xref: /openbmc/linux/drivers/dma/dmaengine.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps two global lists, dma_device_list and dma_client_list.
35  * Both of these are protected by a mutex, dma_list_mutex.
36  *
37  * Each device has a channels list, which runs unlocked but is never modified
38  * once the device is registered, it's just setup by the driver.
39  *
40  * Each client is responsible for keeping track of the channels it uses.  See
41  * the definition of dma_event_callback in dmaengine.h.
42  *
43  * Each device has a kref, which is initialized to 1 when the device is
44  * registered. A kref_get is done for each device registered.  When the
45  * device is released, the corresponding kref_put is done in the release
46  * method. Every time one of the device's channels is allocated to a client,
47  * a kref_get occurs.  When the channel is freed, the corresponding kref_put
48  * happens. The device's release function does a completion, so
49  * unregister_device does a remove event, device_unregister, a kref_put
50  * for the first reference, then waits on the completion for all other
51  * references to finish.
52  *
53  * Each channel has an open-coded implementation of Rusty Russell's "bigref,"
54  * with a kref and a per_cpu local_t.  A dma_chan_get is called when a client
55  * signals that it wants to use a channel, and dma_chan_put is called when
56  * a channel is removed or a client using it is unregistered.  A client can
57  * take extra references per outstanding transaction, as is the case with
58  * the NET DMA client.  The release function does a kref_put on the device.
59  *	-ChrisL, DanW
60  */
61 
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/mm.h>
65 #include <linux/device.h>
66 #include <linux/dmaengine.h>
67 #include <linux/hardirq.h>
68 #include <linux/spinlock.h>
69 #include <linux/percpu.h>
70 #include <linux/rcupdate.h>
71 #include <linux/mutex.h>
72 #include <linux/jiffies.h>
73 
74 static DEFINE_MUTEX(dma_list_mutex);
75 static LIST_HEAD(dma_device_list);
76 static LIST_HEAD(dma_client_list);
77 
78 /* --- sysfs implementation --- */
79 
80 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
81 {
82 	struct dma_chan *chan = to_dma_chan(dev);
83 	unsigned long count = 0;
84 	int i;
85 
86 	for_each_possible_cpu(i)
87 		count += per_cpu_ptr(chan->local, i)->memcpy_count;
88 
89 	return sprintf(buf, "%lu\n", count);
90 }
91 
92 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
93 				      char *buf)
94 {
95 	struct dma_chan *chan = to_dma_chan(dev);
96 	unsigned long count = 0;
97 	int i;
98 
99 	for_each_possible_cpu(i)
100 		count += per_cpu_ptr(chan->local, i)->bytes_transferred;
101 
102 	return sprintf(buf, "%lu\n", count);
103 }
104 
105 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
106 {
107 	struct dma_chan *chan = to_dma_chan(dev);
108 	int in_use = 0;
109 
110 	if (unlikely(chan->slow_ref) &&
111 		atomic_read(&chan->refcount.refcount) > 1)
112 		in_use = 1;
113 	else {
114 		if (local_read(&(per_cpu_ptr(chan->local,
115 			get_cpu())->refcount)) > 0)
116 			in_use = 1;
117 		put_cpu();
118 	}
119 
120 	return sprintf(buf, "%d\n", in_use);
121 }
122 
123 static struct device_attribute dma_attrs[] = {
124 	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
125 	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
126 	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
127 	__ATTR_NULL
128 };
129 
130 static void dma_async_device_cleanup(struct kref *kref);
131 
132 static void dma_dev_release(struct device *dev)
133 {
134 	struct dma_chan *chan = to_dma_chan(dev);
135 	kref_put(&chan->device->refcount, dma_async_device_cleanup);
136 }
137 
138 static struct class dma_devclass = {
139 	.name		= "dma",
140 	.dev_attrs	= dma_attrs,
141 	.dev_release	= dma_dev_release,
142 };
143 
144 /* --- client and device registration --- */
145 
146 #define dma_chan_satisfies_mask(chan, mask) \
147 	__dma_chan_satisfies_mask((chan), &(mask))
148 static int
149 __dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want)
150 {
151 	dma_cap_mask_t has;
152 
153 	bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits,
154 		DMA_TX_TYPE_END);
155 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
156 }
157 
158 /**
159  * dma_client_chan_alloc - try to allocate channels to a client
160  * @client: &dma_client
161  *
162  * Called with dma_list_mutex held.
163  */
164 static void dma_client_chan_alloc(struct dma_client *client)
165 {
166 	struct dma_device *device;
167 	struct dma_chan *chan;
168 	int desc;	/* allocated descriptor count */
169 	enum dma_state_client ack;
170 
171 	/* Find a channel */
172 	list_for_each_entry(device, &dma_device_list, global_node) {
173 		/* Does the client require a specific DMA controller? */
174 		if (client->slave && client->slave->dma_dev
175 				&& client->slave->dma_dev != device->dev)
176 			continue;
177 
178 		list_for_each_entry(chan, &device->channels, device_node) {
179 			if (!dma_chan_satisfies_mask(chan, client->cap_mask))
180 				continue;
181 
182 			desc = chan->device->device_alloc_chan_resources(
183 					chan, client);
184 			if (desc >= 0) {
185 				ack = client->event_callback(client,
186 						chan,
187 						DMA_RESOURCE_AVAILABLE);
188 
189 				/* we are done once this client rejects
190 				 * an available resource
191 				 */
192 				if (ack == DMA_ACK) {
193 					dma_chan_get(chan);
194 					chan->client_count++;
195 				} else if (ack == DMA_NAK)
196 					return;
197 			}
198 		}
199 	}
200 }
201 
202 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
203 {
204 	enum dma_status status;
205 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
206 
207 	dma_async_issue_pending(chan);
208 	do {
209 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
210 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
211 			printk(KERN_ERR "dma_sync_wait_timeout!\n");
212 			return DMA_ERROR;
213 		}
214 	} while (status == DMA_IN_PROGRESS);
215 
216 	return status;
217 }
218 EXPORT_SYMBOL(dma_sync_wait);
219 
220 /**
221  * dma_chan_cleanup - release a DMA channel's resources
222  * @kref: kernel reference structure that contains the DMA channel device
223  */
224 void dma_chan_cleanup(struct kref *kref)
225 {
226 	struct dma_chan *chan = container_of(kref, struct dma_chan, refcount);
227 	chan->device->device_free_chan_resources(chan);
228 	kref_put(&chan->device->refcount, dma_async_device_cleanup);
229 }
230 EXPORT_SYMBOL(dma_chan_cleanup);
231 
232 static void dma_chan_free_rcu(struct rcu_head *rcu)
233 {
234 	struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu);
235 	int bias = 0x7FFFFFFF;
236 	int i;
237 	for_each_possible_cpu(i)
238 		bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount);
239 	atomic_sub(bias, &chan->refcount.refcount);
240 	kref_put(&chan->refcount, dma_chan_cleanup);
241 }
242 
243 static void dma_chan_release(struct dma_chan *chan)
244 {
245 	atomic_add(0x7FFFFFFF, &chan->refcount.refcount);
246 	chan->slow_ref = 1;
247 	call_rcu(&chan->rcu, dma_chan_free_rcu);
248 }
249 
250 /**
251  * dma_chans_notify_available - broadcast available channels to the clients
252  */
253 static void dma_clients_notify_available(void)
254 {
255 	struct dma_client *client;
256 
257 	mutex_lock(&dma_list_mutex);
258 
259 	list_for_each_entry(client, &dma_client_list, global_node)
260 		dma_client_chan_alloc(client);
261 
262 	mutex_unlock(&dma_list_mutex);
263 }
264 
265 /**
266  * dma_chans_notify_available - tell the clients that a channel is going away
267  * @chan: channel on its way out
268  */
269 static void dma_clients_notify_removed(struct dma_chan *chan)
270 {
271 	struct dma_client *client;
272 	enum dma_state_client ack;
273 
274 	mutex_lock(&dma_list_mutex);
275 
276 	list_for_each_entry(client, &dma_client_list, global_node) {
277 		ack = client->event_callback(client, chan,
278 				DMA_RESOURCE_REMOVED);
279 
280 		/* client was holding resources for this channel so
281 		 * free it
282 		 */
283 		if (ack == DMA_ACK) {
284 			dma_chan_put(chan);
285 			chan->client_count--;
286 		}
287 	}
288 
289 	mutex_unlock(&dma_list_mutex);
290 }
291 
292 /**
293  * dma_async_client_register - register a &dma_client
294  * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask'
295  */
296 void dma_async_client_register(struct dma_client *client)
297 {
298 	/* validate client data */
299 	BUG_ON(dma_has_cap(DMA_SLAVE, client->cap_mask) &&
300 		!client->slave);
301 
302 	mutex_lock(&dma_list_mutex);
303 	list_add_tail(&client->global_node, &dma_client_list);
304 	mutex_unlock(&dma_list_mutex);
305 }
306 EXPORT_SYMBOL(dma_async_client_register);
307 
308 /**
309  * dma_async_client_unregister - unregister a client and free the &dma_client
310  * @client: &dma_client to free
311  *
312  * Force frees any allocated DMA channels, frees the &dma_client memory
313  */
314 void dma_async_client_unregister(struct dma_client *client)
315 {
316 	struct dma_device *device;
317 	struct dma_chan *chan;
318 	enum dma_state_client ack;
319 
320 	if (!client)
321 		return;
322 
323 	mutex_lock(&dma_list_mutex);
324 	/* free all channels the client is holding */
325 	list_for_each_entry(device, &dma_device_list, global_node)
326 		list_for_each_entry(chan, &device->channels, device_node) {
327 			ack = client->event_callback(client, chan,
328 				DMA_RESOURCE_REMOVED);
329 
330 			if (ack == DMA_ACK) {
331 				dma_chan_put(chan);
332 				chan->client_count--;
333 			}
334 		}
335 
336 	list_del(&client->global_node);
337 	mutex_unlock(&dma_list_mutex);
338 }
339 EXPORT_SYMBOL(dma_async_client_unregister);
340 
341 /**
342  * dma_async_client_chan_request - send all available channels to the
343  * client that satisfy the capability mask
344  * @client - requester
345  */
346 void dma_async_client_chan_request(struct dma_client *client)
347 {
348 	mutex_lock(&dma_list_mutex);
349 	dma_client_chan_alloc(client);
350 	mutex_unlock(&dma_list_mutex);
351 }
352 EXPORT_SYMBOL(dma_async_client_chan_request);
353 
354 /**
355  * dma_async_device_register - registers DMA devices found
356  * @device: &dma_device
357  */
358 int dma_async_device_register(struct dma_device *device)
359 {
360 	static int id;
361 	int chancnt = 0, rc;
362 	struct dma_chan* chan;
363 
364 	if (!device)
365 		return -ENODEV;
366 
367 	/* validate device routines */
368 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
369 		!device->device_prep_dma_memcpy);
370 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
371 		!device->device_prep_dma_xor);
372 	BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
373 		!device->device_prep_dma_zero_sum);
374 	BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
375 		!device->device_prep_dma_memset);
376 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
377 		!device->device_prep_dma_interrupt);
378 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
379 		!device->device_prep_slave_sg);
380 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
381 		!device->device_terminate_all);
382 
383 	BUG_ON(!device->device_alloc_chan_resources);
384 	BUG_ON(!device->device_free_chan_resources);
385 	BUG_ON(!device->device_is_tx_complete);
386 	BUG_ON(!device->device_issue_pending);
387 	BUG_ON(!device->dev);
388 
389 	init_completion(&device->done);
390 	kref_init(&device->refcount);
391 	device->dev_id = id++;
392 
393 	/* represent channels in sysfs. Probably want devs too */
394 	list_for_each_entry(chan, &device->channels, device_node) {
395 		chan->local = alloc_percpu(typeof(*chan->local));
396 		if (chan->local == NULL)
397 			continue;
398 
399 		chan->chan_id = chancnt++;
400 		chan->dev.class = &dma_devclass;
401 		chan->dev.parent = device->dev;
402 		snprintf(chan->dev.bus_id, BUS_ID_SIZE, "dma%dchan%d",
403 		         device->dev_id, chan->chan_id);
404 
405 		rc = device_register(&chan->dev);
406 		if (rc) {
407 			chancnt--;
408 			free_percpu(chan->local);
409 			chan->local = NULL;
410 			goto err_out;
411 		}
412 
413 		/* One for the channel, one of the class device */
414 		kref_get(&device->refcount);
415 		kref_get(&device->refcount);
416 		kref_init(&chan->refcount);
417 		chan->client_count = 0;
418 		chan->slow_ref = 0;
419 		INIT_RCU_HEAD(&chan->rcu);
420 	}
421 
422 	mutex_lock(&dma_list_mutex);
423 	list_add_tail(&device->global_node, &dma_device_list);
424 	mutex_unlock(&dma_list_mutex);
425 
426 	dma_clients_notify_available();
427 
428 	return 0;
429 
430 err_out:
431 	list_for_each_entry(chan, &device->channels, device_node) {
432 		if (chan->local == NULL)
433 			continue;
434 		kref_put(&device->refcount, dma_async_device_cleanup);
435 		device_unregister(&chan->dev);
436 		chancnt--;
437 		free_percpu(chan->local);
438 	}
439 	return rc;
440 }
441 EXPORT_SYMBOL(dma_async_device_register);
442 
443 /**
444  * dma_async_device_cleanup - function called when all references are released
445  * @kref: kernel reference object
446  */
447 static void dma_async_device_cleanup(struct kref *kref)
448 {
449 	struct dma_device *device;
450 
451 	device = container_of(kref, struct dma_device, refcount);
452 	complete(&device->done);
453 }
454 
455 /**
456  * dma_async_device_unregister - unregisters DMA devices
457  * @device: &dma_device
458  */
459 void dma_async_device_unregister(struct dma_device *device)
460 {
461 	struct dma_chan *chan;
462 
463 	mutex_lock(&dma_list_mutex);
464 	list_del(&device->global_node);
465 	mutex_unlock(&dma_list_mutex);
466 
467 	list_for_each_entry(chan, &device->channels, device_node) {
468 		dma_clients_notify_removed(chan);
469 		device_unregister(&chan->dev);
470 		dma_chan_release(chan);
471 	}
472 
473 	kref_put(&device->refcount, dma_async_device_cleanup);
474 	wait_for_completion(&device->done);
475 }
476 EXPORT_SYMBOL(dma_async_device_unregister);
477 
478 /**
479  * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
480  * @chan: DMA channel to offload copy to
481  * @dest: destination address (virtual)
482  * @src: source address (virtual)
483  * @len: length
484  *
485  * Both @dest and @src must be mappable to a bus address according to the
486  * DMA mapping API rules for streaming mappings.
487  * Both @dest and @src must stay memory resident (kernel memory or locked
488  * user space pages).
489  */
490 dma_cookie_t
491 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
492 			void *src, size_t len)
493 {
494 	struct dma_device *dev = chan->device;
495 	struct dma_async_tx_descriptor *tx;
496 	dma_addr_t dma_dest, dma_src;
497 	dma_cookie_t cookie;
498 	int cpu;
499 
500 	dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
501 	dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
502 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
503 					 DMA_CTRL_ACK);
504 
505 	if (!tx) {
506 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
507 		dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
508 		return -ENOMEM;
509 	}
510 
511 	tx->callback = NULL;
512 	cookie = tx->tx_submit(tx);
513 
514 	cpu = get_cpu();
515 	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
516 	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
517 	put_cpu();
518 
519 	return cookie;
520 }
521 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
522 
523 /**
524  * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
525  * @chan: DMA channel to offload copy to
526  * @page: destination page
527  * @offset: offset in page to copy to
528  * @kdata: source address (virtual)
529  * @len: length
530  *
531  * Both @page/@offset and @kdata must be mappable to a bus address according
532  * to the DMA mapping API rules for streaming mappings.
533  * Both @page/@offset and @kdata must stay memory resident (kernel memory or
534  * locked user space pages)
535  */
536 dma_cookie_t
537 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
538 			unsigned int offset, void *kdata, size_t len)
539 {
540 	struct dma_device *dev = chan->device;
541 	struct dma_async_tx_descriptor *tx;
542 	dma_addr_t dma_dest, dma_src;
543 	dma_cookie_t cookie;
544 	int cpu;
545 
546 	dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
547 	dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
548 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
549 					 DMA_CTRL_ACK);
550 
551 	if (!tx) {
552 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
553 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
554 		return -ENOMEM;
555 	}
556 
557 	tx->callback = NULL;
558 	cookie = tx->tx_submit(tx);
559 
560 	cpu = get_cpu();
561 	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
562 	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
563 	put_cpu();
564 
565 	return cookie;
566 }
567 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
568 
569 /**
570  * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
571  * @chan: DMA channel to offload copy to
572  * @dest_pg: destination page
573  * @dest_off: offset in page to copy to
574  * @src_pg: source page
575  * @src_off: offset in page to copy from
576  * @len: length
577  *
578  * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
579  * address according to the DMA mapping API rules for streaming mappings.
580  * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
581  * (kernel memory or locked user space pages).
582  */
583 dma_cookie_t
584 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
585 	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
586 	size_t len)
587 {
588 	struct dma_device *dev = chan->device;
589 	struct dma_async_tx_descriptor *tx;
590 	dma_addr_t dma_dest, dma_src;
591 	dma_cookie_t cookie;
592 	int cpu;
593 
594 	dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
595 	dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
596 				DMA_FROM_DEVICE);
597 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
598 					 DMA_CTRL_ACK);
599 
600 	if (!tx) {
601 		dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
602 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
603 		return -ENOMEM;
604 	}
605 
606 	tx->callback = NULL;
607 	cookie = tx->tx_submit(tx);
608 
609 	cpu = get_cpu();
610 	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
611 	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
612 	put_cpu();
613 
614 	return cookie;
615 }
616 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
617 
618 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
619 	struct dma_chan *chan)
620 {
621 	tx->chan = chan;
622 	spin_lock_init(&tx->lock);
623 }
624 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
625 
626 static int __init dma_bus_init(void)
627 {
628 	mutex_init(&dma_list_mutex);
629 	return class_register(&dma_devclass);
630 }
631 subsys_initcall(dma_bus_init);
632 
633