1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5 6 /* 7 * This code implements the DMA subsystem. It provides a HW-neutral interface 8 * for other kernel code to use asynchronous memory copy capabilities, 9 * if present, and allows different HW DMA drivers to register as providing 10 * this capability. 11 * 12 * Due to the fact we are accelerating what is already a relatively fast 13 * operation, the code goes to great lengths to avoid additional overhead, 14 * such as locking. 15 * 16 * LOCKING: 17 * 18 * The subsystem keeps a global list of dma_device structs it is protected by a 19 * mutex, dma_list_mutex. 20 * 21 * A subsystem can get access to a channel by calling dmaengine_get() followed 22 * by dma_find_channel(), or if it has need for an exclusive channel it can call 23 * dma_request_channel(). Once a channel is allocated a reference is taken 24 * against its corresponding driver to disable removal. 25 * 26 * Each device has a channels list, which runs unlocked but is never modified 27 * once the device is registered, it's just setup by the driver. 28 * 29 * See Documentation/driver-api/dmaengine for more details 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/platform_device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/init.h> 37 #include <linux/module.h> 38 #include <linux/mm.h> 39 #include <linux/device.h> 40 #include <linux/dmaengine.h> 41 #include <linux/hardirq.h> 42 #include <linux/spinlock.h> 43 #include <linux/percpu.h> 44 #include <linux/rcupdate.h> 45 #include <linux/mutex.h> 46 #include <linux/jiffies.h> 47 #include <linux/rculist.h> 48 #include <linux/idr.h> 49 #include <linux/slab.h> 50 #include <linux/acpi.h> 51 #include <linux/acpi_dma.h> 52 #include <linux/of_dma.h> 53 #include <linux/mempool.h> 54 #include <linux/numa.h> 55 56 #include "dmaengine.h" 57 58 static DEFINE_MUTEX(dma_list_mutex); 59 static DEFINE_IDA(dma_ida); 60 static LIST_HEAD(dma_device_list); 61 static long dmaengine_ref_count; 62 63 /* --- debugfs implementation --- */ 64 #ifdef CONFIG_DEBUG_FS 65 #include <linux/debugfs.h> 66 67 static struct dentry *rootdir; 68 69 static void dmaengine_debug_register(struct dma_device *dma_dev) 70 { 71 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev), 72 rootdir); 73 if (IS_ERR(dma_dev->dbg_dev_root)) 74 dma_dev->dbg_dev_root = NULL; 75 } 76 77 static void dmaengine_debug_unregister(struct dma_device *dma_dev) 78 { 79 debugfs_remove_recursive(dma_dev->dbg_dev_root); 80 dma_dev->dbg_dev_root = NULL; 81 } 82 83 static void dmaengine_dbg_summary_show(struct seq_file *s, 84 struct dma_device *dma_dev) 85 { 86 struct dma_chan *chan; 87 88 list_for_each_entry(chan, &dma_dev->channels, device_node) { 89 if (chan->client_count) { 90 seq_printf(s, " %-13s| %s", dma_chan_name(chan), 91 chan->dbg_client_name ?: "in-use"); 92 93 if (chan->router) 94 seq_printf(s, " (via router: %s)\n", 95 dev_name(chan->router->dev)); 96 else 97 seq_puts(s, "\n"); 98 } 99 } 100 } 101 102 static int dmaengine_summary_show(struct seq_file *s, void *data) 103 { 104 struct dma_device *dma_dev = NULL; 105 106 mutex_lock(&dma_list_mutex); 107 list_for_each_entry(dma_dev, &dma_device_list, global_node) { 108 seq_printf(s, "dma%d (%s): number of channels: %u\n", 109 dma_dev->dev_id, dev_name(dma_dev->dev), 110 dma_dev->chancnt); 111 112 if (dma_dev->dbg_summary_show) 113 dma_dev->dbg_summary_show(s, dma_dev); 114 else 115 dmaengine_dbg_summary_show(s, dma_dev); 116 117 if (!list_is_last(&dma_dev->global_node, &dma_device_list)) 118 seq_puts(s, "\n"); 119 } 120 mutex_unlock(&dma_list_mutex); 121 122 return 0; 123 } 124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary); 125 126 static void __init dmaengine_debugfs_init(void) 127 { 128 rootdir = debugfs_create_dir("dmaengine", NULL); 129 130 /* /sys/kernel/debug/dmaengine/summary */ 131 debugfs_create_file("summary", 0444, rootdir, NULL, 132 &dmaengine_summary_fops); 133 } 134 #else 135 static inline void dmaengine_debugfs_init(void) { } 136 static inline int dmaengine_debug_register(struct dma_device *dma_dev) 137 { 138 return 0; 139 } 140 141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { } 142 #endif /* DEBUG_FS */ 143 144 /* --- sysfs implementation --- */ 145 146 #define DMA_SLAVE_NAME "slave" 147 148 /** 149 * dev_to_dma_chan - convert a device pointer to its sysfs container object 150 * @dev: device node 151 * 152 * Must be called under dma_list_mutex. 153 */ 154 static struct dma_chan *dev_to_dma_chan(struct device *dev) 155 { 156 struct dma_chan_dev *chan_dev; 157 158 chan_dev = container_of(dev, typeof(*chan_dev), device); 159 return chan_dev->chan; 160 } 161 162 static ssize_t memcpy_count_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct dma_chan *chan; 166 unsigned long count = 0; 167 int i; 168 int err; 169 170 mutex_lock(&dma_list_mutex); 171 chan = dev_to_dma_chan(dev); 172 if (chan) { 173 for_each_possible_cpu(i) 174 count += per_cpu_ptr(chan->local, i)->memcpy_count; 175 err = sprintf(buf, "%lu\n", count); 176 } else 177 err = -ENODEV; 178 mutex_unlock(&dma_list_mutex); 179 180 return err; 181 } 182 static DEVICE_ATTR_RO(memcpy_count); 183 184 static ssize_t bytes_transferred_show(struct device *dev, 185 struct device_attribute *attr, char *buf) 186 { 187 struct dma_chan *chan; 188 unsigned long count = 0; 189 int i; 190 int err; 191 192 mutex_lock(&dma_list_mutex); 193 chan = dev_to_dma_chan(dev); 194 if (chan) { 195 for_each_possible_cpu(i) 196 count += per_cpu_ptr(chan->local, i)->bytes_transferred; 197 err = sprintf(buf, "%lu\n", count); 198 } else 199 err = -ENODEV; 200 mutex_unlock(&dma_list_mutex); 201 202 return err; 203 } 204 static DEVICE_ATTR_RO(bytes_transferred); 205 206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr, 207 char *buf) 208 { 209 struct dma_chan *chan; 210 int err; 211 212 mutex_lock(&dma_list_mutex); 213 chan = dev_to_dma_chan(dev); 214 if (chan) 215 err = sprintf(buf, "%d\n", chan->client_count); 216 else 217 err = -ENODEV; 218 mutex_unlock(&dma_list_mutex); 219 220 return err; 221 } 222 static DEVICE_ATTR_RO(in_use); 223 224 static struct attribute *dma_dev_attrs[] = { 225 &dev_attr_memcpy_count.attr, 226 &dev_attr_bytes_transferred.attr, 227 &dev_attr_in_use.attr, 228 NULL, 229 }; 230 ATTRIBUTE_GROUPS(dma_dev); 231 232 static void chan_dev_release(struct device *dev) 233 { 234 struct dma_chan_dev *chan_dev; 235 236 chan_dev = container_of(dev, typeof(*chan_dev), device); 237 kfree(chan_dev); 238 } 239 240 static struct class dma_devclass = { 241 .name = "dma", 242 .dev_groups = dma_dev_groups, 243 .dev_release = chan_dev_release, 244 }; 245 246 /* --- client and device registration --- */ 247 248 /* enable iteration over all operation types */ 249 static dma_cap_mask_t dma_cap_mask_all; 250 251 /** 252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation 253 * @chan: associated channel for this entry 254 */ 255 struct dma_chan_tbl_ent { 256 struct dma_chan *chan; 257 }; 258 259 /* percpu lookup table for memory-to-memory offload providers */ 260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END]; 261 262 static int __init dma_channel_table_init(void) 263 { 264 enum dma_transaction_type cap; 265 int err = 0; 266 267 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 268 269 /* 'interrupt', 'private', and 'slave' are channel capabilities, 270 * but are not associated with an operation so they do not need 271 * an entry in the channel_table 272 */ 273 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 274 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits); 275 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits); 276 277 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 278 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent); 279 if (!channel_table[cap]) { 280 err = -ENOMEM; 281 break; 282 } 283 } 284 285 if (err) { 286 pr_err("dmaengine dma_channel_table_init failure: %d\n", err); 287 for_each_dma_cap_mask(cap, dma_cap_mask_all) 288 free_percpu(channel_table[cap]); 289 } 290 291 return err; 292 } 293 arch_initcall(dma_channel_table_init); 294 295 /** 296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU 297 * @chan: DMA channel to test 298 * @cpu: CPU index which the channel should be close to 299 * 300 * Returns true if the channel is in the same NUMA-node as the CPU. 301 */ 302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu) 303 { 304 int node = dev_to_node(chan->device->dev); 305 return node == NUMA_NO_NODE || 306 cpumask_test_cpu(cpu, cpumask_of_node(node)); 307 } 308 309 /** 310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU 311 * @cap: capability to match 312 * @cpu: CPU index which the channel should be close to 313 * 314 * If some channels are close to the given CPU, the one with the lowest 315 * reference count is returned. Otherwise, CPU is ignored and only the 316 * reference count is taken into account. 317 * 318 * Must be called under dma_list_mutex. 319 */ 320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu) 321 { 322 struct dma_device *device; 323 struct dma_chan *chan; 324 struct dma_chan *min = NULL; 325 struct dma_chan *localmin = NULL; 326 327 list_for_each_entry(device, &dma_device_list, global_node) { 328 if (!dma_has_cap(cap, device->cap_mask) || 329 dma_has_cap(DMA_PRIVATE, device->cap_mask)) 330 continue; 331 list_for_each_entry(chan, &device->channels, device_node) { 332 if (!chan->client_count) 333 continue; 334 if (!min || chan->table_count < min->table_count) 335 min = chan; 336 337 if (dma_chan_is_local(chan, cpu)) 338 if (!localmin || 339 chan->table_count < localmin->table_count) 340 localmin = chan; 341 } 342 } 343 344 chan = localmin ? localmin : min; 345 346 if (chan) 347 chan->table_count++; 348 349 return chan; 350 } 351 352 /** 353 * dma_channel_rebalance - redistribute the available channels 354 * 355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an 356 * operation type) in the SMP case, and operation isolation (avoid 357 * multi-tasking channels) in the non-SMP case. 358 * 359 * Must be called under dma_list_mutex. 360 */ 361 static void dma_channel_rebalance(void) 362 { 363 struct dma_chan *chan; 364 struct dma_device *device; 365 int cpu; 366 int cap; 367 368 /* undo the last distribution */ 369 for_each_dma_cap_mask(cap, dma_cap_mask_all) 370 for_each_possible_cpu(cpu) 371 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL; 372 373 list_for_each_entry(device, &dma_device_list, global_node) { 374 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 375 continue; 376 list_for_each_entry(chan, &device->channels, device_node) 377 chan->table_count = 0; 378 } 379 380 /* don't populate the channel_table if no clients are available */ 381 if (!dmaengine_ref_count) 382 return; 383 384 /* redistribute available channels */ 385 for_each_dma_cap_mask(cap, dma_cap_mask_all) 386 for_each_online_cpu(cpu) { 387 chan = min_chan(cap, cpu); 388 per_cpu_ptr(channel_table[cap], cpu)->chan = chan; 389 } 390 } 391 392 static int dma_device_satisfies_mask(struct dma_device *device, 393 const dma_cap_mask_t *want) 394 { 395 dma_cap_mask_t has; 396 397 bitmap_and(has.bits, want->bits, device->cap_mask.bits, 398 DMA_TX_TYPE_END); 399 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END); 400 } 401 402 static struct module *dma_chan_to_owner(struct dma_chan *chan) 403 { 404 return chan->device->owner; 405 } 406 407 /** 408 * balance_ref_count - catch up the channel reference count 409 * @chan: channel to balance ->client_count versus dmaengine_ref_count 410 * 411 * Must be called under dma_list_mutex. 412 */ 413 static void balance_ref_count(struct dma_chan *chan) 414 { 415 struct module *owner = dma_chan_to_owner(chan); 416 417 while (chan->client_count < dmaengine_ref_count) { 418 __module_get(owner); 419 chan->client_count++; 420 } 421 } 422 423 static void dma_device_release(struct kref *ref) 424 { 425 struct dma_device *device = container_of(ref, struct dma_device, ref); 426 427 list_del_rcu(&device->global_node); 428 dma_channel_rebalance(); 429 430 if (device->device_release) 431 device->device_release(device); 432 } 433 434 static void dma_device_put(struct dma_device *device) 435 { 436 lockdep_assert_held(&dma_list_mutex); 437 kref_put(&device->ref, dma_device_release); 438 } 439 440 /** 441 * dma_chan_get - try to grab a DMA channel's parent driver module 442 * @chan: channel to grab 443 * 444 * Must be called under dma_list_mutex. 445 */ 446 static int dma_chan_get(struct dma_chan *chan) 447 { 448 struct module *owner = dma_chan_to_owner(chan); 449 int ret; 450 451 /* The channel is already in use, update client count */ 452 if (chan->client_count) { 453 __module_get(owner); 454 goto out; 455 } 456 457 if (!try_module_get(owner)) 458 return -ENODEV; 459 460 ret = kref_get_unless_zero(&chan->device->ref); 461 if (!ret) { 462 ret = -ENODEV; 463 goto module_put_out; 464 } 465 466 /* allocate upon first client reference */ 467 if (chan->device->device_alloc_chan_resources) { 468 ret = chan->device->device_alloc_chan_resources(chan); 469 if (ret < 0) 470 goto err_out; 471 } 472 473 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask)) 474 balance_ref_count(chan); 475 476 out: 477 chan->client_count++; 478 return 0; 479 480 err_out: 481 dma_device_put(chan->device); 482 module_put_out: 483 module_put(owner); 484 return ret; 485 } 486 487 /** 488 * dma_chan_put - drop a reference to a DMA channel's parent driver module 489 * @chan: channel to release 490 * 491 * Must be called under dma_list_mutex. 492 */ 493 static void dma_chan_put(struct dma_chan *chan) 494 { 495 /* This channel is not in use, bail out */ 496 if (!chan->client_count) 497 return; 498 499 chan->client_count--; 500 501 /* This channel is not in use anymore, free it */ 502 if (!chan->client_count && chan->device->device_free_chan_resources) { 503 /* Make sure all operations have completed */ 504 dmaengine_synchronize(chan); 505 chan->device->device_free_chan_resources(chan); 506 } 507 508 /* If the channel is used via a DMA request router, free the mapping */ 509 if (chan->router && chan->router->route_free) { 510 chan->router->route_free(chan->router->dev, chan->route_data); 511 chan->router = NULL; 512 chan->route_data = NULL; 513 } 514 515 dma_device_put(chan->device); 516 module_put(dma_chan_to_owner(chan)); 517 } 518 519 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 520 { 521 enum dma_status status; 522 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 523 524 dma_async_issue_pending(chan); 525 do { 526 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); 527 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 528 dev_err(chan->device->dev, "%s: timeout!\n", __func__); 529 return DMA_ERROR; 530 } 531 if (status != DMA_IN_PROGRESS) 532 break; 533 cpu_relax(); 534 } while (1); 535 536 return status; 537 } 538 EXPORT_SYMBOL(dma_sync_wait); 539 540 /** 541 * dma_find_channel - find a channel to carry out the operation 542 * @tx_type: transaction type 543 */ 544 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 545 { 546 return this_cpu_read(channel_table[tx_type]->chan); 547 } 548 EXPORT_SYMBOL(dma_find_channel); 549 550 /** 551 * dma_issue_pending_all - flush all pending operations across all channels 552 */ 553 void dma_issue_pending_all(void) 554 { 555 struct dma_device *device; 556 struct dma_chan *chan; 557 558 rcu_read_lock(); 559 list_for_each_entry_rcu(device, &dma_device_list, global_node) { 560 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 561 continue; 562 list_for_each_entry(chan, &device->channels, device_node) 563 if (chan->client_count) 564 device->device_issue_pending(chan); 565 } 566 rcu_read_unlock(); 567 } 568 EXPORT_SYMBOL(dma_issue_pending_all); 569 570 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 571 { 572 struct dma_device *device; 573 574 if (!chan || !caps) 575 return -EINVAL; 576 577 device = chan->device; 578 579 /* check if the channel supports slave transactions */ 580 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) || 581 test_bit(DMA_CYCLIC, device->cap_mask.bits))) 582 return -ENXIO; 583 584 /* 585 * Check whether it reports it uses the generic slave 586 * capabilities, if not, that means it doesn't support any 587 * kind of slave capabilities reporting. 588 */ 589 if (!device->directions) 590 return -ENXIO; 591 592 caps->src_addr_widths = device->src_addr_widths; 593 caps->dst_addr_widths = device->dst_addr_widths; 594 caps->directions = device->directions; 595 caps->min_burst = device->min_burst; 596 caps->max_burst = device->max_burst; 597 caps->max_sg_burst = device->max_sg_burst; 598 caps->residue_granularity = device->residue_granularity; 599 caps->descriptor_reuse = device->descriptor_reuse; 600 caps->cmd_pause = !!device->device_pause; 601 caps->cmd_resume = !!device->device_resume; 602 caps->cmd_terminate = !!device->device_terminate_all; 603 604 /* 605 * DMA engine device might be configured with non-uniformly 606 * distributed slave capabilities per device channels. In this 607 * case the corresponding driver may provide the device_caps 608 * callback to override the generic capabilities with 609 * channel-specific ones. 610 */ 611 if (device->device_caps) 612 device->device_caps(chan, caps); 613 614 return 0; 615 } 616 EXPORT_SYMBOL_GPL(dma_get_slave_caps); 617 618 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask, 619 struct dma_device *dev, 620 dma_filter_fn fn, void *fn_param) 621 { 622 struct dma_chan *chan; 623 624 if (mask && !dma_device_satisfies_mask(dev, mask)) { 625 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__); 626 return NULL; 627 } 628 /* devices with multiple channels need special handling as we need to 629 * ensure that all channels are either private or public. 630 */ 631 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask)) 632 list_for_each_entry(chan, &dev->channels, device_node) { 633 /* some channels are already publicly allocated */ 634 if (chan->client_count) 635 return NULL; 636 } 637 638 list_for_each_entry(chan, &dev->channels, device_node) { 639 if (chan->client_count) { 640 dev_dbg(dev->dev, "%s: %s busy\n", 641 __func__, dma_chan_name(chan)); 642 continue; 643 } 644 if (fn && !fn(chan, fn_param)) { 645 dev_dbg(dev->dev, "%s: %s filter said false\n", 646 __func__, dma_chan_name(chan)); 647 continue; 648 } 649 return chan; 650 } 651 652 return NULL; 653 } 654 655 static struct dma_chan *find_candidate(struct dma_device *device, 656 const dma_cap_mask_t *mask, 657 dma_filter_fn fn, void *fn_param) 658 { 659 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param); 660 int err; 661 662 if (chan) { 663 /* Found a suitable channel, try to grab, prep, and return it. 664 * We first set DMA_PRIVATE to disable balance_ref_count as this 665 * channel will not be published in the general-purpose 666 * allocator 667 */ 668 dma_cap_set(DMA_PRIVATE, device->cap_mask); 669 device->privatecnt++; 670 err = dma_chan_get(chan); 671 672 if (err) { 673 if (err == -ENODEV) { 674 dev_dbg(device->dev, "%s: %s module removed\n", 675 __func__, dma_chan_name(chan)); 676 list_del_rcu(&device->global_node); 677 } else 678 dev_dbg(device->dev, 679 "%s: failed to get %s: (%d)\n", 680 __func__, dma_chan_name(chan), err); 681 682 if (--device->privatecnt == 0) 683 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 684 685 chan = ERR_PTR(err); 686 } 687 } 688 689 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 690 } 691 692 /** 693 * dma_get_slave_channel - try to get specific channel exclusively 694 * @chan: target channel 695 */ 696 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan) 697 { 698 int err = -EBUSY; 699 700 /* lock against __dma_request_channel */ 701 mutex_lock(&dma_list_mutex); 702 703 if (chan->client_count == 0) { 704 struct dma_device *device = chan->device; 705 706 dma_cap_set(DMA_PRIVATE, device->cap_mask); 707 device->privatecnt++; 708 err = dma_chan_get(chan); 709 if (err) { 710 dev_dbg(chan->device->dev, 711 "%s: failed to get %s: (%d)\n", 712 __func__, dma_chan_name(chan), err); 713 chan = NULL; 714 if (--device->privatecnt == 0) 715 dma_cap_clear(DMA_PRIVATE, device->cap_mask); 716 } 717 } else 718 chan = NULL; 719 720 mutex_unlock(&dma_list_mutex); 721 722 723 return chan; 724 } 725 EXPORT_SYMBOL_GPL(dma_get_slave_channel); 726 727 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device) 728 { 729 dma_cap_mask_t mask; 730 struct dma_chan *chan; 731 732 dma_cap_zero(mask); 733 dma_cap_set(DMA_SLAVE, mask); 734 735 /* lock against __dma_request_channel */ 736 mutex_lock(&dma_list_mutex); 737 738 chan = find_candidate(device, &mask, NULL, NULL); 739 740 mutex_unlock(&dma_list_mutex); 741 742 return IS_ERR(chan) ? NULL : chan; 743 } 744 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel); 745 746 /** 747 * __dma_request_channel - try to allocate an exclusive channel 748 * @mask: capabilities that the channel must satisfy 749 * @fn: optional callback to disposition available channels 750 * @fn_param: opaque parameter to pass to dma_filter_fn() 751 * @np: device node to look for DMA channels 752 * 753 * Returns pointer to appropriate DMA channel on success or NULL. 754 */ 755 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 756 dma_filter_fn fn, void *fn_param, 757 struct device_node *np) 758 { 759 struct dma_device *device, *_d; 760 struct dma_chan *chan = NULL; 761 762 /* Find a channel */ 763 mutex_lock(&dma_list_mutex); 764 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 765 /* Finds a DMA controller with matching device node */ 766 if (np && device->dev->of_node && np != device->dev->of_node) 767 continue; 768 769 chan = find_candidate(device, mask, fn, fn_param); 770 if (!IS_ERR(chan)) 771 break; 772 773 chan = NULL; 774 } 775 mutex_unlock(&dma_list_mutex); 776 777 pr_debug("%s: %s (%s)\n", 778 __func__, 779 chan ? "success" : "fail", 780 chan ? dma_chan_name(chan) : NULL); 781 782 return chan; 783 } 784 EXPORT_SYMBOL_GPL(__dma_request_channel); 785 786 static const struct dma_slave_map *dma_filter_match(struct dma_device *device, 787 const char *name, 788 struct device *dev) 789 { 790 int i; 791 792 if (!device->filter.mapcnt) 793 return NULL; 794 795 for (i = 0; i < device->filter.mapcnt; i++) { 796 const struct dma_slave_map *map = &device->filter.map[i]; 797 798 if (!strcmp(map->devname, dev_name(dev)) && 799 !strcmp(map->slave, name)) 800 return map; 801 } 802 803 return NULL; 804 } 805 806 /** 807 * dma_request_chan - try to allocate an exclusive slave channel 808 * @dev: pointer to client device structure 809 * @name: slave channel name 810 * 811 * Returns pointer to appropriate DMA channel on success or an error pointer. 812 */ 813 struct dma_chan *dma_request_chan(struct device *dev, const char *name) 814 { 815 struct dma_device *d, *_d; 816 struct dma_chan *chan = NULL; 817 818 /* If device-tree is present get slave info from here */ 819 if (dev->of_node) 820 chan = of_dma_request_slave_channel(dev->of_node, name); 821 822 /* If device was enumerated by ACPI get slave info from here */ 823 if (has_acpi_companion(dev) && !chan) 824 chan = acpi_dma_request_slave_chan_by_name(dev, name); 825 826 if (PTR_ERR(chan) == -EPROBE_DEFER) 827 return chan; 828 829 if (!IS_ERR_OR_NULL(chan)) 830 goto found; 831 832 /* Try to find the channel via the DMA filter map(s) */ 833 mutex_lock(&dma_list_mutex); 834 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) { 835 dma_cap_mask_t mask; 836 const struct dma_slave_map *map = dma_filter_match(d, name, dev); 837 838 if (!map) 839 continue; 840 841 dma_cap_zero(mask); 842 dma_cap_set(DMA_SLAVE, mask); 843 844 chan = find_candidate(d, &mask, d->filter.fn, map->param); 845 if (!IS_ERR(chan)) 846 break; 847 } 848 mutex_unlock(&dma_list_mutex); 849 850 if (IS_ERR_OR_NULL(chan)) 851 return chan ? chan : ERR_PTR(-EPROBE_DEFER); 852 853 found: 854 #ifdef CONFIG_DEBUG_FS 855 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev), 856 name); 857 #endif 858 859 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name); 860 if (!chan->name) 861 return chan; 862 chan->slave = dev; 863 864 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj, 865 DMA_SLAVE_NAME)) 866 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME); 867 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name)) 868 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name); 869 870 return chan; 871 } 872 EXPORT_SYMBOL_GPL(dma_request_chan); 873 874 /** 875 * dma_request_slave_channel - try to allocate an exclusive slave channel 876 * @dev: pointer to client device structure 877 * @name: slave channel name 878 * 879 * Returns pointer to appropriate DMA channel on success or NULL. 880 */ 881 struct dma_chan *dma_request_slave_channel(struct device *dev, 882 const char *name) 883 { 884 struct dma_chan *ch = dma_request_chan(dev, name); 885 if (IS_ERR(ch)) 886 return NULL; 887 888 return ch; 889 } 890 EXPORT_SYMBOL_GPL(dma_request_slave_channel); 891 892 /** 893 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities 894 * @mask: capabilities that the channel must satisfy 895 * 896 * Returns pointer to appropriate DMA channel on success or an error pointer. 897 */ 898 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask) 899 { 900 struct dma_chan *chan; 901 902 if (!mask) 903 return ERR_PTR(-ENODEV); 904 905 chan = __dma_request_channel(mask, NULL, NULL, NULL); 906 if (!chan) { 907 mutex_lock(&dma_list_mutex); 908 if (list_empty(&dma_device_list)) 909 chan = ERR_PTR(-EPROBE_DEFER); 910 else 911 chan = ERR_PTR(-ENODEV); 912 mutex_unlock(&dma_list_mutex); 913 } 914 915 return chan; 916 } 917 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask); 918 919 void dma_release_channel(struct dma_chan *chan) 920 { 921 mutex_lock(&dma_list_mutex); 922 WARN_ONCE(chan->client_count != 1, 923 "chan reference count %d != 1\n", chan->client_count); 924 dma_chan_put(chan); 925 /* drop PRIVATE cap enabled by __dma_request_channel() */ 926 if (--chan->device->privatecnt == 0) 927 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); 928 929 if (chan->slave) { 930 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME); 931 sysfs_remove_link(&chan->slave->kobj, chan->name); 932 kfree(chan->name); 933 chan->name = NULL; 934 chan->slave = NULL; 935 } 936 937 #ifdef CONFIG_DEBUG_FS 938 kfree(chan->dbg_client_name); 939 chan->dbg_client_name = NULL; 940 #endif 941 mutex_unlock(&dma_list_mutex); 942 } 943 EXPORT_SYMBOL_GPL(dma_release_channel); 944 945 /** 946 * dmaengine_get - register interest in dma_channels 947 */ 948 void dmaengine_get(void) 949 { 950 struct dma_device *device, *_d; 951 struct dma_chan *chan; 952 int err; 953 954 mutex_lock(&dma_list_mutex); 955 dmaengine_ref_count++; 956 957 /* try to grab channels */ 958 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 959 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 960 continue; 961 list_for_each_entry(chan, &device->channels, device_node) { 962 err = dma_chan_get(chan); 963 if (err == -ENODEV) { 964 /* module removed before we could use it */ 965 list_del_rcu(&device->global_node); 966 break; 967 } else if (err) 968 dev_dbg(chan->device->dev, 969 "%s: failed to get %s: (%d)\n", 970 __func__, dma_chan_name(chan), err); 971 } 972 } 973 974 /* if this is the first reference and there were channels 975 * waiting we need to rebalance to get those channels 976 * incorporated into the channel table 977 */ 978 if (dmaengine_ref_count == 1) 979 dma_channel_rebalance(); 980 mutex_unlock(&dma_list_mutex); 981 } 982 EXPORT_SYMBOL(dmaengine_get); 983 984 /** 985 * dmaengine_put - let DMA drivers be removed when ref_count == 0 986 */ 987 void dmaengine_put(void) 988 { 989 struct dma_device *device, *_d; 990 struct dma_chan *chan; 991 992 mutex_lock(&dma_list_mutex); 993 dmaengine_ref_count--; 994 BUG_ON(dmaengine_ref_count < 0); 995 /* drop channel references */ 996 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) { 997 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 998 continue; 999 list_for_each_entry(chan, &device->channels, device_node) 1000 dma_chan_put(chan); 1001 } 1002 mutex_unlock(&dma_list_mutex); 1003 } 1004 EXPORT_SYMBOL(dmaengine_put); 1005 1006 static bool device_has_all_tx_types(struct dma_device *device) 1007 { 1008 /* A device that satisfies this test has channels that will never cause 1009 * an async_tx channel switch event as all possible operation types can 1010 * be handled. 1011 */ 1012 #ifdef CONFIG_ASYNC_TX_DMA 1013 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 1014 return false; 1015 #endif 1016 1017 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY) 1018 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask)) 1019 return false; 1020 #endif 1021 1022 #if IS_ENABLED(CONFIG_ASYNC_XOR) 1023 if (!dma_has_cap(DMA_XOR, device->cap_mask)) 1024 return false; 1025 1026 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA 1027 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask)) 1028 return false; 1029 #endif 1030 #endif 1031 1032 #if IS_ENABLED(CONFIG_ASYNC_PQ) 1033 if (!dma_has_cap(DMA_PQ, device->cap_mask)) 1034 return false; 1035 1036 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 1037 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask)) 1038 return false; 1039 #endif 1040 #endif 1041 1042 return true; 1043 } 1044 1045 static int get_dma_id(struct dma_device *device) 1046 { 1047 int rc = ida_alloc(&dma_ida, GFP_KERNEL); 1048 1049 if (rc < 0) 1050 return rc; 1051 device->dev_id = rc; 1052 return 0; 1053 } 1054 1055 static int __dma_async_device_channel_register(struct dma_device *device, 1056 struct dma_chan *chan) 1057 { 1058 int rc = 0; 1059 1060 chan->local = alloc_percpu(typeof(*chan->local)); 1061 if (!chan->local) 1062 goto err_out; 1063 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); 1064 if (!chan->dev) { 1065 free_percpu(chan->local); 1066 chan->local = NULL; 1067 goto err_out; 1068 } 1069 1070 /* 1071 * When the chan_id is a negative value, we are dynamically adding 1072 * the channel. Otherwise we are static enumerating. 1073 */ 1074 mutex_lock(&device->chan_mutex); 1075 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL); 1076 mutex_unlock(&device->chan_mutex); 1077 if (chan->chan_id < 0) { 1078 pr_err("%s: unable to alloc ida for chan: %d\n", 1079 __func__, chan->chan_id); 1080 goto err_out; 1081 } 1082 1083 chan->dev->device.class = &dma_devclass; 1084 chan->dev->device.parent = device->dev; 1085 chan->dev->chan = chan; 1086 chan->dev->dev_id = device->dev_id; 1087 dev_set_name(&chan->dev->device, "dma%dchan%d", 1088 device->dev_id, chan->chan_id); 1089 rc = device_register(&chan->dev->device); 1090 if (rc) 1091 goto err_out_ida; 1092 chan->client_count = 0; 1093 device->chancnt++; 1094 1095 return 0; 1096 1097 err_out_ida: 1098 mutex_lock(&device->chan_mutex); 1099 ida_free(&device->chan_ida, chan->chan_id); 1100 mutex_unlock(&device->chan_mutex); 1101 err_out: 1102 free_percpu(chan->local); 1103 kfree(chan->dev); 1104 return rc; 1105 } 1106 1107 int dma_async_device_channel_register(struct dma_device *device, 1108 struct dma_chan *chan) 1109 { 1110 int rc; 1111 1112 rc = __dma_async_device_channel_register(device, chan); 1113 if (rc < 0) 1114 return rc; 1115 1116 dma_channel_rebalance(); 1117 return 0; 1118 } 1119 EXPORT_SYMBOL_GPL(dma_async_device_channel_register); 1120 1121 static void __dma_async_device_channel_unregister(struct dma_device *device, 1122 struct dma_chan *chan) 1123 { 1124 WARN_ONCE(!device->device_release && chan->client_count, 1125 "%s called while %d clients hold a reference\n", 1126 __func__, chan->client_count); 1127 mutex_lock(&dma_list_mutex); 1128 list_del(&chan->device_node); 1129 device->chancnt--; 1130 chan->dev->chan = NULL; 1131 mutex_unlock(&dma_list_mutex); 1132 mutex_lock(&device->chan_mutex); 1133 ida_free(&device->chan_ida, chan->chan_id); 1134 mutex_unlock(&device->chan_mutex); 1135 device_unregister(&chan->dev->device); 1136 free_percpu(chan->local); 1137 } 1138 1139 void dma_async_device_channel_unregister(struct dma_device *device, 1140 struct dma_chan *chan) 1141 { 1142 __dma_async_device_channel_unregister(device, chan); 1143 dma_channel_rebalance(); 1144 } 1145 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister); 1146 1147 /** 1148 * dma_async_device_register - registers DMA devices found 1149 * @device: pointer to &struct dma_device 1150 * 1151 * After calling this routine the structure should not be freed except in the 1152 * device_release() callback which will be called after 1153 * dma_async_device_unregister() is called and no further references are taken. 1154 */ 1155 int dma_async_device_register(struct dma_device *device) 1156 { 1157 int rc; 1158 struct dma_chan* chan; 1159 1160 if (!device) 1161 return -ENODEV; 1162 1163 /* validate device routines */ 1164 if (!device->dev) { 1165 pr_err("DMAdevice must have dev\n"); 1166 return -EIO; 1167 } 1168 1169 device->owner = device->dev->driver->owner; 1170 1171 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) { 1172 dev_err(device->dev, 1173 "Device claims capability %s, but op is not defined\n", 1174 "DMA_MEMCPY"); 1175 return -EIO; 1176 } 1177 1178 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { 1179 dev_err(device->dev, 1180 "Device claims capability %s, but op is not defined\n", 1181 "DMA_XOR"); 1182 return -EIO; 1183 } 1184 1185 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) { 1186 dev_err(device->dev, 1187 "Device claims capability %s, but op is not defined\n", 1188 "DMA_XOR_VAL"); 1189 return -EIO; 1190 } 1191 1192 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) { 1193 dev_err(device->dev, 1194 "Device claims capability %s, but op is not defined\n", 1195 "DMA_PQ"); 1196 return -EIO; 1197 } 1198 1199 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) { 1200 dev_err(device->dev, 1201 "Device claims capability %s, but op is not defined\n", 1202 "DMA_PQ_VAL"); 1203 return -EIO; 1204 } 1205 1206 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) { 1207 dev_err(device->dev, 1208 "Device claims capability %s, but op is not defined\n", 1209 "DMA_MEMSET"); 1210 return -EIO; 1211 } 1212 1213 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) { 1214 dev_err(device->dev, 1215 "Device claims capability %s, but op is not defined\n", 1216 "DMA_INTERRUPT"); 1217 return -EIO; 1218 } 1219 1220 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) { 1221 dev_err(device->dev, 1222 "Device claims capability %s, but op is not defined\n", 1223 "DMA_CYCLIC"); 1224 return -EIO; 1225 } 1226 1227 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) { 1228 dev_err(device->dev, 1229 "Device claims capability %s, but op is not defined\n", 1230 "DMA_INTERLEAVE"); 1231 return -EIO; 1232 } 1233 1234 1235 if (!device->device_tx_status) { 1236 dev_err(device->dev, "Device tx_status is not defined\n"); 1237 return -EIO; 1238 } 1239 1240 1241 if (!device->device_issue_pending) { 1242 dev_err(device->dev, "Device issue_pending is not defined\n"); 1243 return -EIO; 1244 } 1245 1246 if (!device->device_release) 1247 dev_dbg(device->dev, 1248 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n"); 1249 1250 kref_init(&device->ref); 1251 1252 /* note: this only matters in the 1253 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case 1254 */ 1255 if (device_has_all_tx_types(device)) 1256 dma_cap_set(DMA_ASYNC_TX, device->cap_mask); 1257 1258 rc = get_dma_id(device); 1259 if (rc != 0) 1260 return rc; 1261 1262 mutex_init(&device->chan_mutex); 1263 ida_init(&device->chan_ida); 1264 1265 /* represent channels in sysfs. Probably want devs too */ 1266 list_for_each_entry(chan, &device->channels, device_node) { 1267 rc = __dma_async_device_channel_register(device, chan); 1268 if (rc < 0) 1269 goto err_out; 1270 } 1271 1272 mutex_lock(&dma_list_mutex); 1273 /* take references on public channels */ 1274 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1275 list_for_each_entry(chan, &device->channels, device_node) { 1276 /* if clients are already waiting for channels we need 1277 * to take references on their behalf 1278 */ 1279 if (dma_chan_get(chan) == -ENODEV) { 1280 /* note we can only get here for the first 1281 * channel as the remaining channels are 1282 * guaranteed to get a reference 1283 */ 1284 rc = -ENODEV; 1285 mutex_unlock(&dma_list_mutex); 1286 goto err_out; 1287 } 1288 } 1289 list_add_tail_rcu(&device->global_node, &dma_device_list); 1290 if (dma_has_cap(DMA_PRIVATE, device->cap_mask)) 1291 device->privatecnt++; /* Always private */ 1292 dma_channel_rebalance(); 1293 mutex_unlock(&dma_list_mutex); 1294 1295 dmaengine_debug_register(device); 1296 1297 return 0; 1298 1299 err_out: 1300 /* if we never registered a channel just release the idr */ 1301 if (!device->chancnt) { 1302 ida_free(&dma_ida, device->dev_id); 1303 return rc; 1304 } 1305 1306 list_for_each_entry(chan, &device->channels, device_node) { 1307 if (chan->local == NULL) 1308 continue; 1309 mutex_lock(&dma_list_mutex); 1310 chan->dev->chan = NULL; 1311 mutex_unlock(&dma_list_mutex); 1312 device_unregister(&chan->dev->device); 1313 free_percpu(chan->local); 1314 } 1315 return rc; 1316 } 1317 EXPORT_SYMBOL(dma_async_device_register); 1318 1319 /** 1320 * dma_async_device_unregister - unregister a DMA device 1321 * @device: pointer to &struct dma_device 1322 * 1323 * This routine is called by dma driver exit routines, dmaengine holds module 1324 * references to prevent it being called while channels are in use. 1325 */ 1326 void dma_async_device_unregister(struct dma_device *device) 1327 { 1328 struct dma_chan *chan, *n; 1329 1330 dmaengine_debug_unregister(device); 1331 1332 list_for_each_entry_safe(chan, n, &device->channels, device_node) 1333 __dma_async_device_channel_unregister(device, chan); 1334 1335 mutex_lock(&dma_list_mutex); 1336 /* 1337 * setting DMA_PRIVATE ensures the device being torn down will not 1338 * be used in the channel_table 1339 */ 1340 dma_cap_set(DMA_PRIVATE, device->cap_mask); 1341 dma_channel_rebalance(); 1342 ida_free(&dma_ida, device->dev_id); 1343 dma_device_put(device); 1344 mutex_unlock(&dma_list_mutex); 1345 } 1346 EXPORT_SYMBOL(dma_async_device_unregister); 1347 1348 static void dmam_device_release(struct device *dev, void *res) 1349 { 1350 struct dma_device *device; 1351 1352 device = *(struct dma_device **)res; 1353 dma_async_device_unregister(device); 1354 } 1355 1356 /** 1357 * dmaenginem_async_device_register - registers DMA devices found 1358 * @device: pointer to &struct dma_device 1359 * 1360 * The operation is managed and will be undone on driver detach. 1361 */ 1362 int dmaenginem_async_device_register(struct dma_device *device) 1363 { 1364 void *p; 1365 int ret; 1366 1367 p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL); 1368 if (!p) 1369 return -ENOMEM; 1370 1371 ret = dma_async_device_register(device); 1372 if (!ret) { 1373 *(struct dma_device **)p = device; 1374 devres_add(device->dev, p); 1375 } else { 1376 devres_free(p); 1377 } 1378 1379 return ret; 1380 } 1381 EXPORT_SYMBOL(dmaenginem_async_device_register); 1382 1383 struct dmaengine_unmap_pool { 1384 struct kmem_cache *cache; 1385 const char *name; 1386 mempool_t *pool; 1387 size_t size; 1388 }; 1389 1390 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) } 1391 static struct dmaengine_unmap_pool unmap_pool[] = { 1392 __UNMAP_POOL(2), 1393 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1394 __UNMAP_POOL(16), 1395 __UNMAP_POOL(128), 1396 __UNMAP_POOL(256), 1397 #endif 1398 }; 1399 1400 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr) 1401 { 1402 int order = get_count_order(nr); 1403 1404 switch (order) { 1405 case 0 ... 1: 1406 return &unmap_pool[0]; 1407 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 1408 case 2 ... 4: 1409 return &unmap_pool[1]; 1410 case 5 ... 7: 1411 return &unmap_pool[2]; 1412 case 8: 1413 return &unmap_pool[3]; 1414 #endif 1415 default: 1416 BUG(); 1417 return NULL; 1418 } 1419 } 1420 1421 static void dmaengine_unmap(struct kref *kref) 1422 { 1423 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref); 1424 struct device *dev = unmap->dev; 1425 int cnt, i; 1426 1427 cnt = unmap->to_cnt; 1428 for (i = 0; i < cnt; i++) 1429 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1430 DMA_TO_DEVICE); 1431 cnt += unmap->from_cnt; 1432 for (; i < cnt; i++) 1433 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1434 DMA_FROM_DEVICE); 1435 cnt += unmap->bidi_cnt; 1436 for (; i < cnt; i++) { 1437 if (unmap->addr[i] == 0) 1438 continue; 1439 dma_unmap_page(dev, unmap->addr[i], unmap->len, 1440 DMA_BIDIRECTIONAL); 1441 } 1442 cnt = unmap->map_cnt; 1443 mempool_free(unmap, __get_unmap_pool(cnt)->pool); 1444 } 1445 1446 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 1447 { 1448 if (unmap) 1449 kref_put(&unmap->kref, dmaengine_unmap); 1450 } 1451 EXPORT_SYMBOL_GPL(dmaengine_unmap_put); 1452 1453 static void dmaengine_destroy_unmap_pool(void) 1454 { 1455 int i; 1456 1457 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1458 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1459 1460 mempool_destroy(p->pool); 1461 p->pool = NULL; 1462 kmem_cache_destroy(p->cache); 1463 p->cache = NULL; 1464 } 1465 } 1466 1467 static int __init dmaengine_init_unmap_pool(void) 1468 { 1469 int i; 1470 1471 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) { 1472 struct dmaengine_unmap_pool *p = &unmap_pool[i]; 1473 size_t size; 1474 1475 size = sizeof(struct dmaengine_unmap_data) + 1476 sizeof(dma_addr_t) * p->size; 1477 1478 p->cache = kmem_cache_create(p->name, size, 0, 1479 SLAB_HWCACHE_ALIGN, NULL); 1480 if (!p->cache) 1481 break; 1482 p->pool = mempool_create_slab_pool(1, p->cache); 1483 if (!p->pool) 1484 break; 1485 } 1486 1487 if (i == ARRAY_SIZE(unmap_pool)) 1488 return 0; 1489 1490 dmaengine_destroy_unmap_pool(); 1491 return -ENOMEM; 1492 } 1493 1494 struct dmaengine_unmap_data * 1495 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 1496 { 1497 struct dmaengine_unmap_data *unmap; 1498 1499 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags); 1500 if (!unmap) 1501 return NULL; 1502 1503 memset(unmap, 0, sizeof(*unmap)); 1504 kref_init(&unmap->kref); 1505 unmap->dev = dev; 1506 unmap->map_cnt = nr; 1507 1508 return unmap; 1509 } 1510 EXPORT_SYMBOL(dmaengine_get_unmap_data); 1511 1512 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1513 struct dma_chan *chan) 1514 { 1515 tx->chan = chan; 1516 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1517 spin_lock_init(&tx->lock); 1518 #endif 1519 } 1520 EXPORT_SYMBOL(dma_async_tx_descriptor_init); 1521 1522 static inline int desc_check_and_set_metadata_mode( 1523 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode) 1524 { 1525 /* Make sure that the metadata mode is not mixed */ 1526 if (!desc->desc_metadata_mode) { 1527 if (dmaengine_is_metadata_mode_supported(desc->chan, mode)) 1528 desc->desc_metadata_mode = mode; 1529 else 1530 return -ENOTSUPP; 1531 } else if (desc->desc_metadata_mode != mode) { 1532 return -EINVAL; 1533 } 1534 1535 return 0; 1536 } 1537 1538 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1539 void *data, size_t len) 1540 { 1541 int ret; 1542 1543 if (!desc) 1544 return -EINVAL; 1545 1546 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT); 1547 if (ret) 1548 return ret; 1549 1550 if (!desc->metadata_ops || !desc->metadata_ops->attach) 1551 return -ENOTSUPP; 1552 1553 return desc->metadata_ops->attach(desc, data, len); 1554 } 1555 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata); 1556 1557 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1558 size_t *payload_len, size_t *max_len) 1559 { 1560 int ret; 1561 1562 if (!desc) 1563 return ERR_PTR(-EINVAL); 1564 1565 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1566 if (ret) 1567 return ERR_PTR(ret); 1568 1569 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr) 1570 return ERR_PTR(-ENOTSUPP); 1571 1572 return desc->metadata_ops->get_ptr(desc, payload_len, max_len); 1573 } 1574 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr); 1575 1576 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1577 size_t payload_len) 1578 { 1579 int ret; 1580 1581 if (!desc) 1582 return -EINVAL; 1583 1584 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE); 1585 if (ret) 1586 return ret; 1587 1588 if (!desc->metadata_ops || !desc->metadata_ops->set_len) 1589 return -ENOTSUPP; 1590 1591 return desc->metadata_ops->set_len(desc, payload_len); 1592 } 1593 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len); 1594 1595 /** 1596 * dma_wait_for_async_tx - spin wait for a transaction to complete 1597 * @tx: in-flight transaction to wait on 1598 */ 1599 enum dma_status 1600 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1601 { 1602 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000); 1603 1604 if (!tx) 1605 return DMA_COMPLETE; 1606 1607 while (tx->cookie == -EBUSY) { 1608 if (time_after_eq(jiffies, dma_sync_wait_timeout)) { 1609 dev_err(tx->chan->device->dev, 1610 "%s timeout waiting for descriptor submission\n", 1611 __func__); 1612 return DMA_ERROR; 1613 } 1614 cpu_relax(); 1615 } 1616 return dma_sync_wait(tx->chan, tx->cookie); 1617 } 1618 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 1619 1620 /** 1621 * dma_run_dependencies - process dependent operations on the target channel 1622 * @tx: transaction with dependencies 1623 * 1624 * Helper routine for DMA drivers to process (start) dependent operations 1625 * on their target channel. 1626 */ 1627 void dma_run_dependencies(struct dma_async_tx_descriptor *tx) 1628 { 1629 struct dma_async_tx_descriptor *dep = txd_next(tx); 1630 struct dma_async_tx_descriptor *dep_next; 1631 struct dma_chan *chan; 1632 1633 if (!dep) 1634 return; 1635 1636 /* we'll submit tx->next now, so clear the link */ 1637 txd_clear_next(tx); 1638 chan = dep->chan; 1639 1640 /* keep submitting up until a channel switch is detected 1641 * in that case we will be called again as a result of 1642 * processing the interrupt from async_tx_channel_switch 1643 */ 1644 for (; dep; dep = dep_next) { 1645 txd_lock(dep); 1646 txd_clear_parent(dep); 1647 dep_next = txd_next(dep); 1648 if (dep_next && dep_next->chan == chan) 1649 txd_clear_next(dep); /* ->next will be submitted */ 1650 else 1651 dep_next = NULL; /* submit current dep and terminate */ 1652 txd_unlock(dep); 1653 1654 dep->tx_submit(dep); 1655 } 1656 1657 chan->device->device_issue_pending(chan); 1658 } 1659 EXPORT_SYMBOL_GPL(dma_run_dependencies); 1660 1661 static int __init dma_bus_init(void) 1662 { 1663 int err = dmaengine_init_unmap_pool(); 1664 1665 if (err) 1666 return err; 1667 1668 err = class_register(&dma_devclass); 1669 if (!err) 1670 dmaengine_debugfs_init(); 1671 1672 return err; 1673 } 1674 arch_initcall(dma_bus_init); 1675