xref: /openbmc/linux/drivers/dma/dmaengine.c (revision 8a10bc9d)
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 
22 /*
23  * This code implements the DMA subsystem. It provides a HW-neutral interface
24  * for other kernel code to use asynchronous memory copy capabilities,
25  * if present, and allows different HW DMA drivers to register as providing
26  * this capability.
27  *
28  * Due to the fact we are accelerating what is already a relatively fast
29  * operation, the code goes to great lengths to avoid additional overhead,
30  * such as locking.
31  *
32  * LOCKING:
33  *
34  * The subsystem keeps a global list of dma_device structs it is protected by a
35  * mutex, dma_list_mutex.
36  *
37  * A subsystem can get access to a channel by calling dmaengine_get() followed
38  * by dma_find_channel(), or if it has need for an exclusive channel it can call
39  * dma_request_channel().  Once a channel is allocated a reference is taken
40  * against its corresponding driver to disable removal.
41  *
42  * Each device has a channels list, which runs unlocked but is never modified
43  * once the device is registered, it's just setup by the driver.
44  *
45  * See Documentation/dmaengine.txt for more details
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/dma-mapping.h>
51 #include <linux/init.h>
52 #include <linux/module.h>
53 #include <linux/mm.h>
54 #include <linux/device.h>
55 #include <linux/dmaengine.h>
56 #include <linux/hardirq.h>
57 #include <linux/spinlock.h>
58 #include <linux/percpu.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/jiffies.h>
62 #include <linux/rculist.h>
63 #include <linux/idr.h>
64 #include <linux/slab.h>
65 #include <linux/acpi.h>
66 #include <linux/acpi_dma.h>
67 #include <linux/of_dma.h>
68 #include <linux/mempool.h>
69 
70 static DEFINE_MUTEX(dma_list_mutex);
71 static DEFINE_IDR(dma_idr);
72 static LIST_HEAD(dma_device_list);
73 static long dmaengine_ref_count;
74 
75 /* --- sysfs implementation --- */
76 
77 /**
78  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
79  * @dev - device node
80  *
81  * Must be called under dma_list_mutex
82  */
83 static struct dma_chan *dev_to_dma_chan(struct device *dev)
84 {
85 	struct dma_chan_dev *chan_dev;
86 
87 	chan_dev = container_of(dev, typeof(*chan_dev), device);
88 	return chan_dev->chan;
89 }
90 
91 static ssize_t memcpy_count_show(struct device *dev,
92 				 struct device_attribute *attr, char *buf)
93 {
94 	struct dma_chan *chan;
95 	unsigned long count = 0;
96 	int i;
97 	int err;
98 
99 	mutex_lock(&dma_list_mutex);
100 	chan = dev_to_dma_chan(dev);
101 	if (chan) {
102 		for_each_possible_cpu(i)
103 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
104 		err = sprintf(buf, "%lu\n", count);
105 	} else
106 		err = -ENODEV;
107 	mutex_unlock(&dma_list_mutex);
108 
109 	return err;
110 }
111 static DEVICE_ATTR_RO(memcpy_count);
112 
113 static ssize_t bytes_transferred_show(struct device *dev,
114 				      struct device_attribute *attr, char *buf)
115 {
116 	struct dma_chan *chan;
117 	unsigned long count = 0;
118 	int i;
119 	int err;
120 
121 	mutex_lock(&dma_list_mutex);
122 	chan = dev_to_dma_chan(dev);
123 	if (chan) {
124 		for_each_possible_cpu(i)
125 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
126 		err = sprintf(buf, "%lu\n", count);
127 	} else
128 		err = -ENODEV;
129 	mutex_unlock(&dma_list_mutex);
130 
131 	return err;
132 }
133 static DEVICE_ATTR_RO(bytes_transferred);
134 
135 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
136 			   char *buf)
137 {
138 	struct dma_chan *chan;
139 	int err;
140 
141 	mutex_lock(&dma_list_mutex);
142 	chan = dev_to_dma_chan(dev);
143 	if (chan)
144 		err = sprintf(buf, "%d\n", chan->client_count);
145 	else
146 		err = -ENODEV;
147 	mutex_unlock(&dma_list_mutex);
148 
149 	return err;
150 }
151 static DEVICE_ATTR_RO(in_use);
152 
153 static struct attribute *dma_dev_attrs[] = {
154 	&dev_attr_memcpy_count.attr,
155 	&dev_attr_bytes_transferred.attr,
156 	&dev_attr_in_use.attr,
157 	NULL,
158 };
159 ATTRIBUTE_GROUPS(dma_dev);
160 
161 static void chan_dev_release(struct device *dev)
162 {
163 	struct dma_chan_dev *chan_dev;
164 
165 	chan_dev = container_of(dev, typeof(*chan_dev), device);
166 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
167 		mutex_lock(&dma_list_mutex);
168 		idr_remove(&dma_idr, chan_dev->dev_id);
169 		mutex_unlock(&dma_list_mutex);
170 		kfree(chan_dev->idr_ref);
171 	}
172 	kfree(chan_dev);
173 }
174 
175 static struct class dma_devclass = {
176 	.name		= "dma",
177 	.dev_groups	= dma_dev_groups,
178 	.dev_release	= chan_dev_release,
179 };
180 
181 /* --- client and device registration --- */
182 
183 #define dma_device_satisfies_mask(device, mask) \
184 	__dma_device_satisfies_mask((device), &(mask))
185 static int
186 __dma_device_satisfies_mask(struct dma_device *device,
187 			    const dma_cap_mask_t *want)
188 {
189 	dma_cap_mask_t has;
190 
191 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
192 		DMA_TX_TYPE_END);
193 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
194 }
195 
196 static struct module *dma_chan_to_owner(struct dma_chan *chan)
197 {
198 	return chan->device->dev->driver->owner;
199 }
200 
201 /**
202  * balance_ref_count - catch up the channel reference count
203  * @chan - channel to balance ->client_count versus dmaengine_ref_count
204  *
205  * balance_ref_count must be called under dma_list_mutex
206  */
207 static void balance_ref_count(struct dma_chan *chan)
208 {
209 	struct module *owner = dma_chan_to_owner(chan);
210 
211 	while (chan->client_count < dmaengine_ref_count) {
212 		__module_get(owner);
213 		chan->client_count++;
214 	}
215 }
216 
217 /**
218  * dma_chan_get - try to grab a dma channel's parent driver module
219  * @chan - channel to grab
220  *
221  * Must be called under dma_list_mutex
222  */
223 static int dma_chan_get(struct dma_chan *chan)
224 {
225 	int err = -ENODEV;
226 	struct module *owner = dma_chan_to_owner(chan);
227 
228 	if (chan->client_count) {
229 		__module_get(owner);
230 		err = 0;
231 	} else if (try_module_get(owner))
232 		err = 0;
233 
234 	if (err == 0)
235 		chan->client_count++;
236 
237 	/* allocate upon first client reference */
238 	if (chan->client_count == 1 && err == 0) {
239 		int desc_cnt = chan->device->device_alloc_chan_resources(chan);
240 
241 		if (desc_cnt < 0) {
242 			err = desc_cnt;
243 			chan->client_count = 0;
244 			module_put(owner);
245 		} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
246 			balance_ref_count(chan);
247 	}
248 
249 	return err;
250 }
251 
252 /**
253  * dma_chan_put - drop a reference to a dma channel's parent driver module
254  * @chan - channel to release
255  *
256  * Must be called under dma_list_mutex
257  */
258 static void dma_chan_put(struct dma_chan *chan)
259 {
260 	if (!chan->client_count)
261 		return; /* this channel failed alloc_chan_resources */
262 	chan->client_count--;
263 	module_put(dma_chan_to_owner(chan));
264 	if (chan->client_count == 0)
265 		chan->device->device_free_chan_resources(chan);
266 }
267 
268 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
269 {
270 	enum dma_status status;
271 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
272 
273 	dma_async_issue_pending(chan);
274 	do {
275 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
276 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
277 			pr_err("%s: timeout!\n", __func__);
278 			return DMA_ERROR;
279 		}
280 		if (status != DMA_IN_PROGRESS)
281 			break;
282 		cpu_relax();
283 	} while (1);
284 
285 	return status;
286 }
287 EXPORT_SYMBOL(dma_sync_wait);
288 
289 /**
290  * dma_cap_mask_all - enable iteration over all operation types
291  */
292 static dma_cap_mask_t dma_cap_mask_all;
293 
294 /**
295  * dma_chan_tbl_ent - tracks channel allocations per core/operation
296  * @chan - associated channel for this entry
297  */
298 struct dma_chan_tbl_ent {
299 	struct dma_chan *chan;
300 };
301 
302 /**
303  * channel_table - percpu lookup table for memory-to-memory offload providers
304  */
305 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
306 
307 static int __init dma_channel_table_init(void)
308 {
309 	enum dma_transaction_type cap;
310 	int err = 0;
311 
312 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
313 
314 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
315 	 * but are not associated with an operation so they do not need
316 	 * an entry in the channel_table
317 	 */
318 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
319 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
320 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
321 
322 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
323 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
324 		if (!channel_table[cap]) {
325 			err = -ENOMEM;
326 			break;
327 		}
328 	}
329 
330 	if (err) {
331 		pr_err("initialization failure\n");
332 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
333 			if (channel_table[cap])
334 				free_percpu(channel_table[cap]);
335 	}
336 
337 	return err;
338 }
339 arch_initcall(dma_channel_table_init);
340 
341 /**
342  * dma_find_channel - find a channel to carry out the operation
343  * @tx_type: transaction type
344  */
345 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
346 {
347 	return this_cpu_read(channel_table[tx_type]->chan);
348 }
349 EXPORT_SYMBOL(dma_find_channel);
350 
351 /*
352  * net_dma_find_channel - find a channel for net_dma
353  * net_dma has alignment requirements
354  */
355 struct dma_chan *net_dma_find_channel(void)
356 {
357 	struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
358 	if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
359 		return NULL;
360 
361 	return chan;
362 }
363 EXPORT_SYMBOL(net_dma_find_channel);
364 
365 /**
366  * dma_issue_pending_all - flush all pending operations across all channels
367  */
368 void dma_issue_pending_all(void)
369 {
370 	struct dma_device *device;
371 	struct dma_chan *chan;
372 
373 	rcu_read_lock();
374 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
375 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
376 			continue;
377 		list_for_each_entry(chan, &device->channels, device_node)
378 			if (chan->client_count)
379 				device->device_issue_pending(chan);
380 	}
381 	rcu_read_unlock();
382 }
383 EXPORT_SYMBOL(dma_issue_pending_all);
384 
385 /**
386  * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
387  */
388 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
389 {
390 	int node = dev_to_node(chan->device->dev);
391 	return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
392 }
393 
394 /**
395  * min_chan - returns the channel with min count and in the same numa-node as the cpu
396  * @cap: capability to match
397  * @cpu: cpu index which the channel should be close to
398  *
399  * If some channels are close to the given cpu, the one with the lowest
400  * reference count is returned. Otherwise, cpu is ignored and only the
401  * reference count is taken into account.
402  * Must be called under dma_list_mutex.
403  */
404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
405 {
406 	struct dma_device *device;
407 	struct dma_chan *chan;
408 	struct dma_chan *min = NULL;
409 	struct dma_chan *localmin = NULL;
410 
411 	list_for_each_entry(device, &dma_device_list, global_node) {
412 		if (!dma_has_cap(cap, device->cap_mask) ||
413 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
414 			continue;
415 		list_for_each_entry(chan, &device->channels, device_node) {
416 			if (!chan->client_count)
417 				continue;
418 			if (!min || chan->table_count < min->table_count)
419 				min = chan;
420 
421 			if (dma_chan_is_local(chan, cpu))
422 				if (!localmin ||
423 				    chan->table_count < localmin->table_count)
424 					localmin = chan;
425 		}
426 	}
427 
428 	chan = localmin ? localmin : min;
429 
430 	if (chan)
431 		chan->table_count++;
432 
433 	return chan;
434 }
435 
436 /**
437  * dma_channel_rebalance - redistribute the available channels
438  *
439  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
440  * operation type) in the SMP case,  and operation isolation (avoid
441  * multi-tasking channels) in the non-SMP case.  Must be called under
442  * dma_list_mutex.
443  */
444 static void dma_channel_rebalance(void)
445 {
446 	struct dma_chan *chan;
447 	struct dma_device *device;
448 	int cpu;
449 	int cap;
450 
451 	/* undo the last distribution */
452 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
453 		for_each_possible_cpu(cpu)
454 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
455 
456 	list_for_each_entry(device, &dma_device_list, global_node) {
457 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
458 			continue;
459 		list_for_each_entry(chan, &device->channels, device_node)
460 			chan->table_count = 0;
461 	}
462 
463 	/* don't populate the channel_table if no clients are available */
464 	if (!dmaengine_ref_count)
465 		return;
466 
467 	/* redistribute available channels */
468 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
469 		for_each_online_cpu(cpu) {
470 			chan = min_chan(cap, cpu);
471 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
472 		}
473 }
474 
475 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
476 					  struct dma_device *dev,
477 					  dma_filter_fn fn, void *fn_param)
478 {
479 	struct dma_chan *chan;
480 
481 	if (!__dma_device_satisfies_mask(dev, mask)) {
482 		pr_debug("%s: wrong capabilities\n", __func__);
483 		return NULL;
484 	}
485 	/* devices with multiple channels need special handling as we need to
486 	 * ensure that all channels are either private or public.
487 	 */
488 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
489 		list_for_each_entry(chan, &dev->channels, device_node) {
490 			/* some channels are already publicly allocated */
491 			if (chan->client_count)
492 				return NULL;
493 		}
494 
495 	list_for_each_entry(chan, &dev->channels, device_node) {
496 		if (chan->client_count) {
497 			pr_debug("%s: %s busy\n",
498 				 __func__, dma_chan_name(chan));
499 			continue;
500 		}
501 		if (fn && !fn(chan, fn_param)) {
502 			pr_debug("%s: %s filter said false\n",
503 				 __func__, dma_chan_name(chan));
504 			continue;
505 		}
506 		return chan;
507 	}
508 
509 	return NULL;
510 }
511 
512 /**
513  * dma_request_slave_channel - try to get specific channel exclusively
514  * @chan: target channel
515  */
516 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
517 {
518 	int err = -EBUSY;
519 
520 	/* lock against __dma_request_channel */
521 	mutex_lock(&dma_list_mutex);
522 
523 	if (chan->client_count == 0) {
524 		err = dma_chan_get(chan);
525 		if (err)
526 			pr_debug("%s: failed to get %s: (%d)\n",
527 				__func__, dma_chan_name(chan), err);
528 	} else
529 		chan = NULL;
530 
531 	mutex_unlock(&dma_list_mutex);
532 
533 
534 	return chan;
535 }
536 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
537 
538 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
539 {
540 	dma_cap_mask_t mask;
541 	struct dma_chan *chan;
542 	int err;
543 
544 	dma_cap_zero(mask);
545 	dma_cap_set(DMA_SLAVE, mask);
546 
547 	/* lock against __dma_request_channel */
548 	mutex_lock(&dma_list_mutex);
549 
550 	chan = private_candidate(&mask, device, NULL, NULL);
551 	if (chan) {
552 		err = dma_chan_get(chan);
553 		if (err) {
554 			pr_debug("%s: failed to get %s: (%d)\n",
555 				__func__, dma_chan_name(chan), err);
556 			chan = NULL;
557 		}
558 	}
559 
560 	mutex_unlock(&dma_list_mutex);
561 
562 	return chan;
563 }
564 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
565 
566 /**
567  * __dma_request_channel - try to allocate an exclusive channel
568  * @mask: capabilities that the channel must satisfy
569  * @fn: optional callback to disposition available channels
570  * @fn_param: opaque parameter to pass to dma_filter_fn
571  *
572  * Returns pointer to appropriate DMA channel on success or NULL.
573  */
574 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
575 				       dma_filter_fn fn, void *fn_param)
576 {
577 	struct dma_device *device, *_d;
578 	struct dma_chan *chan = NULL;
579 	int err;
580 
581 	/* Find a channel */
582 	mutex_lock(&dma_list_mutex);
583 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
584 		chan = private_candidate(mask, device, fn, fn_param);
585 		if (chan) {
586 			/* Found a suitable channel, try to grab, prep, and
587 			 * return it.  We first set DMA_PRIVATE to disable
588 			 * balance_ref_count as this channel will not be
589 			 * published in the general-purpose allocator
590 			 */
591 			dma_cap_set(DMA_PRIVATE, device->cap_mask);
592 			device->privatecnt++;
593 			err = dma_chan_get(chan);
594 
595 			if (err == -ENODEV) {
596 				pr_debug("%s: %s module removed\n",
597 					 __func__, dma_chan_name(chan));
598 				list_del_rcu(&device->global_node);
599 			} else if (err)
600 				pr_debug("%s: failed to get %s: (%d)\n",
601 					 __func__, dma_chan_name(chan), err);
602 			else
603 				break;
604 			if (--device->privatecnt == 0)
605 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
606 			chan = NULL;
607 		}
608 	}
609 	mutex_unlock(&dma_list_mutex);
610 
611 	pr_debug("%s: %s (%s)\n",
612 		 __func__,
613 		 chan ? "success" : "fail",
614 		 chan ? dma_chan_name(chan) : NULL);
615 
616 	return chan;
617 }
618 EXPORT_SYMBOL_GPL(__dma_request_channel);
619 
620 /**
621  * dma_request_slave_channel - try to allocate an exclusive slave channel
622  * @dev:	pointer to client device structure
623  * @name:	slave channel name
624  *
625  * Returns pointer to appropriate DMA channel on success or an error pointer.
626  */
627 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
628 						  const char *name)
629 {
630 	struct dma_chan *chan;
631 
632 	/* If device-tree is present get slave info from here */
633 	if (dev->of_node)
634 		return of_dma_request_slave_channel(dev->of_node, name);
635 
636 	/* If device was enumerated by ACPI get slave info from here */
637 	if (ACPI_HANDLE(dev)) {
638 		chan = acpi_dma_request_slave_chan_by_name(dev, name);
639 		if (chan)
640 			return chan;
641 	}
642 
643 	return ERR_PTR(-ENODEV);
644 }
645 EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
646 
647 /**
648  * dma_request_slave_channel - try to allocate an exclusive slave channel
649  * @dev:	pointer to client device structure
650  * @name:	slave channel name
651  *
652  * Returns pointer to appropriate DMA channel on success or NULL.
653  */
654 struct dma_chan *dma_request_slave_channel(struct device *dev,
655 					   const char *name)
656 {
657 	struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
658 	if (IS_ERR(ch))
659 		return NULL;
660 	return ch;
661 }
662 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
663 
664 void dma_release_channel(struct dma_chan *chan)
665 {
666 	mutex_lock(&dma_list_mutex);
667 	WARN_ONCE(chan->client_count != 1,
668 		  "chan reference count %d != 1\n", chan->client_count);
669 	dma_chan_put(chan);
670 	/* drop PRIVATE cap enabled by __dma_request_channel() */
671 	if (--chan->device->privatecnt == 0)
672 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
673 	mutex_unlock(&dma_list_mutex);
674 }
675 EXPORT_SYMBOL_GPL(dma_release_channel);
676 
677 /**
678  * dmaengine_get - register interest in dma_channels
679  */
680 void dmaengine_get(void)
681 {
682 	struct dma_device *device, *_d;
683 	struct dma_chan *chan;
684 	int err;
685 
686 	mutex_lock(&dma_list_mutex);
687 	dmaengine_ref_count++;
688 
689 	/* try to grab channels */
690 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
691 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
692 			continue;
693 		list_for_each_entry(chan, &device->channels, device_node) {
694 			err = dma_chan_get(chan);
695 			if (err == -ENODEV) {
696 				/* module removed before we could use it */
697 				list_del_rcu(&device->global_node);
698 				break;
699 			} else if (err)
700 				pr_debug("%s: failed to get %s: (%d)\n",
701 				       __func__, dma_chan_name(chan), err);
702 		}
703 	}
704 
705 	/* if this is the first reference and there were channels
706 	 * waiting we need to rebalance to get those channels
707 	 * incorporated into the channel table
708 	 */
709 	if (dmaengine_ref_count == 1)
710 		dma_channel_rebalance();
711 	mutex_unlock(&dma_list_mutex);
712 }
713 EXPORT_SYMBOL(dmaengine_get);
714 
715 /**
716  * dmaengine_put - let dma drivers be removed when ref_count == 0
717  */
718 void dmaengine_put(void)
719 {
720 	struct dma_device *device;
721 	struct dma_chan *chan;
722 
723 	mutex_lock(&dma_list_mutex);
724 	dmaengine_ref_count--;
725 	BUG_ON(dmaengine_ref_count < 0);
726 	/* drop channel references */
727 	list_for_each_entry(device, &dma_device_list, global_node) {
728 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
729 			continue;
730 		list_for_each_entry(chan, &device->channels, device_node)
731 			dma_chan_put(chan);
732 	}
733 	mutex_unlock(&dma_list_mutex);
734 }
735 EXPORT_SYMBOL(dmaengine_put);
736 
737 static bool device_has_all_tx_types(struct dma_device *device)
738 {
739 	/* A device that satisfies this test has channels that will never cause
740 	 * an async_tx channel switch event as all possible operation types can
741 	 * be handled.
742 	 */
743 	#ifdef CONFIG_ASYNC_TX_DMA
744 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
745 		return false;
746 	#endif
747 
748 	#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
749 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
750 		return false;
751 	#endif
752 
753 	#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
754 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
755 		return false;
756 
757 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
758 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
759 		return false;
760 	#endif
761 	#endif
762 
763 	#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
764 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
765 		return false;
766 
767 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
768 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
769 		return false;
770 	#endif
771 	#endif
772 
773 	return true;
774 }
775 
776 static int get_dma_id(struct dma_device *device)
777 {
778 	int rc;
779 
780 	mutex_lock(&dma_list_mutex);
781 
782 	rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
783 	if (rc >= 0)
784 		device->dev_id = rc;
785 
786 	mutex_unlock(&dma_list_mutex);
787 	return rc < 0 ? rc : 0;
788 }
789 
790 /**
791  * dma_async_device_register - registers DMA devices found
792  * @device: &dma_device
793  */
794 int dma_async_device_register(struct dma_device *device)
795 {
796 	int chancnt = 0, rc;
797 	struct dma_chan* chan;
798 	atomic_t *idr_ref;
799 
800 	if (!device)
801 		return -ENODEV;
802 
803 	/* validate device routines */
804 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
805 		!device->device_prep_dma_memcpy);
806 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
807 		!device->device_prep_dma_xor);
808 	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
809 		!device->device_prep_dma_xor_val);
810 	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
811 		!device->device_prep_dma_pq);
812 	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
813 		!device->device_prep_dma_pq_val);
814 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
815 		!device->device_prep_dma_interrupt);
816 	BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
817 		!device->device_prep_dma_sg);
818 	BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
819 		!device->device_prep_dma_cyclic);
820 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
821 		!device->device_control);
822 	BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
823 		!device->device_prep_interleaved_dma);
824 
825 	BUG_ON(!device->device_alloc_chan_resources);
826 	BUG_ON(!device->device_free_chan_resources);
827 	BUG_ON(!device->device_tx_status);
828 	BUG_ON(!device->device_issue_pending);
829 	BUG_ON(!device->dev);
830 
831 	/* note: this only matters in the
832 	 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
833 	 */
834 	if (device_has_all_tx_types(device))
835 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
836 
837 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
838 	if (!idr_ref)
839 		return -ENOMEM;
840 	rc = get_dma_id(device);
841 	if (rc != 0) {
842 		kfree(idr_ref);
843 		return rc;
844 	}
845 
846 	atomic_set(idr_ref, 0);
847 
848 	/* represent channels in sysfs. Probably want devs too */
849 	list_for_each_entry(chan, &device->channels, device_node) {
850 		rc = -ENOMEM;
851 		chan->local = alloc_percpu(typeof(*chan->local));
852 		if (chan->local == NULL)
853 			goto err_out;
854 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
855 		if (chan->dev == NULL) {
856 			free_percpu(chan->local);
857 			chan->local = NULL;
858 			goto err_out;
859 		}
860 
861 		chan->chan_id = chancnt++;
862 		chan->dev->device.class = &dma_devclass;
863 		chan->dev->device.parent = device->dev;
864 		chan->dev->chan = chan;
865 		chan->dev->idr_ref = idr_ref;
866 		chan->dev->dev_id = device->dev_id;
867 		atomic_inc(idr_ref);
868 		dev_set_name(&chan->dev->device, "dma%dchan%d",
869 			     device->dev_id, chan->chan_id);
870 
871 		rc = device_register(&chan->dev->device);
872 		if (rc) {
873 			free_percpu(chan->local);
874 			chan->local = NULL;
875 			kfree(chan->dev);
876 			atomic_dec(idr_ref);
877 			goto err_out;
878 		}
879 		chan->client_count = 0;
880 	}
881 	device->chancnt = chancnt;
882 
883 	mutex_lock(&dma_list_mutex);
884 	/* take references on public channels */
885 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
886 		list_for_each_entry(chan, &device->channels, device_node) {
887 			/* if clients are already waiting for channels we need
888 			 * to take references on their behalf
889 			 */
890 			if (dma_chan_get(chan) == -ENODEV) {
891 				/* note we can only get here for the first
892 				 * channel as the remaining channels are
893 				 * guaranteed to get a reference
894 				 */
895 				rc = -ENODEV;
896 				mutex_unlock(&dma_list_mutex);
897 				goto err_out;
898 			}
899 		}
900 	list_add_tail_rcu(&device->global_node, &dma_device_list);
901 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
902 		device->privatecnt++;	/* Always private */
903 	dma_channel_rebalance();
904 	mutex_unlock(&dma_list_mutex);
905 
906 	return 0;
907 
908 err_out:
909 	/* if we never registered a channel just release the idr */
910 	if (atomic_read(idr_ref) == 0) {
911 		mutex_lock(&dma_list_mutex);
912 		idr_remove(&dma_idr, device->dev_id);
913 		mutex_unlock(&dma_list_mutex);
914 		kfree(idr_ref);
915 		return rc;
916 	}
917 
918 	list_for_each_entry(chan, &device->channels, device_node) {
919 		if (chan->local == NULL)
920 			continue;
921 		mutex_lock(&dma_list_mutex);
922 		chan->dev->chan = NULL;
923 		mutex_unlock(&dma_list_mutex);
924 		device_unregister(&chan->dev->device);
925 		free_percpu(chan->local);
926 	}
927 	return rc;
928 }
929 EXPORT_SYMBOL(dma_async_device_register);
930 
931 /**
932  * dma_async_device_unregister - unregister a DMA device
933  * @device: &dma_device
934  *
935  * This routine is called by dma driver exit routines, dmaengine holds module
936  * references to prevent it being called while channels are in use.
937  */
938 void dma_async_device_unregister(struct dma_device *device)
939 {
940 	struct dma_chan *chan;
941 
942 	mutex_lock(&dma_list_mutex);
943 	list_del_rcu(&device->global_node);
944 	dma_channel_rebalance();
945 	mutex_unlock(&dma_list_mutex);
946 
947 	list_for_each_entry(chan, &device->channels, device_node) {
948 		WARN_ONCE(chan->client_count,
949 			  "%s called while %d clients hold a reference\n",
950 			  __func__, chan->client_count);
951 		mutex_lock(&dma_list_mutex);
952 		chan->dev->chan = NULL;
953 		mutex_unlock(&dma_list_mutex);
954 		device_unregister(&chan->dev->device);
955 		free_percpu(chan->local);
956 	}
957 }
958 EXPORT_SYMBOL(dma_async_device_unregister);
959 
960 struct dmaengine_unmap_pool {
961 	struct kmem_cache *cache;
962 	const char *name;
963 	mempool_t *pool;
964 	size_t size;
965 };
966 
967 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
968 static struct dmaengine_unmap_pool unmap_pool[] = {
969 	__UNMAP_POOL(2),
970 	#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
971 	__UNMAP_POOL(16),
972 	__UNMAP_POOL(128),
973 	__UNMAP_POOL(256),
974 	#endif
975 };
976 
977 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
978 {
979 	int order = get_count_order(nr);
980 
981 	switch (order) {
982 	case 0 ... 1:
983 		return &unmap_pool[0];
984 	case 2 ... 4:
985 		return &unmap_pool[1];
986 	case 5 ... 7:
987 		return &unmap_pool[2];
988 	case 8:
989 		return &unmap_pool[3];
990 	default:
991 		BUG();
992 		return NULL;
993 	}
994 }
995 
996 static void dmaengine_unmap(struct kref *kref)
997 {
998 	struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
999 	struct device *dev = unmap->dev;
1000 	int cnt, i;
1001 
1002 	cnt = unmap->to_cnt;
1003 	for (i = 0; i < cnt; i++)
1004 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1005 			       DMA_TO_DEVICE);
1006 	cnt += unmap->from_cnt;
1007 	for (; i < cnt; i++)
1008 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1009 			       DMA_FROM_DEVICE);
1010 	cnt += unmap->bidi_cnt;
1011 	for (; i < cnt; i++) {
1012 		if (unmap->addr[i] == 0)
1013 			continue;
1014 		dma_unmap_page(dev, unmap->addr[i], unmap->len,
1015 			       DMA_BIDIRECTIONAL);
1016 	}
1017 	mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1018 }
1019 
1020 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1021 {
1022 	if (unmap)
1023 		kref_put(&unmap->kref, dmaengine_unmap);
1024 }
1025 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1026 
1027 static void dmaengine_destroy_unmap_pool(void)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1032 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1033 
1034 		if (p->pool)
1035 			mempool_destroy(p->pool);
1036 		p->pool = NULL;
1037 		if (p->cache)
1038 			kmem_cache_destroy(p->cache);
1039 		p->cache = NULL;
1040 	}
1041 }
1042 
1043 static int __init dmaengine_init_unmap_pool(void)
1044 {
1045 	int i;
1046 
1047 	for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1048 		struct dmaengine_unmap_pool *p = &unmap_pool[i];
1049 		size_t size;
1050 
1051 		size = sizeof(struct dmaengine_unmap_data) +
1052 		       sizeof(dma_addr_t) * p->size;
1053 
1054 		p->cache = kmem_cache_create(p->name, size, 0,
1055 					     SLAB_HWCACHE_ALIGN, NULL);
1056 		if (!p->cache)
1057 			break;
1058 		p->pool = mempool_create_slab_pool(1, p->cache);
1059 		if (!p->pool)
1060 			break;
1061 	}
1062 
1063 	if (i == ARRAY_SIZE(unmap_pool))
1064 		return 0;
1065 
1066 	dmaengine_destroy_unmap_pool();
1067 	return -ENOMEM;
1068 }
1069 
1070 struct dmaengine_unmap_data *
1071 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1072 {
1073 	struct dmaengine_unmap_data *unmap;
1074 
1075 	unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1076 	if (!unmap)
1077 		return NULL;
1078 
1079 	memset(unmap, 0, sizeof(*unmap));
1080 	kref_init(&unmap->kref);
1081 	unmap->dev = dev;
1082 
1083 	return unmap;
1084 }
1085 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1086 
1087 /**
1088  * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
1089  * @chan: DMA channel to offload copy to
1090  * @dest_pg: destination page
1091  * @dest_off: offset in page to copy to
1092  * @src_pg: source page
1093  * @src_off: offset in page to copy from
1094  * @len: length
1095  *
1096  * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
1097  * address according to the DMA mapping API rules for streaming mappings.
1098  * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
1099  * (kernel memory or locked user space pages).
1100  */
1101 dma_cookie_t
1102 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
1103 	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
1104 	size_t len)
1105 {
1106 	struct dma_device *dev = chan->device;
1107 	struct dma_async_tx_descriptor *tx;
1108 	struct dmaengine_unmap_data *unmap;
1109 	dma_cookie_t cookie;
1110 	unsigned long flags;
1111 
1112 	unmap = dmaengine_get_unmap_data(dev->dev, 2, GFP_NOWAIT);
1113 	if (!unmap)
1114 		return -ENOMEM;
1115 
1116 	unmap->to_cnt = 1;
1117 	unmap->from_cnt = 1;
1118 	unmap->addr[0] = dma_map_page(dev->dev, src_pg, src_off, len,
1119 				      DMA_TO_DEVICE);
1120 	unmap->addr[1] = dma_map_page(dev->dev, dest_pg, dest_off, len,
1121 				      DMA_FROM_DEVICE);
1122 	unmap->len = len;
1123 	flags = DMA_CTRL_ACK;
1124 	tx = dev->device_prep_dma_memcpy(chan, unmap->addr[1], unmap->addr[0],
1125 					 len, flags);
1126 
1127 	if (!tx) {
1128 		dmaengine_unmap_put(unmap);
1129 		return -ENOMEM;
1130 	}
1131 
1132 	dma_set_unmap(tx, unmap);
1133 	cookie = tx->tx_submit(tx);
1134 	dmaengine_unmap_put(unmap);
1135 
1136 	preempt_disable();
1137 	__this_cpu_add(chan->local->bytes_transferred, len);
1138 	__this_cpu_inc(chan->local->memcpy_count);
1139 	preempt_enable();
1140 
1141 	return cookie;
1142 }
1143 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
1144 
1145 /**
1146  * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
1147  * @chan: DMA channel to offload copy to
1148  * @dest: destination address (virtual)
1149  * @src: source address (virtual)
1150  * @len: length
1151  *
1152  * Both @dest and @src must be mappable to a bus address according to the
1153  * DMA mapping API rules for streaming mappings.
1154  * Both @dest and @src must stay memory resident (kernel memory or locked
1155  * user space pages).
1156  */
1157 dma_cookie_t
1158 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
1159 			    void *src, size_t len)
1160 {
1161 	return dma_async_memcpy_pg_to_pg(chan, virt_to_page(dest),
1162 					 (unsigned long) dest & ~PAGE_MASK,
1163 					 virt_to_page(src),
1164 					 (unsigned long) src & ~PAGE_MASK, len);
1165 }
1166 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
1167 
1168 /**
1169  * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
1170  * @chan: DMA channel to offload copy to
1171  * @page: destination page
1172  * @offset: offset in page to copy to
1173  * @kdata: source address (virtual)
1174  * @len: length
1175  *
1176  * Both @page/@offset and @kdata must be mappable to a bus address according
1177  * to the DMA mapping API rules for streaming mappings.
1178  * Both @page/@offset and @kdata must stay memory resident (kernel memory or
1179  * locked user space pages)
1180  */
1181 dma_cookie_t
1182 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
1183 			   unsigned int offset, void *kdata, size_t len)
1184 {
1185 	return dma_async_memcpy_pg_to_pg(chan, page, offset,
1186 					 virt_to_page(kdata),
1187 					 (unsigned long) kdata & ~PAGE_MASK, len);
1188 }
1189 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
1190 
1191 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1192 	struct dma_chan *chan)
1193 {
1194 	tx->chan = chan;
1195 	#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1196 	spin_lock_init(&tx->lock);
1197 	#endif
1198 }
1199 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1200 
1201 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1202  * @tx: in-flight transaction to wait on
1203  */
1204 enum dma_status
1205 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1206 {
1207 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1208 
1209 	if (!tx)
1210 		return DMA_COMPLETE;
1211 
1212 	while (tx->cookie == -EBUSY) {
1213 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1214 			pr_err("%s timeout waiting for descriptor submission\n",
1215 			       __func__);
1216 			return DMA_ERROR;
1217 		}
1218 		cpu_relax();
1219 	}
1220 	return dma_sync_wait(tx->chan, tx->cookie);
1221 }
1222 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1223 
1224 /* dma_run_dependencies - helper routine for dma drivers to process
1225  *	(start) dependent operations on their target channel
1226  * @tx: transaction with dependencies
1227  */
1228 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1229 {
1230 	struct dma_async_tx_descriptor *dep = txd_next(tx);
1231 	struct dma_async_tx_descriptor *dep_next;
1232 	struct dma_chan *chan;
1233 
1234 	if (!dep)
1235 		return;
1236 
1237 	/* we'll submit tx->next now, so clear the link */
1238 	txd_clear_next(tx);
1239 	chan = dep->chan;
1240 
1241 	/* keep submitting up until a channel switch is detected
1242 	 * in that case we will be called again as a result of
1243 	 * processing the interrupt from async_tx_channel_switch
1244 	 */
1245 	for (; dep; dep = dep_next) {
1246 		txd_lock(dep);
1247 		txd_clear_parent(dep);
1248 		dep_next = txd_next(dep);
1249 		if (dep_next && dep_next->chan == chan)
1250 			txd_clear_next(dep); /* ->next will be submitted */
1251 		else
1252 			dep_next = NULL; /* submit current dep and terminate */
1253 		txd_unlock(dep);
1254 
1255 		dep->tx_submit(dep);
1256 	}
1257 
1258 	chan->device->device_issue_pending(chan);
1259 }
1260 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1261 
1262 static int __init dma_bus_init(void)
1263 {
1264 	int err = dmaengine_init_unmap_pool();
1265 
1266 	if (err)
1267 		return err;
1268 	return class_register(&dma_devclass);
1269 }
1270 arch_initcall(dma_bus_init);
1271 
1272 
1273