implements the DMA subsystem. It provides a HW-neutral interface 24 * for other kernel code to use asynchronous memory copy capabilities, 25 * if present, and allows different HW DMA drivers to register as providing 26 * this capability. 27 * 28 * Due to the fact we are accelerating what is already a relatively fast 29 * operation, the code goes to great lengths to avoid additional overhead, 30 * such as locking. 31 * 32 * LOCKING: 33 * 34 * The subsystem keeps two global lists, dma_device_list and dma_client_list. 35 * Both of these are protected by a mutex, dma_list_mutex. 36 * 37 * Each device has a channels list, which runs unlocked but is never modified 38 * once the device is registered, it's just setup by the driver. 39 * 40 * Each client is responsible for keeping track of the channels it uses. See 41 * the definition of dma_event_callback in dmaengine.h. 42 * 43 * Each device has a kref, which is initialized to 1 when the device is 44 * registered. A kref_get is done for each class_device registered. When the 45 * class_device is released, the coresponding kref_put is done in the release 46 * method. Every time one of the device's channels is allocated to a client, 47 * a kref_get occurs. When the channel is freed, the coresponding kref_put 48 * happens. The device's release function does a completion, so 49 * unregister_device does a remove event, class_device_unregister, a kref_put 50 * for the first reference, then waits on the completion for all other 51 * references to finish. 52 * 53 * Each channel has an open-coded implementation of Rusty Russell's "bigref," 54 * with a kref and a per_cpu local_t. A dma_chan_get is called when a client 55 * signals that it wants to use a channel, and dma_chan_put is called when 56 * a channel is removed or a client using it is unregesitered. A client can 57 * take extra references per outstanding transaction, as is the case with 58 * the NET DMA client. The release function does a kref_put on the device. 59 * -ChrisL, DanW 60 */ 61 62 #include <linux/init.h> 63 #include <linux/module.h> 64 #include <linux/mm.h> 65 #include <linux/device.h> 66 #include <linux/dmaengine.h> 67 #include <linux/hardirq.h> 68 #include <linux/spinlock.h> 69 #include <linux/percpu.h> 70 #include <linux/rcupdate.h> 71 #include <linux/mutex.h> 72 #include <linux/jiffies.h> 73 74 static DEFINE_MUTEX(dma_list_mutex); 75 static LIST_HEAD(dma_device_list); 76 static LIST_HEAD(dma_client_list); 77 78 /* --- sysfs implementation --- */ 79 80 static ssize_t show_memcpy_count(struct class_device *cd, char *buf) 81 { 82 struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev); 83 unsigned long count = 0; 84 int i; 85 86 for_each_possible_cpu(i) 87 count += per_cpu_ptr(chan->local, i)->memcpy_count; 88 89 return sprintf(buf, "%lu\n", count); 90 } 91 92 static ssize_t show_bytes_transferred(struct class_device *cd, char *buf) 93 { 94 struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev); 95 unsigned long count = 0; 96 int i; 97 98 for_each_possible_cpu(i) 99 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 100 101 return sprintf(buf, "%lu\n", count); 102 } 103 104 static ssize_t show_in_use(struct class_device *cd, char *buf) 105 { 106 struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev); 107 int in_use = 0; 108 109 if (unlikely(chan->slow_ref) && 110 atomic_read(&chan->refcount.refcount) > 1) 111 in_use = 1; 112 else { 113 if (local_read(&(per_cpu_ptr(chan->local, 114 get_cpu())->refcount)) > 0) 115 in_use = 1; 116 put_cpu(); 117 } 118 119 return sprintf(buf, "%d\n", in_use); 120 } 121 122 static struct class_device_attribute dma_class_attrs[] = { 123 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL), 124 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL), 125 __ATTR(in_use, S_IRUGO, show_in_use, NULL), 126 __ATTR_NULL 127 }; 128 129 static void dma_async_device_cleanup(struct kref *kref); 130 131 static void dma_class_dev_release(struct class_device *cd) 132 { 133 struct dma_chan *chan = container_of(cd, struct dma_chan, class_dev); 134 kref_put(&chan->device->refcount, dma_async_device_cleanup); 135 } 136 137 static struct class dma_devclass = { 138 .name = "dma", 139 .class_dev_attrs = dma_class_attrs, 140 .release = dma_class_dev_release, 141 }; 142 143 /* --- client and device registration --- */ 144 145 #define dma_chan_satisfies_mask(chan, mask) \ 146 __dma_chan_satisfies_mask((chan), &(mask)) 147 static int 148 __dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want) 149 { 150 dma_cap_mask_t has; 151 152 bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits, 153 DMA_TX_TYPE_END); 154 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 155 } 156 157 /** 158 * dma_client_chan_alloc - try to allocate channels to a client 159 * @client: &dma_client 160 * 161 * Called with dma_list_mutex held. 162 */ 163 static void dma_client_chan_alloc(struct dma_client *client) 164 { 165 struct dma_device *device; 166 struct dma_chan *chan; 167 int desc; /* allocated descriptor count */ 168 enum dma_state_client ack; 169 170 /* Find a channel */ 171 list_for_each_entry(device, &dma_device_list, global_node) 172 list_for_each_entry(chan, &device->channels, device_node) { 173 if (!dma_chan_satisfies_mask(chan, client->cap_mask)) 174 continue; 175 176 desc = chan->device->device_alloc_chan_resources(chan); 177 if (desc >= 0) { 178 ack = client->event_callback(client, 179 chan, 180 DMA_RESOURCE_AVAILABLE); 181 182 /* we are done once this client rejects 183 * an available resource 184 */ 185 if (ack == DMA_ACK) { 186 dma_chan_get(chan); 187 kref_get(&device->refcount); 188 } else if (ack == DMA_NAK) 189 return; 190 } 191 } 192 } 193 194 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 195 { 196 enum dma_status status; 197 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 198 199 dma_async_issue_pending(chan); 200 do { 201 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 202 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 203 printk(KERN_ERR "dma_sync_wait_timeout!\n"); 204 return DMA_ERROR; 205 } 206 } while (status == DMA_IN_PROGRESS); 207 208 return status; 209 } 210 EXPORT_SYMBOL(dma_sync_wait); 211 212 /** 213 * dma_chan_cleanup - release a DMA channel's resources 214 * @kref: kernel reference structure that contains the DMA channel device 215 */ 216 void dma_chan_cleanup(struct kref *kref) 217 { 218 struct dma_chan *chan = container_of(kref, struct dma_chan, refcount); 219 chan->device->device_free_chan_resources(chan); 220 kref_put(&chan->device->refcount, dma_async_device_cleanup); 221 } 222 EXPORT_SYMBOL(dma_chan_cleanup); 223 224 static void dma_chan_free_rcu(struct rcu_head *rcu) 225 { 226 struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu); 227 int bias = 0x7FFFFFFF; 228 int i; 229 for_each_possible_cpu(i) 230 bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount); 231 atomic_sub(bias, &chan->refcount.refcount); 232 kref_put(&chan->refcount, dma_chan_cleanup); 233 } 234 235 static void dma_chan_release(struct dma_chan *chan) 236 { 237 atomic_add(0x7FFFFFFF, &chan->refcount.refcount); 238 chan->slow_ref = 1; 239 call_rcu(&chan->rcu, dma_chan_free_rcu); 240 } 241 242 /** 243 * dma_chans_notify_available - broadcast available channels to the clients 244 */ 245 static void dma_clients_notify_available(void) 246 { 247 struct dma_client *client; 248 249 mutex_lock(&dma_list_mutex); 250 251 list_for_each_entry(client, &dma_client_list, global_node) 252 dma_client_chan_alloc(client); 253 254 mutex_unlock(&dma_list_mutex); 255 } 256 257 /** 258 * dma_chans_notify_available - tell the clients that a channel is going away 259 * @chan: channel on its way out 260 */ 261 static void dma_clients_notify_removed(struct dma_chan *chan) 262 { 263 struct dma_client *client; 264 enum dma_state_client ack; 265 266 mutex_lock(&dma_list_mutex); 267 268 list_for_each_entry(client, &dma_client_list, global_node) { 269 ack = client->event_callback(client, chan, 270 DMA_RESOURCE_REMOVED); 271 272 /* client was holding resources for this channel so 273 * free it 274 */ 275 if (ack == DMA_ACK) { 276 dma_chan_put(chan); 277 kref_put(&chan->device->refcount, 278 dma_async_device_cleanup); 279 } 280 } 281 282 mutex_unlock(&dma_list_mutex); 283 } 284 285 /** 286 * dma_async_client_register - register a &dma_client 287 * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask' 288 */ 289 void dma_async_client_register(struct dma_client *client) 290 { 291 mutex_lock(&dma_list_mutex); 292 list_add_tail(&client->global_node, &dma_client_list); 293 mutex_unlock(&dma_list_mutex); 294 } 295 EXPORT_SYMBOL(dma_async_client_register); 296 297 /** 298 * dma_async_client_unregister - unregister a client and free the &dma_client 299 * @client: &dma_client to free 300 * 301 * Force frees any allocated DMA channels, frees the &dma_client memory 302 */ 303 void dma_async_client_unregister(struct dma_client *client) 304 { 305 struct dma_device *device; 306 struct dma_chan *chan; 307 enum dma_state_client ack; 308 309 if (!client) 310 return; 311 312 mutex_lock(&dma_list_mutex); 313 /* free all channels the client is holding */ 314 list_for_each_entry(device, &dma_device_list, global_node) 315 list_for_each_entry(chan, &device->channels, device_node) { 316 ack = client->event_callback(client, chan, 317 DMA_RESOURCE_REMOVED); 318 319 if (ack == DMA_ACK) { 320 dma_chan_put(chan); 321 kref_put(&chan->device->refcount, 322 dma_async_device_cleanup); 323 } 324 } 325 326 list_del(&client->global_node); 327 mutex_unlock(&dma_list_mutex); 328 } 329 EXPORT_SYMBOL(dma_async_client_unregister); 330 331 /** 332 * dma_async_client_chan_request - send all available channels to the 333 * client that satisfy the capability mask 334 * @client - requester 335 */ 336 void dma_async_client_chan_request(struct dma_client *client) 337 { 338 mutex_lock(&dma_list_mutex); 339 dma_client_chan_alloc(client); 340 mutex_unlock(&dma_list_mutex); 341 } 342 EXPORT_SYMBOL(dma_async_client_chan_request); 343 344 /** 345 * dma_async_device_register - registers DMA devices found 346 * @device: &dma_device 347 */ 348 int dma_async_device_register(struct dma_device *device) 349 { 350 static int id; 351 int chancnt = 0, rc; 352 struct dma_chan* chan; 353 354 if (!device) 355 return -ENODEV; 356 357 /* validate device routines */ 358 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) && 359 !device->device_prep_dma_memcpy); 360 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) && 361 !device->device_prep_dma_xor); 362 BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) && 363 !device->device_prep_dma_zero_sum); 364 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) && 365 !device->device_prep_dma_memset); 366 BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) && 367 !device->device_prep_dma_interrupt); 368 369 BUG_ON(!device->device_alloc_chan_resources); 370 BUG_ON(!device->device_free_chan_resources); 371 BUG_ON(!device->device_dependency_added); 372 BUG_ON(!device->device_is_tx_complete); 373 BUG_ON(!device->device_issue_pending); 374 BUG_ON(!device->dev); 375 376 init_completion(&device->done); 377 kref_init(&device->refcount); 378 device->dev_id = id++; 379 380 /* represent channels in sysfs. Probably want devs too */ 381 list_for_each_entry(chan, &device->channels, device_node) { 382 chan->local = alloc_percpu(typeof(*chan->local)); 383 if (chan->local == NULL) 384 continue; 385 386 chan->chan_id = chancnt++; 387 chan->class_dev.class = &dma_devclass; 388 chan->class_dev.dev = NULL; 389 snprintf(chan->class_dev.class_id, BUS_ID_SIZE, "dma%dchan%d", 390 device->dev_id, chan->chan_id); 391 392 rc = class_device_register(&chan->class_dev); 393 if (rc) { 394 chancnt--; 395 free_percpu(chan->local); 396 chan->local = NULL; 397 goto err_out; 398 } 399 400 kref_get(&device->refcount); 401 kref_init(&chan->refcount); 402 chan->slow_ref = 0; 403 INIT_RCU_HEAD(&chan->rcu); 404 } 405 406 mutex_lock(&dma_list_mutex); 407 list_add_tail(&device->global_node, &dma_device_list); 408 mutex_unlock(&dma_list_mutex); 409 410 dma_clients_notify_available(); 411 412 return 0; 413 414 err_out: 415 list_for_each_entry(chan, &device->channels, device_node) { 416 if (chan->local == NULL) 417 continue; 418 kref_put(&device->refcount, dma_async_device_cleanup); 419 class_device_unregister(&chan->class_dev); 420 chancnt--; 421 free_percpu(chan->local); 422 } 423 return rc; 424 } 425 EXPORT_SYMBOL(dma_async_device_register); 426 427 /** 428 * dma_async_device_cleanup - function called when all references are released 429 * @kref: kernel reference object 430 */ 431 static void dma_async_device_cleanup(struct kref *kref) 432 { 433 struct dma_device *device; 434 435 device = container_of(kref, struct dma_device, refcount); 436 complete(&device->done); 437 } 438 439 /** 440 * dma_async_device_unregister - unregisters DMA devices 441 * @device: &dma_device 442 */ 443 void dma_async_device_unregister(struct dma_device *device) 444 { 445 struct dma_chan *chan; 446 447 mutex_lock(&dma_list_mutex); 448 list_del(&device->global_node); 449 mutex_unlock(&dma_list_mutex); 450 451 list_for_each_entry(chan, &device->channels, device_node) { 452 dma_clients_notify_removed(chan); 453 class_device_unregister(&chan->class_dev); 454 dma_chan_release(chan); 455 } 456 457 kref_put(&device->refcount, dma_async_device_cleanup); 458 wait_for_completion(&device->done); 459 } 460 EXPORT_SYMBOL(dma_async_device_unregister); 461 462 /** 463 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses 464 * @chan: DMA channel to offload copy to 465 * @dest: destination address (virtual) 466 * @src: source address (virtual) 467 * @len: length 468 * 469 * Both @dest and @src must be mappable to a bus address according to the 470 * DMA mapping API rules for streaming mappings. 471 * Both @dest and @src must stay memory resident (kernel memory or locked 472 * user space pages). 473 */ 474 dma_cookie_t 475 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest, 476 void *src, size_t len) 477 { 478 struct dma_device *dev = chan->device; 479 struct dma_async_tx_descriptor *tx; 480 dma_addr_t addr; 481 dma_cookie_t cookie; 482 int cpu; 483 484 tx = dev->device_prep_dma_memcpy(chan, len, 0); 485 if (!tx) 486 return -ENOMEM; 487 488 tx->ack = 1; 489 tx->callback = NULL; 490 addr = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE); 491 tx->tx_set_src(addr, tx, 0); 492 addr = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE); 493 tx->tx_set_dest(addr, tx, 0); 494 cookie = tx->tx_submit(tx); 495 496 cpu = get_cpu(); 497 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; 498 per_cpu_ptr(chan->local, cpu)->memcpy_count++; 499 put_cpu(); 500 501 return cookie; 502 } 503 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf); 504 505 /** 506 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page 507 * @chan: DMA channel to offload copy to 508 * @page: destination page 509 * @offset: offset in page to copy to 510 * @kdata: source address (virtual) 511 * @len: length 512 * 513 * Both @page/@offset and @kdata must be mappable to a bus address according 514 * to the DMA mapping API rules for streaming mappings. 515 * Both @page/@offset and @kdata must stay memory resident (kernel memory or 516 * locked user space pages) 517 */ 518 dma_cookie_t 519 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page, 520 unsigned int offset, void *kdata, size_t len) 521 { 522 struct dma_device *dev = chan->device; 523 struct dma_async_tx_descriptor *tx; 524 dma_addr_t addr; 525 dma_cookie_t cookie; 526 int cpu; 527 528 tx = dev->device_prep_dma_memcpy(chan, len, 0); 529 if (!tx) 530 return -ENOMEM; 531 532 tx->ack = 1; 533 tx->callback = NULL; 534 addr = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE); 535 tx->tx_set_src(addr, tx, 0); 536 addr = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE); 537 tx->tx_set_dest(addr, tx, 0); 538 cookie = tx->tx_submit(tx); 539 540 cpu = get_cpu(); 541 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; 542 per_cpu_ptr(chan->local, cpu)->memcpy_count++; 543 put_cpu(); 544 545 return cookie; 546 } 547 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg); 548 549 /** 550 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page 551 * @chan: DMA channel to offload copy to 552 * @dest_pg: destination page 553 * @dest_off: offset in page to copy to 554 * @src_pg: source page 555 * @src_off: offset in page to copy from 556 * @len: length 557 * 558 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus 559 * address according to the DMA mapping API rules for streaming mappings. 560 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident 561 * (kernel memory or locked user space pages). 562 */ 563 dma_cookie_t 564 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg, 565 unsigned int dest_off, struct page *src_pg, unsigned int src_off, 566 size_t len) 567 { 568 struct dma_device *dev = chan->device; 569 struct dma_async_tx_descriptor *tx; 570 dma_addr_t addr; 571 dma_cookie_t cookie; 572 int cpu; 573 574 tx = dev->device_prep_dma_memcpy(chan, len, 0); 575 if (!tx) 576 return -ENOMEM; 577 578 tx->ack = 1; 579 tx->callback = NULL; 580 addr = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE); 581 tx->tx_set_src(addr, tx, 0); 582 addr = dma_map_page(dev->dev, dest_pg, dest_off, len, DMA_FROM_DEVICE); 583 tx->tx_set_dest(addr, tx, 0); 584 cookie = tx->tx_submit(tx); 585 586 cpu = get_cpu(); 587 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len; 588 per_cpu_ptr(chan->local, cpu)->memcpy_count++; 589 put_cpu(); 590 591 return cookie; 592 } 593 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg); 594 595 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 596 struct dma_chan *chan) 597 { 598 tx->chan = chan; 599 spin_lock_init(&tx->lock); 600 INIT_LIST_HEAD(&tx->depend_node); 601 INIT_LIST_HEAD(&tx->depend_list); 602 } 603 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 604 605 static int __init dma_bus_init(void) 606 { 607 mutex_init(&dma_list_mutex); 608 return class_register(&dma_devclass); 609 } 610 subsys_initcall(dma_bus_init); 611 612