xref: /openbmc/linux/drivers/dma/dmaengine.c (revision 95e9fd10)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps a global list of dma_device structs it is protected by a
35  * mutex, dma_list_mutex.
36  *
37  * A subsystem can get access to a channel by calling dmaengine_get() followed
38  * by dma_find_channel(), or if it has need for an exclusive channel it can call
39  * dma_request_channel().  Once a channel is allocated a reference is taken
40  * against its corresponding driver to disable removal.
41  *
42  * Each device has a channels list, which runs unlocked but is never modified
43  * once the device is registered, it's just setup by the driver.
44  *
45  * See Documentation/dmaengine.txt for more details
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/dma-mapping.h>
51 #include <linux/init.h>
52 #include <linux/module.h>
53 #include <linux/mm.h>
54 #include <linux/device.h>
55 #include <linux/dmaengine.h>
56 #include <linux/hardirq.h>
57 #include <linux/spinlock.h>
58 #include <linux/percpu.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/jiffies.h>
62 #include <linux/rculist.h>
63 #include <linux/idr.h>
64 #include <linux/slab.h>
65 
66 static DEFINE_MUTEX(dma_list_mutex);
67 static DEFINE_IDR(dma_idr);
68 static LIST_HEAD(dma_device_list);
69 static long dmaengine_ref_count;
70 
71 /* --- sysfs implementation --- */
72 
73 /**
74  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
75  * @dev - device node
76  *
77  * Must be called under dma_list_mutex
78  */
79 static struct dma_chan *dev_to_dma_chan(struct device *dev)
80 {
81 	struct dma_chan_dev *chan_dev;
82 
83 	chan_dev = container_of(dev, typeof(*chan_dev), device);
84 	return chan_dev->chan;
85 }
86 
87 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
88 {
89 	struct dma_chan *chan;
90 	unsigned long count = 0;
91 	int i;
92 	int err;
93 
94 	mutex_lock(&dma_list_mutex);
95 	chan = dev_to_dma_chan(dev);
96 	if (chan) {
97 		for_each_possible_cpu(i)
98 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
99 		err = sprintf(buf, "%lu\n", count);
100 	} else
101 		err = -ENODEV;
102 	mutex_unlock(&dma_list_mutex);
103 
104 	return err;
105 }
106 
107 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
108 				      char *buf)
109 {
110 	struct dma_chan *chan;
111 	unsigned long count = 0;
112 	int i;
113 	int err;
114 
115 	mutex_lock(&dma_list_mutex);
116 	chan = dev_to_dma_chan(dev);
117 	if (chan) {
118 		for_each_possible_cpu(i)
119 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
120 		err = sprintf(buf, "%lu\n", count);
121 	} else
122 		err = -ENODEV;
123 	mutex_unlock(&dma_list_mutex);
124 
125 	return err;
126 }
127 
128 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
129 {
130 	struct dma_chan *chan;
131 	int err;
132 
133 	mutex_lock(&dma_list_mutex);
134 	chan = dev_to_dma_chan(dev);
135 	if (chan)
136 		err = sprintf(buf, "%d\n", chan->client_count);
137 	else
138 		err = -ENODEV;
139 	mutex_unlock(&dma_list_mutex);
140 
141 	return err;
142 }
143 
144 static struct device_attribute dma_attrs[] = {
145 	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
146 	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
147 	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
148 	__ATTR_NULL
149 };
150 
151 static void chan_dev_release(struct device *dev)
152 {
153 	struct dma_chan_dev *chan_dev;
154 
155 	chan_dev = container_of(dev, typeof(*chan_dev), device);
156 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
157 		mutex_lock(&dma_list_mutex);
158 		idr_remove(&dma_idr, chan_dev->dev_id);
159 		mutex_unlock(&dma_list_mutex);
160 		kfree(chan_dev->idr_ref);
161 	}
162 	kfree(chan_dev);
163 }
164 
165 static struct class dma_devclass = {
166 	.name		= "dma",
167 	.dev_attrs	= dma_attrs,
168 	.dev_release	= chan_dev_release,
169 };
170 
171 /* --- client and device registration --- */
172 
173 #define dma_device_satisfies_mask(device, mask) \
174 	__dma_device_satisfies_mask((device), &(mask))
175 static int
176 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
177 {
178 	dma_cap_mask_t has;
179 
180 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
181 		DMA_TX_TYPE_END);
182 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
183 }
184 
185 static struct module *dma_chan_to_owner(struct dma_chan *chan)
186 {
187 	return chan->device->dev->driver->owner;
188 }
189 
190 /**
191  * balance_ref_count - catch up the channel reference count
192  * @chan - channel to balance ->client_count versus dmaengine_ref_count
193  *
194  * balance_ref_count must be called under dma_list_mutex
195  */
196 static void balance_ref_count(struct dma_chan *chan)
197 {
198 	struct module *owner = dma_chan_to_owner(chan);
199 
200 	while (chan->client_count < dmaengine_ref_count) {
201 		__module_get(owner);
202 		chan->client_count++;
203 	}
204 }
205 
206 /**
207  * dma_chan_get - try to grab a dma channel's parent driver module
208  * @chan - channel to grab
209  *
210  * Must be called under dma_list_mutex
211  */
212 static int dma_chan_get(struct dma_chan *chan)
213 {
214 	int err = -ENODEV;
215 	struct module *owner = dma_chan_to_owner(chan);
216 
217 	if (chan->client_count) {
218 		__module_get(owner);
219 		err = 0;
220 	} else if (try_module_get(owner))
221 		err = 0;
222 
223 	if (err == 0)
224 		chan->client_count++;
225 
226 	/* allocate upon first client reference */
227 	if (chan->client_count == 1 && err == 0) {
228 		int desc_cnt = chan->device->device_alloc_chan_resources(chan);
229 
230 		if (desc_cnt < 0) {
231 			err = desc_cnt;
232 			chan->client_count = 0;
233 			module_put(owner);
234 		} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
235 			balance_ref_count(chan);
236 	}
237 
238 	return err;
239 }
240 
241 /**
242  * dma_chan_put - drop a reference to a dma channel's parent driver module
243  * @chan - channel to release
244  *
245  * Must be called under dma_list_mutex
246  */
247 static void dma_chan_put(struct dma_chan *chan)
248 {
249 	if (!chan->client_count)
250 		return; /* this channel failed alloc_chan_resources */
251 	chan->client_count--;
252 	module_put(dma_chan_to_owner(chan));
253 	if (chan->client_count == 0)
254 		chan->device->device_free_chan_resources(chan);
255 }
256 
257 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
258 {
259 	enum dma_status status;
260 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
261 
262 	dma_async_issue_pending(chan);
263 	do {
264 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
265 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
266 			pr_err("%s: timeout!\n", __func__);
267 			return DMA_ERROR;
268 		}
269 	} while (status == DMA_IN_PROGRESS);
270 
271 	return status;
272 }
273 EXPORT_SYMBOL(dma_sync_wait);
274 
275 /**
276  * dma_cap_mask_all - enable iteration over all operation types
277  */
278 static dma_cap_mask_t dma_cap_mask_all;
279 
280 /**
281  * dma_chan_tbl_ent - tracks channel allocations per core/operation
282  * @chan - associated channel for this entry
283  */
284 struct dma_chan_tbl_ent {
285 	struct dma_chan *chan;
286 };
287 
288 /**
289  * channel_table - percpu lookup table for memory-to-memory offload providers
290  */
291 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
292 
293 static int __init dma_channel_table_init(void)
294 {
295 	enum dma_transaction_type cap;
296 	int err = 0;
297 
298 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
299 
300 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
301 	 * but are not associated with an operation so they do not need
302 	 * an entry in the channel_table
303 	 */
304 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
305 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
306 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
307 
308 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
309 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
310 		if (!channel_table[cap]) {
311 			err = -ENOMEM;
312 			break;
313 		}
314 	}
315 
316 	if (err) {
317 		pr_err("initialization failure\n");
318 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
319 			if (channel_table[cap])
320 				free_percpu(channel_table[cap]);
321 	}
322 
323 	return err;
324 }
325 arch_initcall(dma_channel_table_init);
326 
327 /**
328  * dma_find_channel - find a channel to carry out the operation
329  * @tx_type: transaction type
330  */
331 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
332 {
333 	return this_cpu_read(channel_table[tx_type]->chan);
334 }
335 EXPORT_SYMBOL(dma_find_channel);
336 
337 /*
338  * net_dma_find_channel - find a channel for net_dma
339  * net_dma has alignment requirements
340  */
341 struct dma_chan *net_dma_find_channel(void)
342 {
343 	struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
344 	if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
345 		return NULL;
346 
347 	return chan;
348 }
349 EXPORT_SYMBOL(net_dma_find_channel);
350 
351 /**
352  * dma_issue_pending_all - flush all pending operations across all channels
353  */
354 void dma_issue_pending_all(void)
355 {
356 	struct dma_device *device;
357 	struct dma_chan *chan;
358 
359 	rcu_read_lock();
360 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
361 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
362 			continue;
363 		list_for_each_entry(chan, &device->channels, device_node)
364 			if (chan->client_count)
365 				device->device_issue_pending(chan);
366 	}
367 	rcu_read_unlock();
368 }
369 EXPORT_SYMBOL(dma_issue_pending_all);
370 
371 /**
372  * nth_chan - returns the nth channel of the given capability
373  * @cap: capability to match
374  * @n: nth channel desired
375  *
376  * Defaults to returning the channel with the desired capability and the
377  * lowest reference count when 'n' cannot be satisfied.  Must be called
378  * under dma_list_mutex.
379  */
380 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
381 {
382 	struct dma_device *device;
383 	struct dma_chan *chan;
384 	struct dma_chan *ret = NULL;
385 	struct dma_chan *min = NULL;
386 
387 	list_for_each_entry(device, &dma_device_list, global_node) {
388 		if (!dma_has_cap(cap, device->cap_mask) ||
389 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
390 			continue;
391 		list_for_each_entry(chan, &device->channels, device_node) {
392 			if (!chan->client_count)
393 				continue;
394 			if (!min)
395 				min = chan;
396 			else if (chan->table_count < min->table_count)
397 				min = chan;
398 
399 			if (n-- == 0) {
400 				ret = chan;
401 				break; /* done */
402 			}
403 		}
404 		if (ret)
405 			break; /* done */
406 	}
407 
408 	if (!ret)
409 		ret = min;
410 
411 	if (ret)
412 		ret->table_count++;
413 
414 	return ret;
415 }
416 
417 /**
418  * dma_channel_rebalance - redistribute the available channels
419  *
420  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
421  * operation type) in the SMP case,  and operation isolation (avoid
422  * multi-tasking channels) in the non-SMP case.  Must be called under
423  * dma_list_mutex.
424  */
425 static void dma_channel_rebalance(void)
426 {
427 	struct dma_chan *chan;
428 	struct dma_device *device;
429 	int cpu;
430 	int cap;
431 	int n;
432 
433 	/* undo the last distribution */
434 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
435 		for_each_possible_cpu(cpu)
436 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
437 
438 	list_for_each_entry(device, &dma_device_list, global_node) {
439 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
440 			continue;
441 		list_for_each_entry(chan, &device->channels, device_node)
442 			chan->table_count = 0;
443 	}
444 
445 	/* don't populate the channel_table if no clients are available */
446 	if (!dmaengine_ref_count)
447 		return;
448 
449 	/* redistribute available channels */
450 	n = 0;
451 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
452 		for_each_online_cpu(cpu) {
453 			if (num_possible_cpus() > 1)
454 				chan = nth_chan(cap, n++);
455 			else
456 				chan = nth_chan(cap, -1);
457 
458 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
459 		}
460 }
461 
462 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
463 					  dma_filter_fn fn, void *fn_param)
464 {
465 	struct dma_chan *chan;
466 
467 	if (!__dma_device_satisfies_mask(dev, mask)) {
468 		pr_debug("%s: wrong capabilities\n", __func__);
469 		return NULL;
470 	}
471 	/* devices with multiple channels need special handling as we need to
472 	 * ensure that all channels are either private or public.
473 	 */
474 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
475 		list_for_each_entry(chan, &dev->channels, device_node) {
476 			/* some channels are already publicly allocated */
477 			if (chan->client_count)
478 				return NULL;
479 		}
480 
481 	list_for_each_entry(chan, &dev->channels, device_node) {
482 		if (chan->client_count) {
483 			pr_debug("%s: %s busy\n",
484 				 __func__, dma_chan_name(chan));
485 			continue;
486 		}
487 		if (fn && !fn(chan, fn_param)) {
488 			pr_debug("%s: %s filter said false\n",
489 				 __func__, dma_chan_name(chan));
490 			continue;
491 		}
492 		return chan;
493 	}
494 
495 	return NULL;
496 }
497 
498 /**
499  * dma_request_channel - try to allocate an exclusive channel
500  * @mask: capabilities that the channel must satisfy
501  * @fn: optional callback to disposition available channels
502  * @fn_param: opaque parameter to pass to dma_filter_fn
503  */
504 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
505 {
506 	struct dma_device *device, *_d;
507 	struct dma_chan *chan = NULL;
508 	int err;
509 
510 	/* Find a channel */
511 	mutex_lock(&dma_list_mutex);
512 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
513 		chan = private_candidate(mask, device, fn, fn_param);
514 		if (chan) {
515 			/* Found a suitable channel, try to grab, prep, and
516 			 * return it.  We first set DMA_PRIVATE to disable
517 			 * balance_ref_count as this channel will not be
518 			 * published in the general-purpose allocator
519 			 */
520 			dma_cap_set(DMA_PRIVATE, device->cap_mask);
521 			device->privatecnt++;
522 			err = dma_chan_get(chan);
523 
524 			if (err == -ENODEV) {
525 				pr_debug("%s: %s module removed\n",
526 					 __func__, dma_chan_name(chan));
527 				list_del_rcu(&device->global_node);
528 			} else if (err)
529 				pr_debug("%s: failed to get %s: (%d)\n",
530 					 __func__, dma_chan_name(chan), err);
531 			else
532 				break;
533 			if (--device->privatecnt == 0)
534 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
535 			chan = NULL;
536 		}
537 	}
538 	mutex_unlock(&dma_list_mutex);
539 
540 	pr_debug("%s: %s (%s)\n",
541 		 __func__,
542 		 chan ? "success" : "fail",
543 		 chan ? dma_chan_name(chan) : NULL);
544 
545 	return chan;
546 }
547 EXPORT_SYMBOL_GPL(__dma_request_channel);
548 
549 void dma_release_channel(struct dma_chan *chan)
550 {
551 	mutex_lock(&dma_list_mutex);
552 	WARN_ONCE(chan->client_count != 1,
553 		  "chan reference count %d != 1\n", chan->client_count);
554 	dma_chan_put(chan);
555 	/* drop PRIVATE cap enabled by __dma_request_channel() */
556 	if (--chan->device->privatecnt == 0)
557 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
558 	mutex_unlock(&dma_list_mutex);
559 }
560 EXPORT_SYMBOL_GPL(dma_release_channel);
561 
562 /**
563  * dmaengine_get - register interest in dma_channels
564  */
565 void dmaengine_get(void)
566 {
567 	struct dma_device *device, *_d;
568 	struct dma_chan *chan;
569 	int err;
570 
571 	mutex_lock(&dma_list_mutex);
572 	dmaengine_ref_count++;
573 
574 	/* try to grab channels */
575 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
576 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
577 			continue;
578 		list_for_each_entry(chan, &device->channels, device_node) {
579 			err = dma_chan_get(chan);
580 			if (err == -ENODEV) {
581 				/* module removed before we could use it */
582 				list_del_rcu(&device->global_node);
583 				break;
584 			} else if (err)
585 				pr_err("%s: failed to get %s: (%d)\n",
586 				       __func__, dma_chan_name(chan), err);
587 		}
588 	}
589 
590 	/* if this is the first reference and there were channels
591 	 * waiting we need to rebalance to get those channels
592 	 * incorporated into the channel table
593 	 */
594 	if (dmaengine_ref_count == 1)
595 		dma_channel_rebalance();
596 	mutex_unlock(&dma_list_mutex);
597 }
598 EXPORT_SYMBOL(dmaengine_get);
599 
600 /**
601  * dmaengine_put - let dma drivers be removed when ref_count == 0
602  */
603 void dmaengine_put(void)
604 {
605 	struct dma_device *device;
606 	struct dma_chan *chan;
607 
608 	mutex_lock(&dma_list_mutex);
609 	dmaengine_ref_count--;
610 	BUG_ON(dmaengine_ref_count < 0);
611 	/* drop channel references */
612 	list_for_each_entry(device, &dma_device_list, global_node) {
613 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
614 			continue;
615 		list_for_each_entry(chan, &device->channels, device_node)
616 			dma_chan_put(chan);
617 	}
618 	mutex_unlock(&dma_list_mutex);
619 }
620 EXPORT_SYMBOL(dmaengine_put);
621 
622 static bool device_has_all_tx_types(struct dma_device *device)
623 {
624 	/* A device that satisfies this test has channels that will never cause
625 	 * an async_tx channel switch event as all possible operation types can
626 	 * be handled.
627 	 */
628 	#ifdef CONFIG_ASYNC_TX_DMA
629 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
630 		return false;
631 	#endif
632 
633 	#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
634 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
635 		return false;
636 	#endif
637 
638 	#if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
639 	if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
640 		return false;
641 	#endif
642 
643 	#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
644 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
645 		return false;
646 
647 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
648 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
649 		return false;
650 	#endif
651 	#endif
652 
653 	#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
654 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
655 		return false;
656 
657 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
658 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
659 		return false;
660 	#endif
661 	#endif
662 
663 	return true;
664 }
665 
666 static int get_dma_id(struct dma_device *device)
667 {
668 	int rc;
669 
670  idr_retry:
671 	if (!idr_pre_get(&dma_idr, GFP_KERNEL))
672 		return -ENOMEM;
673 	mutex_lock(&dma_list_mutex);
674 	rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
675 	mutex_unlock(&dma_list_mutex);
676 	if (rc == -EAGAIN)
677 		goto idr_retry;
678 	else if (rc != 0)
679 		return rc;
680 
681 	return 0;
682 }
683 
684 /**
685  * dma_async_device_register - registers DMA devices found
686  * @device: &dma_device
687  */
688 int dma_async_device_register(struct dma_device *device)
689 {
690 	int chancnt = 0, rc;
691 	struct dma_chan* chan;
692 	atomic_t *idr_ref;
693 
694 	if (!device)
695 		return -ENODEV;
696 
697 	/* validate device routines */
698 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
699 		!device->device_prep_dma_memcpy);
700 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
701 		!device->device_prep_dma_xor);
702 	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
703 		!device->device_prep_dma_xor_val);
704 	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
705 		!device->device_prep_dma_pq);
706 	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
707 		!device->device_prep_dma_pq_val);
708 	BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
709 		!device->device_prep_dma_memset);
710 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
711 		!device->device_prep_dma_interrupt);
712 	BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
713 		!device->device_prep_dma_sg);
714 	BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
715 		!device->device_prep_dma_cyclic);
716 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
717 		!device->device_control);
718 	BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
719 		!device->device_prep_interleaved_dma);
720 
721 	BUG_ON(!device->device_alloc_chan_resources);
722 	BUG_ON(!device->device_free_chan_resources);
723 	BUG_ON(!device->device_tx_status);
724 	BUG_ON(!device->device_issue_pending);
725 	BUG_ON(!device->dev);
726 
727 	/* note: this only matters in the
728 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
729 	 */
730 	if (device_has_all_tx_types(device))
731 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
732 
733 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
734 	if (!idr_ref)
735 		return -ENOMEM;
736 	rc = get_dma_id(device);
737 	if (rc != 0) {
738 		kfree(idr_ref);
739 		return rc;
740 	}
741 
742 	atomic_set(idr_ref, 0);
743 
744 	/* represent channels in sysfs. Probably want devs too */
745 	list_for_each_entry(chan, &device->channels, device_node) {
746 		rc = -ENOMEM;
747 		chan->local = alloc_percpu(typeof(*chan->local));
748 		if (chan->local == NULL)
749 			goto err_out;
750 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
751 		if (chan->dev == NULL) {
752 			free_percpu(chan->local);
753 			chan->local = NULL;
754 			goto err_out;
755 		}
756 
757 		chan->chan_id = chancnt++;
758 		chan->dev->device.class = &dma_devclass;
759 		chan->dev->device.parent = device->dev;
760 		chan->dev->chan = chan;
761 		chan->dev->idr_ref = idr_ref;
762 		chan->dev->dev_id = device->dev_id;
763 		atomic_inc(idr_ref);
764 		dev_set_name(&chan->dev->device, "dma%dchan%d",
765 			     device->dev_id, chan->chan_id);
766 
767 		rc = device_register(&chan->dev->device);
768 		if (rc) {
769 			free_percpu(chan->local);
770 			chan->local = NULL;
771 			kfree(chan->dev);
772 			atomic_dec(idr_ref);
773 			goto err_out;
774 		}
775 		chan->client_count = 0;
776 	}
777 	device->chancnt = chancnt;
778 
779 	mutex_lock(&dma_list_mutex);
780 	/* take references on public channels */
781 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
782 		list_for_each_entry(chan, &device->channels, device_node) {
783 			/* if clients are already waiting for channels we need
784 			 * to take references on their behalf
785 			 */
786 			if (dma_chan_get(chan) == -ENODEV) {
787 				/* note we can only get here for the first
788 				 * channel as the remaining channels are
789 				 * guaranteed to get a reference
790 				 */
791 				rc = -ENODEV;
792 				mutex_unlock(&dma_list_mutex);
793 				goto err_out;
794 			}
795 		}
796 	list_add_tail_rcu(&device->global_node, &dma_device_list);
797 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
798 		device->privatecnt++;	/* Always private */
799 	dma_channel_rebalance();
800 	mutex_unlock(&dma_list_mutex);
801 
802 	return 0;
803 
804 err_out:
805 	/* if we never registered a channel just release the idr */
806 	if (atomic_read(idr_ref) == 0) {
807 		mutex_lock(&dma_list_mutex);
808 		idr_remove(&dma_idr, device->dev_id);
809 		mutex_unlock(&dma_list_mutex);
810 		kfree(idr_ref);
811 		return rc;
812 	}
813 
814 	list_for_each_entry(chan, &device->channels, device_node) {
815 		if (chan->local == NULL)
816 			continue;
817 		mutex_lock(&dma_list_mutex);
818 		chan->dev->chan = NULL;
819 		mutex_unlock(&dma_list_mutex);
820 		device_unregister(&chan->dev->device);
821 		free_percpu(chan->local);
822 	}
823 	return rc;
824 }
825 EXPORT_SYMBOL(dma_async_device_register);
826 
827 /**
828  * dma_async_device_unregister - unregister a DMA device
829  * @device: &dma_device
830  *
831  * This routine is called by dma driver exit routines, dmaengine holds module
832  * references to prevent it being called while channels are in use.
833  */
834 void dma_async_device_unregister(struct dma_device *device)
835 {
836 	struct dma_chan *chan;
837 
838 	mutex_lock(&dma_list_mutex);
839 	list_del_rcu(&device->global_node);
840 	dma_channel_rebalance();
841 	mutex_unlock(&dma_list_mutex);
842 
843 	list_for_each_entry(chan, &device->channels, device_node) {
844 		WARN_ONCE(chan->client_count,
845 			  "%s called while %d clients hold a reference\n",
846 			  __func__, chan->client_count);
847 		mutex_lock(&dma_list_mutex);
848 		chan->dev->chan = NULL;
849 		mutex_unlock(&dma_list_mutex);
850 		device_unregister(&chan->dev->device);
851 		free_percpu(chan->local);
852 	}
853 }
854 EXPORT_SYMBOL(dma_async_device_unregister);
855 
856 /**
857  * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
858  * @chan: DMA channel to offload copy to
859  * @dest: destination address (virtual)
860  * @src: source address (virtual)
861  * @len: length
862  *
863  * Both @dest and @src must be mappable to a bus address according to the
864  * DMA mapping API rules for streaming mappings.
865  * Both @dest and @src must stay memory resident (kernel memory or locked
866  * user space pages).
867  */
868 dma_cookie_t
869 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
870 			void *src, size_t len)
871 {
872 	struct dma_device *dev = chan->device;
873 	struct dma_async_tx_descriptor *tx;
874 	dma_addr_t dma_dest, dma_src;
875 	dma_cookie_t cookie;
876 	unsigned long flags;
877 
878 	dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
879 	dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
880 	flags = DMA_CTRL_ACK |
881 		DMA_COMPL_SRC_UNMAP_SINGLE |
882 		DMA_COMPL_DEST_UNMAP_SINGLE;
883 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
884 
885 	if (!tx) {
886 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
887 		dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
888 		return -ENOMEM;
889 	}
890 
891 	tx->callback = NULL;
892 	cookie = tx->tx_submit(tx);
893 
894 	preempt_disable();
895 	__this_cpu_add(chan->local->bytes_transferred, len);
896 	__this_cpu_inc(chan->local->memcpy_count);
897 	preempt_enable();
898 
899 	return cookie;
900 }
901 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
902 
903 /**
904  * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
905  * @chan: DMA channel to offload copy to
906  * @page: destination page
907  * @offset: offset in page to copy to
908  * @kdata: source address (virtual)
909  * @len: length
910  *
911  * Both @page/@offset and @kdata must be mappable to a bus address according
912  * to the DMA mapping API rules for streaming mappings.
913  * Both @page/@offset and @kdata must stay memory resident (kernel memory or
914  * locked user space pages)
915  */
916 dma_cookie_t
917 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
918 			unsigned int offset, void *kdata, size_t len)
919 {
920 	struct dma_device *dev = chan->device;
921 	struct dma_async_tx_descriptor *tx;
922 	dma_addr_t dma_dest, dma_src;
923 	dma_cookie_t cookie;
924 	unsigned long flags;
925 
926 	dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
927 	dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
928 	flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
929 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
930 
931 	if (!tx) {
932 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
933 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
934 		return -ENOMEM;
935 	}
936 
937 	tx->callback = NULL;
938 	cookie = tx->tx_submit(tx);
939 
940 	preempt_disable();
941 	__this_cpu_add(chan->local->bytes_transferred, len);
942 	__this_cpu_inc(chan->local->memcpy_count);
943 	preempt_enable();
944 
945 	return cookie;
946 }
947 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
948 
949 /**
950  * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
951  * @chan: DMA channel to offload copy to
952  * @dest_pg: destination page
953  * @dest_off: offset in page to copy to
954  * @src_pg: source page
955  * @src_off: offset in page to copy from
956  * @len: length
957  *
958  * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
959  * address according to the DMA mapping API rules for streaming mappings.
960  * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
961  * (kernel memory or locked user space pages).
962  */
963 dma_cookie_t
964 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
965 	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
966 	size_t len)
967 {
968 	struct dma_device *dev = chan->device;
969 	struct dma_async_tx_descriptor *tx;
970 	dma_addr_t dma_dest, dma_src;
971 	dma_cookie_t cookie;
972 	unsigned long flags;
973 
974 	dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
975 	dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
976 				DMA_FROM_DEVICE);
977 	flags = DMA_CTRL_ACK;
978 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
979 
980 	if (!tx) {
981 		dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
982 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
983 		return -ENOMEM;
984 	}
985 
986 	tx->callback = NULL;
987 	cookie = tx->tx_submit(tx);
988 
989 	preempt_disable();
990 	__this_cpu_add(chan->local->bytes_transferred, len);
991 	__this_cpu_inc(chan->local->memcpy_count);
992 	preempt_enable();
993 
994 	return cookie;
995 }
996 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
997 
998 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
999 	struct dma_chan *chan)
1000 {
1001 	tx->chan = chan;
1002 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1003 	spin_lock_init(&tx->lock);
1004 	#endif
1005 }
1006 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1007 
1008 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1009  * @tx: in-flight transaction to wait on
1010  */
1011 enum dma_status
1012 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1013 {
1014 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1015 
1016 	if (!tx)
1017 		return DMA_SUCCESS;
1018 
1019 	while (tx->cookie == -EBUSY) {
1020 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1021 			pr_err("%s timeout waiting for descriptor submission\n",
1022 			       __func__);
1023 			return DMA_ERROR;
1024 		}
1025 		cpu_relax();
1026 	}
1027 	return dma_sync_wait(tx->chan, tx->cookie);
1028 }
1029 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1030 
1031 /* dma_run_dependencies - helper routine for dma drivers to process
1032  *	(start) dependent operations on their target channel
1033  * @tx: transaction with dependencies
1034  */
1035 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1036 {
1037 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1038 	struct dma_async_tx_descriptor *dep_next;
1039 	struct dma_chan *chan;
1040 
1041 	if (!dep)
1042 		return;
1043 
1044 	/* we'll submit tx->next now, so clear the link */
1045 	txd_clear_next(tx);
1046 	chan = dep->chan;
1047 
1048 	/* keep submitting up until a channel switch is detected
1049 	 * in that case we will be called again as a result of
1050 	 * processing the interrupt from async_tx_channel_switch
1051 	 */
1052 	for (; dep; dep = dep_next) {
1053 		txd_lock(dep);
1054 		txd_clear_parent(dep);
1055 		dep_next = txd_next(dep);
1056 		if (dep_next && dep_next->chan == chan)
1057 			txd_clear_next(dep); /* ->next will be submitted */
1058 		else
1059 			dep_next = NULL; /* submit current dep and terminate */
1060 		txd_unlock(dep);
1061 
1062 		dep->tx_submit(dep);
1063 	}
1064 
1065 	chan->device->device_issue_pending(chan);
1066 }
1067 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1068 
1069 static int __init dma_bus_init(void)
1070 {
1071 	return class_register(&dma_devclass);
1072 }
1073 arch_initcall(dma_bus_init);
1074 
1075 
1076