xref: /openbmc/linux/drivers/dma/dmaengine.c (revision be709d48)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 
18 /*
19  * This code implements the DMA subsystem. It provides a HW-neutral interface
20  * for other kernel code to use asynchronous memory copy capabilities,
21  * if present, and allows different HW DMA drivers to register as providing
22  * this capability.
23  *
24  * Due to the fact we are accelerating what is already a relatively fast
25  * operation, the code goes to great lengths to avoid additional overhead,
26  * such as locking.
27  *
28  * LOCKING:
29  *
30  * The subsystem keeps a global list of dma_device structs it is protected by a
31  * mutex, dma_list_mutex.
32  *
33  * A subsystem can get access to a channel by calling dmaengine_get() followed
34  * by dma_find_channel(), or if it has need for an exclusive channel it can call
35  * dma_request_channel().  Once a channel is allocated a reference is taken
36  * against its corresponding driver to disable removal.
37  *
38  * Each device has a channels list, which runs unlocked but is never modified
39  * once the device is registered, it's just setup by the driver.
40  *
41  * See Documentation/driver-api/dmaengine for more details
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
66 #include <linux/numa.h>
67 
68 static DEFINE_MUTEX(dma_list_mutex);
69 static DEFINE_IDA(dma_ida);
70 static LIST_HEAD(dma_device_list);
71 static long dmaengine_ref_count;
72 
73 /* --- sysfs implementation --- */
74 
75 /**
76  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
77  * @dev - device node
78  *
79  * Must be called under dma_list_mutex
80  */
81 static struct dma_chan *dev_to_dma_chan(struct device *dev)
82 {
83 	struct dma_chan_dev *chan_dev;
84 
85 	chan_dev = container_of(dev, typeof(*chan_dev), device);
86 	return chan_dev->chan;
87 }
88 
89 static ssize_t memcpy_count_show(struct device *dev,
90 				 struct device_attribute *attr, char *buf)
91 {
92 	struct dma_chan *chan;
93 	unsigned long count = 0;
94 	int i;
95 	int err;
96 
97 	mutex_lock(&dma_list_mutex);
98 	chan = dev_to_dma_chan(dev);
99 	if (chan) {
100 		for_each_possible_cpu(i)
101 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
102 		err = sprintf(buf, "%lu\n", count);
103 	} else
104 		err = -ENODEV;
105 	mutex_unlock(&dma_list_mutex);
106 
107 	return err;
108 }
109 static DEVICE_ATTR_RO(memcpy_count);
110 
111 static ssize_t bytes_transferred_show(struct device *dev,
112 				      struct device_attribute *attr, char *buf)
113 {
114 	struct dma_chan *chan;
115 	unsigned long count = 0;
116 	int i;
117 	int err;
118 
119 	mutex_lock(&dma_list_mutex);
120 	chan = dev_to_dma_chan(dev);
121 	if (chan) {
122 		for_each_possible_cpu(i)
123 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
124 		err = sprintf(buf, "%lu\n", count);
125 	} else
126 		err = -ENODEV;
127 	mutex_unlock(&dma_list_mutex);
128 
129 	return err;
130 }
131 static DEVICE_ATTR_RO(bytes_transferred);
132 
133 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
134 			   char *buf)
135 {
136 	struct dma_chan *chan;
137 	int err;
138 
139 	mutex_lock(&dma_list_mutex);
140 	chan = dev_to_dma_chan(dev);
141 	if (chan)
142 		err = sprintf(buf, "%d\n", chan->client_count);
143 	else
144 		err = -ENODEV;
145 	mutex_unlock(&dma_list_mutex);
146 
147 	return err;
148 }
149 static DEVICE_ATTR_RO(in_use);
150 
151 static struct attribute *dma_dev_attrs[] = {
152 	&dev_attr_memcpy_count.attr,
153 	&dev_attr_bytes_transferred.attr,
154 	&dev_attr_in_use.attr,
155 	NULL,
156 };
157 ATTRIBUTE_GROUPS(dma_dev);
158 
159 static void chan_dev_release(struct device *dev)
160 {
161 	struct dma_chan_dev *chan_dev;
162 
163 	chan_dev = container_of(dev, typeof(*chan_dev), device);
164 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
165 		ida_free(&dma_ida, chan_dev->dev_id);
166 		kfree(chan_dev->idr_ref);
167 	}
168 	kfree(chan_dev);
169 }
170 
171 static struct class dma_devclass = {
172 	.name		= "dma",
173 	.dev_groups	= dma_dev_groups,
174 	.dev_release	= chan_dev_release,
175 };
176 
177 /* --- client and device registration --- */
178 
179 #define dma_device_satisfies_mask(device, mask) \
180 	__dma_device_satisfies_mask((device), &(mask))
181 static int
182 __dma_device_satisfies_mask(struct dma_device *device,
183 			    const dma_cap_mask_t *want)
184 {
185 	dma_cap_mask_t has;
186 
187 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
188 		DMA_TX_TYPE_END);
189 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
190 }
191 
192 static struct module *dma_chan_to_owner(struct dma_chan *chan)
193 {
194 	return chan->device->dev->driver->owner;
195 }
196 
197 /**
198  * balance_ref_count - catch up the channel reference count
199  * @chan - channel to balance ->client_count versus dmaengine_ref_count
200  *
201  * balance_ref_count must be called under dma_list_mutex
202  */
203 static void balance_ref_count(struct dma_chan *chan)
204 {
205 	struct module *owner = dma_chan_to_owner(chan);
206 
207 	while (chan->client_count < dmaengine_ref_count) {
208 		__module_get(owner);
209 		chan->client_count++;
210 	}
211 }
212 
213 /**
214  * dma_chan_get - try to grab a dma channel's parent driver module
215  * @chan - channel to grab
216  *
217  * Must be called under dma_list_mutex
218  */
219 static int dma_chan_get(struct dma_chan *chan)
220 {
221 	struct module *owner = dma_chan_to_owner(chan);
222 	int ret;
223 
224 	/* The channel is already in use, update client count */
225 	if (chan->client_count) {
226 		__module_get(owner);
227 		goto out;
228 	}
229 
230 	if (!try_module_get(owner))
231 		return -ENODEV;
232 
233 	/* allocate upon first client reference */
234 	if (chan->device->device_alloc_chan_resources) {
235 		ret = chan->device->device_alloc_chan_resources(chan);
236 		if (ret < 0)
237 			goto err_out;
238 	}
239 
240 	if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
241 		balance_ref_count(chan);
242 
243 out:
244 	chan->client_count++;
245 	return 0;
246 
247 err_out:
248 	module_put(owner);
249 	return ret;
250 }
251 
252 /**
253  * dma_chan_put - drop a reference to a dma channel's parent driver module
254  * @chan - channel to release
255  *
256  * Must be called under dma_list_mutex
257  */
258 static void dma_chan_put(struct dma_chan *chan)
259 {
260 	/* This channel is not in use, bail out */
261 	if (!chan->client_count)
262 		return;
263 
264 	chan->client_count--;
265 	module_put(dma_chan_to_owner(chan));
266 
267 	/* This channel is not in use anymore, free it */
268 	if (!chan->client_count && chan->device->device_free_chan_resources) {
269 		/* Make sure all operations have completed */
270 		dmaengine_synchronize(chan);
271 		chan->device->device_free_chan_resources(chan);
272 	}
273 
274 	/* If the channel is used via a DMA request router, free the mapping */
275 	if (chan->router && chan->router->route_free) {
276 		chan->router->route_free(chan->router->dev, chan->route_data);
277 		chan->router = NULL;
278 		chan->route_data = NULL;
279 	}
280 }
281 
282 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
283 {
284 	enum dma_status status;
285 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
286 
287 	dma_async_issue_pending(chan);
288 	do {
289 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
290 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
291 			dev_err(chan->device->dev, "%s: timeout!\n", __func__);
292 			return DMA_ERROR;
293 		}
294 		if (status != DMA_IN_PROGRESS)
295 			break;
296 		cpu_relax();
297 	} while (1);
298 
299 	return status;
300 }
301 EXPORT_SYMBOL(dma_sync_wait);
302 
303 /**
304  * dma_cap_mask_all - enable iteration over all operation types
305  */
306 static dma_cap_mask_t dma_cap_mask_all;
307 
308 /**
309  * dma_chan_tbl_ent - tracks channel allocations per core/operation
310  * @chan - associated channel for this entry
311  */
312 struct dma_chan_tbl_ent {
313 	struct dma_chan *chan;
314 };
315 
316 /**
317  * channel_table - percpu lookup table for memory-to-memory offload providers
318  */
319 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
320 
321 static int __init dma_channel_table_init(void)
322 {
323 	enum dma_transaction_type cap;
324 	int err = 0;
325 
326 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
327 
328 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
329 	 * but are not associated with an operation so they do not need
330 	 * an entry in the channel_table
331 	 */
332 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
333 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
334 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
335 
336 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
337 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
338 		if (!channel_table[cap]) {
339 			err = -ENOMEM;
340 			break;
341 		}
342 	}
343 
344 	if (err) {
345 		pr_err("initialization failure\n");
346 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
347 			free_percpu(channel_table[cap]);
348 	}
349 
350 	return err;
351 }
352 arch_initcall(dma_channel_table_init);
353 
354 /**
355  * dma_find_channel - find a channel to carry out the operation
356  * @tx_type: transaction type
357  */
358 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
359 {
360 	return this_cpu_read(channel_table[tx_type]->chan);
361 }
362 EXPORT_SYMBOL(dma_find_channel);
363 
364 /**
365  * dma_issue_pending_all - flush all pending operations across all channels
366  */
367 void dma_issue_pending_all(void)
368 {
369 	struct dma_device *device;
370 	struct dma_chan *chan;
371 
372 	rcu_read_lock();
373 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
374 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375 			continue;
376 		list_for_each_entry(chan, &device->channels, device_node)
377 			if (chan->client_count)
378 				device->device_issue_pending(chan);
379 	}
380 	rcu_read_unlock();
381 }
382 EXPORT_SYMBOL(dma_issue_pending_all);
383 
384 /**
385  * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
386  */
387 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
388 {
389 	int node = dev_to_node(chan->device->dev);
390 	return node == NUMA_NO_NODE ||
391 		cpumask_test_cpu(cpu, cpumask_of_node(node));
392 }
393 
394 /**
395  * min_chan - returns the channel with min count and in the same numa-node as the cpu
396  * @cap: capability to match
397  * @cpu: cpu index which the channel should be close to
398  *
399  * If some channels are close to the given cpu, the one with the lowest
400  * reference count is returned. Otherwise, cpu is ignored and only the
401  * reference count is taken into account.
402  * Must be called under dma_list_mutex.
403  */
404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
405 {
406 	struct dma_device *device;
407 	struct dma_chan *chan;
408 	struct dma_chan *min = NULL;
409 	struct dma_chan *localmin = NULL;
410 
411 	list_for_each_entry(device, &dma_device_list, global_node) {
412 		if (!dma_has_cap(cap, device->cap_mask) ||
413 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
414 			continue;
415 		list_for_each_entry(chan, &device->channels, device_node) {
416 			if (!chan->client_count)
417 				continue;
418 			if (!min || chan->table_count < min->table_count)
419 				min = chan;
420 
421 			if (dma_chan_is_local(chan, cpu))
422 				if (!localmin ||
423 				    chan->table_count < localmin->table_count)
424 					localmin = chan;
425 		}
426 	}
427 
428 	chan = localmin ? localmin : min;
429 
430 	if (chan)
431 		chan->table_count++;
432 
433 	return chan;
434 }
435 
436 /**
437  * dma_channel_rebalance - redistribute the available channels
438  *
439  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
440  * operation type) in the SMP case,  and operation isolation (avoid
441  * multi-tasking channels) in the non-SMP case.  Must be called under
442  * dma_list_mutex.
443  */
444 static void dma_channel_rebalance(void)
445 {
446 	struct dma_chan *chan;
447 	struct dma_device *device;
448 	int cpu;
449 	int cap;
450 
451 	/* undo the last distribution */
452 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
453 		for_each_possible_cpu(cpu)
454 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
455 
456 	list_for_each_entry(device, &dma_device_list, global_node) {
457 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
458 			continue;
459 		list_for_each_entry(chan, &device->channels, device_node)
460 			chan->table_count = 0;
461 	}
462 
463 	/* don't populate the channel_table if no clients are available */
464 	if (!dmaengine_ref_count)
465 		return;
466 
467 	/* redistribute available channels */
468 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
469 		for_each_online_cpu(cpu) {
470 			chan = min_chan(cap, cpu);
471 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
472 		}
473 }
474 
475 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
476 {
477 	struct dma_device *device;
478 
479 	if (!chan || !caps)
480 		return -EINVAL;
481 
482 	device = chan->device;
483 
484 	/* check if the channel supports slave transactions */
485 	if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
486 	      test_bit(DMA_CYCLIC, device->cap_mask.bits)))
487 		return -ENXIO;
488 
489 	/*
490 	 * Check whether it reports it uses the generic slave
491 	 * capabilities, if not, that means it doesn't support any
492 	 * kind of slave capabilities reporting.
493 	 */
494 	if (!device->directions)
495 		return -ENXIO;
496 
497 	caps->src_addr_widths = device->src_addr_widths;
498 	caps->dst_addr_widths = device->dst_addr_widths;
499 	caps->directions = device->directions;
500 	caps->max_burst = device->max_burst;
501 	caps->residue_granularity = device->residue_granularity;
502 	caps->descriptor_reuse = device->descriptor_reuse;
503 	caps->cmd_pause = !!device->device_pause;
504 	caps->cmd_resume = !!device->device_resume;
505 	caps->cmd_terminate = !!device->device_terminate_all;
506 
507 	return 0;
508 }
509 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
510 
511 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
512 					  struct dma_device *dev,
513 					  dma_filter_fn fn, void *fn_param)
514 {
515 	struct dma_chan *chan;
516 
517 	if (mask && !__dma_device_satisfies_mask(dev, mask)) {
518 		dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
519 		return NULL;
520 	}
521 	/* devices with multiple channels need special handling as we need to
522 	 * ensure that all channels are either private or public.
523 	 */
524 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
525 		list_for_each_entry(chan, &dev->channels, device_node) {
526 			/* some channels are already publicly allocated */
527 			if (chan->client_count)
528 				return NULL;
529 		}
530 
531 	list_for_each_entry(chan, &dev->channels, device_node) {
532 		if (chan->client_count) {
533 			dev_dbg(dev->dev, "%s: %s busy\n",
534 				 __func__, dma_chan_name(chan));
535 			continue;
536 		}
537 		if (fn && !fn(chan, fn_param)) {
538 			dev_dbg(dev->dev, "%s: %s filter said false\n",
539 				 __func__, dma_chan_name(chan));
540 			continue;
541 		}
542 		return chan;
543 	}
544 
545 	return NULL;
546 }
547 
548 static struct dma_chan *find_candidate(struct dma_device *device,
549 				       const dma_cap_mask_t *mask,
550 				       dma_filter_fn fn, void *fn_param)
551 {
552 	struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
553 	int err;
554 
555 	if (chan) {
556 		/* Found a suitable channel, try to grab, prep, and return it.
557 		 * We first set DMA_PRIVATE to disable balance_ref_count as this
558 		 * channel will not be published in the general-purpose
559 		 * allocator
560 		 */
561 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
562 		device->privatecnt++;
563 		err = dma_chan_get(chan);
564 
565 		if (err) {
566 			if (err == -ENODEV) {
567 				dev_dbg(device->dev, "%s: %s module removed\n",
568 					__func__, dma_chan_name(chan));
569 				list_del_rcu(&device->global_node);
570 			} else
571 				dev_dbg(device->dev,
572 					"%s: failed to get %s: (%d)\n",
573 					 __func__, dma_chan_name(chan), err);
574 
575 			if (--device->privatecnt == 0)
576 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
577 
578 			chan = ERR_PTR(err);
579 		}
580 	}
581 
582 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
583 }
584 
585 /**
586  * dma_get_slave_channel - try to get specific channel exclusively
587  * @chan: target channel
588  */
589 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
590 {
591 	int err = -EBUSY;
592 
593 	/* lock against __dma_request_channel */
594 	mutex_lock(&dma_list_mutex);
595 
596 	if (chan->client_count == 0) {
597 		struct dma_device *device = chan->device;
598 
599 		dma_cap_set(DMA_PRIVATE, device->cap_mask);
600 		device->privatecnt++;
601 		err = dma_chan_get(chan);
602 		if (err) {
603 			dev_dbg(chan->device->dev,
604 				"%s: failed to get %s: (%d)\n",
605 				__func__, dma_chan_name(chan), err);
606 			chan = NULL;
607 			if (--device->privatecnt == 0)
608 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
609 		}
610 	} else
611 		chan = NULL;
612 
613 	mutex_unlock(&dma_list_mutex);
614 
615 
616 	return chan;
617 }
618 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
619 
620 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
621 {
622 	dma_cap_mask_t mask;
623 	struct dma_chan *chan;
624 
625 	dma_cap_zero(mask);
626 	dma_cap_set(DMA_SLAVE, mask);
627 
628 	/* lock against __dma_request_channel */
629 	mutex_lock(&dma_list_mutex);
630 
631 	chan = find_candidate(device, &mask, NULL, NULL);
632 
633 	mutex_unlock(&dma_list_mutex);
634 
635 	return IS_ERR(chan) ? NULL : chan;
636 }
637 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
638 
639 /**
640  * __dma_request_channel - try to allocate an exclusive channel
641  * @mask: capabilities that the channel must satisfy
642  * @fn: optional callback to disposition available channels
643  * @fn_param: opaque parameter to pass to dma_filter_fn
644  *
645  * Returns pointer to appropriate DMA channel on success or NULL.
646  */
647 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
648 				       dma_filter_fn fn, void *fn_param)
649 {
650 	struct dma_device *device, *_d;
651 	struct dma_chan *chan = NULL;
652 
653 	/* Find a channel */
654 	mutex_lock(&dma_list_mutex);
655 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
656 		chan = find_candidate(device, mask, fn, fn_param);
657 		if (!IS_ERR(chan))
658 			break;
659 
660 		chan = NULL;
661 	}
662 	mutex_unlock(&dma_list_mutex);
663 
664 	pr_debug("%s: %s (%s)\n",
665 		 __func__,
666 		 chan ? "success" : "fail",
667 		 chan ? dma_chan_name(chan) : NULL);
668 
669 	return chan;
670 }
671 EXPORT_SYMBOL_GPL(__dma_request_channel);
672 
673 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
674 						    const char *name,
675 						    struct device *dev)
676 {
677 	int i;
678 
679 	if (!device->filter.mapcnt)
680 		return NULL;
681 
682 	for (i = 0; i < device->filter.mapcnt; i++) {
683 		const struct dma_slave_map *map = &device->filter.map[i];
684 
685 		if (!strcmp(map->devname, dev_name(dev)) &&
686 		    !strcmp(map->slave, name))
687 			return map;
688 	}
689 
690 	return NULL;
691 }
692 
693 /**
694  * dma_request_chan - try to allocate an exclusive slave channel
695  * @dev:	pointer to client device structure
696  * @name:	slave channel name
697  *
698  * Returns pointer to appropriate DMA channel on success or an error pointer.
699  */
700 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
701 {
702 	struct dma_device *d, *_d;
703 	struct dma_chan *chan = NULL;
704 
705 	/* If device-tree is present get slave info from here */
706 	if (dev->of_node)
707 		chan = of_dma_request_slave_channel(dev->of_node, name);
708 
709 	/* If device was enumerated by ACPI get slave info from here */
710 	if (has_acpi_companion(dev) && !chan)
711 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
712 
713 	if (chan) {
714 		/* Valid channel found or requester need to be deferred */
715 		if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
716 			return chan;
717 	}
718 
719 	/* Try to find the channel via the DMA filter map(s) */
720 	mutex_lock(&dma_list_mutex);
721 	list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
722 		dma_cap_mask_t mask;
723 		const struct dma_slave_map *map = dma_filter_match(d, name, dev);
724 
725 		if (!map)
726 			continue;
727 
728 		dma_cap_zero(mask);
729 		dma_cap_set(DMA_SLAVE, mask);
730 
731 		chan = find_candidate(d, &mask, d->filter.fn, map->param);
732 		if (!IS_ERR(chan))
733 			break;
734 	}
735 	mutex_unlock(&dma_list_mutex);
736 
737 	return chan ? chan : ERR_PTR(-EPROBE_DEFER);
738 }
739 EXPORT_SYMBOL_GPL(dma_request_chan);
740 
741 /**
742  * dma_request_slave_channel - try to allocate an exclusive slave channel
743  * @dev:	pointer to client device structure
744  * @name:	slave channel name
745  *
746  * Returns pointer to appropriate DMA channel on success or NULL.
747  */
748 struct dma_chan *dma_request_slave_channel(struct device *dev,
749 					   const char *name)
750 {
751 	struct dma_chan *ch = dma_request_chan(dev, name);
752 	if (IS_ERR(ch))
753 		return NULL;
754 
755 	return ch;
756 }
757 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
758 
759 /**
760  * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
761  * @mask: capabilities that the channel must satisfy
762  *
763  * Returns pointer to appropriate DMA channel on success or an error pointer.
764  */
765 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
766 {
767 	struct dma_chan *chan;
768 
769 	if (!mask)
770 		return ERR_PTR(-ENODEV);
771 
772 	chan = __dma_request_channel(mask, NULL, NULL);
773 	if (!chan) {
774 		mutex_lock(&dma_list_mutex);
775 		if (list_empty(&dma_device_list))
776 			chan = ERR_PTR(-EPROBE_DEFER);
777 		else
778 			chan = ERR_PTR(-ENODEV);
779 		mutex_unlock(&dma_list_mutex);
780 	}
781 
782 	return chan;
783 }
784 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
785 
786 void dma_release_channel(struct dma_chan *chan)
787 {
788 	mutex_lock(&dma_list_mutex);
789 	WARN_ONCE(chan->client_count != 1,
790 		  "chan reference count %d != 1\n", chan->client_count);
791 	dma_chan_put(chan);
792 	/* drop PRIVATE cap enabled by __dma_request_channel() */
793 	if (--chan->device->privatecnt == 0)
794 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
795 	mutex_unlock(&dma_list_mutex);
796 }
797 EXPORT_SYMBOL_GPL(dma_release_channel);
798 
799 /**
800  * dmaengine_get - register interest in dma_channels
801  */
802 void dmaengine_get(void)
803 {
804 	struct dma_device *device, *_d;
805 	struct dma_chan *chan;
806 	int err;
807 
808 	mutex_lock(&dma_list_mutex);
809 	dmaengine_ref_count++;
810 
811 	/* try to grab channels */
812 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
813 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
814 			continue;
815 		list_for_each_entry(chan, &device->channels, device_node) {
816 			err = dma_chan_get(chan);
817 			if (err == -ENODEV) {
818 				/* module removed before we could use it */
819 				list_del_rcu(&device->global_node);
820 				break;
821 			} else if (err)
822 				dev_dbg(chan->device->dev,
823 					"%s: failed to get %s: (%d)\n",
824 					__func__, dma_chan_name(chan), err);
825 		}
826 	}
827 
828 	/* if this is the first reference and there were channels
829 	 * waiting we need to rebalance to get those channels
830 	 * incorporated into the channel table
831 	 */
832 	if (dmaengine_ref_count == 1)
833 		dma_channel_rebalance();
834 	mutex_unlock(&dma_list_mutex);
835 }
836 EXPORT_SYMBOL(dmaengine_get);
837 
838 /**
839  * dmaengine_put - let dma drivers be removed when ref_count == 0
840  */
841 void dmaengine_put(void)
842 {
843 	struct dma_device *device;
844 	struct dma_chan *chan;
845 
846 	mutex_lock(&dma_list_mutex);
847 	dmaengine_ref_count--;
848 	BUG_ON(dmaengine_ref_count < 0);
849 	/* drop channel references */
850 	list_for_each_entry(device, &dma_device_list, global_node) {
851 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
852 			continue;
853 		list_for_each_entry(chan, &device->channels, device_node)
854 			dma_chan_put(chan);
855 	}
856 	mutex_unlock(&dma_list_mutex);
857 }
858 EXPORT_SYMBOL(dmaengine_put);
859 
860 static bool device_has_all_tx_types(struct dma_device *device)
861 {
862 	/* A device that satisfies this test has channels that will never cause
863 	 * an async_tx channel switch event as all possible operation types can
864 	 * be handled.
865 	 */
866 	#ifdef CONFIG_ASYNC_TX_DMA
867 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
868 		return false;
869 	#endif
870 
871 	#if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
872 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
873 		return false;
874 	#endif
875 
876 	#if IS_ENABLED(CONFIG_ASYNC_XOR)
877 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
878 		return false;
879 
880 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
881 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
882 		return false;
883 	#endif
884 	#endif
885 
886 	#if IS_ENABLED(CONFIG_ASYNC_PQ)
887 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
888 		return false;
889 
890 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
891 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
892 		return false;
893 	#endif
894 	#endif
895 
896 	return true;
897 }
898 
899 static int get_dma_id(struct dma_device *device)
900 {
901 	int rc = ida_alloc(&dma_ida, GFP_KERNEL);
902 
903 	if (rc < 0)
904 		return rc;
905 	device->dev_id = rc;
906 	return 0;
907 }
908 
909 /**
910  * dma_async_device_register - registers DMA devices found
911  * @device: &dma_device
912  */
913 int dma_async_device_register(struct dma_device *device)
914 {
915 	int chancnt = 0, rc;
916 	struct dma_chan* chan;
917 	atomic_t *idr_ref;
918 
919 	if (!device)
920 		return -ENODEV;
921 
922 	/* validate device routines */
923 	if (!device->dev) {
924 		pr_err("DMAdevice must have dev\n");
925 		return -EIO;
926 	}
927 
928 	if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
929 		dev_err(device->dev,
930 			"Device claims capability %s, but op is not defined\n",
931 			"DMA_MEMCPY");
932 		return -EIO;
933 	}
934 
935 	if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
936 		dev_err(device->dev,
937 			"Device claims capability %s, but op is not defined\n",
938 			"DMA_XOR");
939 		return -EIO;
940 	}
941 
942 	if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
943 		dev_err(device->dev,
944 			"Device claims capability %s, but op is not defined\n",
945 			"DMA_XOR_VAL");
946 		return -EIO;
947 	}
948 
949 	if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
950 		dev_err(device->dev,
951 			"Device claims capability %s, but op is not defined\n",
952 			"DMA_PQ");
953 		return -EIO;
954 	}
955 
956 	if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
957 		dev_err(device->dev,
958 			"Device claims capability %s, but op is not defined\n",
959 			"DMA_PQ_VAL");
960 		return -EIO;
961 	}
962 
963 	if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
964 		dev_err(device->dev,
965 			"Device claims capability %s, but op is not defined\n",
966 			"DMA_MEMSET");
967 		return -EIO;
968 	}
969 
970 	if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
971 		dev_err(device->dev,
972 			"Device claims capability %s, but op is not defined\n",
973 			"DMA_INTERRUPT");
974 		return -EIO;
975 	}
976 
977 	if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
978 		dev_err(device->dev,
979 			"Device claims capability %s, but op is not defined\n",
980 			"DMA_CYCLIC");
981 		return -EIO;
982 	}
983 
984 	if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
985 		dev_err(device->dev,
986 			"Device claims capability %s, but op is not defined\n",
987 			"DMA_INTERLEAVE");
988 		return -EIO;
989 	}
990 
991 
992 	if (!device->device_tx_status) {
993 		dev_err(device->dev, "Device tx_status is not defined\n");
994 		return -EIO;
995 	}
996 
997 
998 	if (!device->device_issue_pending) {
999 		dev_err(device->dev, "Device issue_pending is not defined\n");
1000 		return -EIO;
1001 	}
1002 
1003 	/* note: this only matters in the
1004 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1005 	 */
1006 	if (device_has_all_tx_types(device))
1007 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1008 
1009 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
1010 	if (!idr_ref)
1011 		return -ENOMEM;
1012 	rc = get_dma_id(device);
1013 	if (rc != 0) {
1014 		kfree(idr_ref);
1015 		return rc;
1016 	}
1017 
1018 	atomic_set(idr_ref, 0);
1019 
1020 	/* represent channels in sysfs. Probably want devs too */
1021 	list_for_each_entry(chan, &device->channels, device_node) {
1022 		rc = -ENOMEM;
1023 		chan->local = alloc_percpu(typeof(*chan->local));
1024 		if (chan->local == NULL)
1025 			goto err_out;
1026 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1027 		if (chan->dev == NULL) {
1028 			free_percpu(chan->local);
1029 			chan->local = NULL;
1030 			goto err_out;
1031 		}
1032 
1033 		chan->chan_id = chancnt++;
1034 		chan->dev->device.class = &dma_devclass;
1035 		chan->dev->device.parent = device->dev;
1036 		chan->dev->chan = chan;
1037 		chan->dev->idr_ref = idr_ref;
1038 		chan->dev->dev_id = device->dev_id;
1039 		atomic_inc(idr_ref);
1040 		dev_set_name(&chan->dev->device, "dma%dchan%d",
1041 			     device->dev_id, chan->chan_id);
1042 
1043 		rc = device_register(&chan->dev->device);
1044 		if (rc) {
1045 			free_percpu(chan->local);
1046 			chan->local = NULL;
1047 			kfree(chan->dev);
1048 			atomic_dec(idr_ref);
1049 			goto err_out;
1050 		}
1051 		chan->client_count = 0;
1052 	}
1053 
1054 	if (!chancnt) {
1055 		dev_err(device->dev, "%s: device has no channels!\n", __func__);
1056 		rc = -ENODEV;
1057 		goto err_out;
1058 	}
1059 
1060 	device->chancnt = chancnt;
1061 
1062 	mutex_lock(&dma_list_mutex);
1063 	/* take references on public channels */
1064 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1065 		list_for_each_entry(chan, &device->channels, device_node) {
1066 			/* if clients are already waiting for channels we need
1067 			 * to take references on their behalf
1068 			 */
1069 			if (dma_chan_get(chan) == -ENODEV) {
1070 				/* note we can only get here for the first
1071 				 * channel as the remaining channels are
1072 				 * guaranteed to get a reference
1073 				 */
1074 				rc = -ENODEV;
1075 				mutex_unlock(&dma_list_mutex);
1076 				goto err_out;
1077 			}
1078 		}
1079 	list_add_tail_rcu(&device->global_node, &dma_device_list);
1080 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1081 		device->privatecnt++;	/* Always private */
1082 	dma_channel_rebalance();
1083 	mutex_unlock(&dma_list_mutex);
1084 
1085 	return 0;
1086 
1087 err_out:
1088 	/* if we never registered a channel just release the idr */
1089 	if (atomic_read(idr_ref) == 0) {
1090 		ida_free(&dma_ida, device->dev_id);
1091 		kfree(idr_ref);
1092 		return rc;
1093 	}
1094 
1095 	list_for_each_entry(chan, &device->channels, device_node) {
1096 		if (chan->local == NULL)
1097 			continue;
1098 		mutex_lock(&dma_list_mutex);
1099 		chan->dev->chan = NULL;
1100 		mutex_unlock(&dma_list_mutex);
1101 		device_unregister(&chan->dev->device);
1102 		free_percpu(chan->local);
1103 	}
1104 	return rc;
1105 }
1106 EXPORT_SYMBOL(dma_async_device_register);
1107 
1108 /**
1109  * dma_async_device_unregister - unregister a DMA device
1110  * @device: &dma_device
1111  *
1112  * This routine is called by dma driver exit routines, dmaengine holds module
1113  * references to prevent it being called while channels are in use.
1114  */
1115 void dma_async_device_unregister(struct dma_device *device)
1116 {
1117 	struct dma_chan *chan;
1118 
1119 	mutex_lock(&dma_list_mutex);
1120 	list_del_rcu(&device->global_node);
1121 	dma_channel_rebalance();
1122 	mutex_unlock(&dma_list_mutex);
1123 
1124 	list_for_each_entry(chan, &device->channels, device_node) {
1125 		WARN_ONCE(chan->client_count,
1126 			  "%s called while %d clients hold a reference\n",
1127 			  __func__, chan->client_count);
1128 		mutex_lock(&dma_list_mutex);
1129 		chan->dev->chan = NULL;
1130 		mutex_unlock(&dma_list_mutex);
1131 		device_unregister(&chan->dev->device);
1132 		free_percpu(chan->local);
1133 	}
1134 }
1135 EXPORT_SYMBOL(dma_async_device_unregister);
1136 
1137 static void dmam_device_release(struct device *dev, void *res)
1138 {
1139 	struct dma_device *device;
1140 
1141 	device = *(struct dma_device **)res;
1142 	dma_async_device_unregister(device);
1143 }
1144 
1145 /**
1146  * dmaenginem_async_device_register - registers DMA devices found
1147  * @device: &dma_device
1148  *
1149  * The operation is managed and will be undone on driver detach.
1150  */
1151 int dmaenginem_async_device_register(struct dma_device *device)
1152 {
1153 	void *p;
1154 	int ret;
1155 
1156 	p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1157 	if (!p)
1158 		return -ENOMEM;
1159 
1160 	ret = dma_async_device_register(device);
1161 	if (!ret) {
1162 		*(struct dma_device **)p = device;
1163 		devres_add(device->dev, p);
1164 	} else {
1165 		devres_free(p);
1166 	}
1167 
1168 	return ret;
1169 }
1170 EXPORT_SYMBOL(dmaenginem_async_device_register);
1171 
1172 struct dmaengine_unmap_pool {
1173 	struct kmem_cache *cache;
1174 	const char *name;
1175 	mempool_t *pool;
1176 	size_t size;
1177 };
1178 
1179 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1180 static struct dmaengine_unmap_pool unmap_pool[] = {
1181 	__UNMAP_POOL(2),
1182 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1183 	__UNMAP_POOL(16),
1184 	__UNMAP_POOL(128),
1185 	__UNMAP_POOL(256),
1186 	#endif
1187 };
1188 
1189 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1190 {
1191 	int order = get_count_order(nr);
1192 
1193 	switch (order) {
1194 	case 0 ... 1:
1195 		return &unmap_pool[0];
1196 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1197 	case 2 ... 4:
1198 		return &unmap_pool[1];
1199 	case 5 ... 7:
1200 		return &unmap_pool[2];
1201 	case 8:
1202 		return &unmap_pool[3];
1203 #endif
1204 	default:
1205 		BUG();
1206 		return NULL;
1207 	}
1208 }
1209 
1210 static void dmaengine_unmap(struct kref *kref)
1211 {
1212 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1213 	struct device *dev = unmap->dev;
1214 	int cnt, i;
1215 
1216 	cnt = unmap->to_cnt;
1217 	for (i = 0; i < cnt; i++)
1218 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1219 			       DMA_TO_DEVICE);
1220 	cnt += unmap->from_cnt;
1221 	for (; i < cnt; i++)
1222 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1223 			       DMA_FROM_DEVICE);
1224 	cnt += unmap->bidi_cnt;
1225 	for (; i < cnt; i++) {
1226 		if (unmap->addr[i] == 0)
1227 			continue;
1228 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1229 			       DMA_BIDIRECTIONAL);
1230 	}
1231 	cnt = unmap->map_cnt;
1232 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1233 }
1234 
1235 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1236 {
1237 	if (unmap)
1238 		kref_put(&unmap->kref, dmaengine_unmap);
1239 }
1240 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1241 
1242 static void dmaengine_destroy_unmap_pool(void)
1243 {
1244 	int i;
1245 
1246 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1247 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1248 
1249 		mempool_destroy(p->pool);
1250 		p->pool = NULL;
1251 		kmem_cache_destroy(p->cache);
1252 		p->cache = NULL;
1253 	}
1254 }
1255 
1256 static int __init dmaengine_init_unmap_pool(void)
1257 {
1258 	int i;
1259 
1260 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1261 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1262 		size_t size;
1263 
1264 		size = sizeof(struct dmaengine_unmap_data) +
1265 		       sizeof(dma_addr_t) * p->size;
1266 
1267 		p->cache = kmem_cache_create(p->name, size, 0,
1268 					     SLAB_HWCACHE_ALIGN, NULL);
1269 		if (!p->cache)
1270 			break;
1271 		p->pool = mempool_create_slab_pool(1, p->cache);
1272 		if (!p->pool)
1273 			break;
1274 	}
1275 
1276 	if (i == ARRAY_SIZE(unmap_pool))
1277 		return 0;
1278 
1279 	dmaengine_destroy_unmap_pool();
1280 	return -ENOMEM;
1281 }
1282 
1283 struct dmaengine_unmap_data *
1284 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1285 {
1286 	struct dmaengine_unmap_data *unmap;
1287 
1288 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1289 	if (!unmap)
1290 		return NULL;
1291 
1292 	memset(unmap, 0, sizeof(*unmap));
1293 	kref_init(&unmap->kref);
1294 	unmap->dev = dev;
1295 	unmap->map_cnt = nr;
1296 
1297 	return unmap;
1298 }
1299 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1300 
1301 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1302 	struct dma_chan *chan)
1303 {
1304 	tx->chan = chan;
1305 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1306 	spin_lock_init(&tx->lock);
1307 	#endif
1308 }
1309 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1310 
1311 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1312  * @tx: in-flight transaction to wait on
1313  */
1314 enum dma_status
1315 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1316 {
1317 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1318 
1319 	if (!tx)
1320 		return DMA_COMPLETE;
1321 
1322 	while (tx->cookie == -EBUSY) {
1323 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1324 			dev_err(tx->chan->device->dev,
1325 				"%s timeout waiting for descriptor submission\n",
1326 				__func__);
1327 			return DMA_ERROR;
1328 		}
1329 		cpu_relax();
1330 	}
1331 	return dma_sync_wait(tx->chan, tx->cookie);
1332 }
1333 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1334 
1335 /* dma_run_dependencies - helper routine for dma drivers to process
1336  *	(start) dependent operations on their target channel
1337  * @tx: transaction with dependencies
1338  */
1339 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1340 {
1341 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1342 	struct dma_async_tx_descriptor *dep_next;
1343 	struct dma_chan *chan;
1344 
1345 	if (!dep)
1346 		return;
1347 
1348 	/* we'll submit tx->next now, so clear the link */
1349 	txd_clear_next(tx);
1350 	chan = dep->chan;
1351 
1352 	/* keep submitting up until a channel switch is detected
1353 	 * in that case we will be called again as a result of
1354 	 * processing the interrupt from async_tx_channel_switch
1355 	 */
1356 	for (; dep; dep = dep_next) {
1357 		txd_lock(dep);
1358 		txd_clear_parent(dep);
1359 		dep_next = txd_next(dep);
1360 		if (dep_next && dep_next->chan == chan)
1361 			txd_clear_next(dep); /* ->next will be submitted */
1362 		else
1363 			dep_next = NULL; /* submit current dep and terminate */
1364 		txd_unlock(dep);
1365 
1366 		dep->tx_submit(dep);
1367 	}
1368 
1369 	chan->device->device_issue_pending(chan);
1370 }
1371 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1372 
1373 static int __init dma_bus_init(void)
1374 {
1375 	int err = dmaengine_init_unmap_pool();
1376 
1377 	if (err)
1378 		return err;
1379 	return class_register(&dma_devclass);
1380 }
1381 arch_initcall(dma_bus_init);
1382 
1383 
1384